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Some Lemmas related to the Blowup Problem
of Compressible Burgers Equations

JERAE N — 7 — R TR OBEFEREIC B L 72\ < D9 Ol

Shigeharu ITOH™ and Nobutoshi ITAYA
B plm™ WAy 15

Abstract : In this paper, we have derived a priori estimates which are required to discuss the temporal

behavior of the spatially spherosymmetric solution to the 3-dimensional compressible Burgers equation.
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1. Presentation of the problem
The final settlement of the time-global problem of the solution for the compressible Navier-Stokes

equations,

p; +div(pv) =0

1

(1.1) plv, + (v-V)v} =p (A + ‘ngiV) v—VRpb

cypll, + (v-V)0} = kA — Rpf div v — W[V]
as yet, seems to be too far for us to attain. Here p = p(x,t) is the density, v = v(x,t) is the velocity vector,
6 = 6(x,t) is the absolute temperature,  is the viscosity coefficient, x is the heat conductivity, ¢, is the

3

specific heat at constant volume, R is the gas constant, ¥[Vv] = — % (div v)? + %ZL =1

is the constipatim function. In addition, 4, x and ¢y, are positive constants.

In this situation, here we try to obtain some results concerning the blow up of the solution for a simplified
model system of (1.1) which has the following form,
{pt + div(pv) =0

(12) plo, +(v-V)vp=p (A +%Vdiv) v

We call the system of equations (1.2) ” 3-dimensional compressible Burgers equations”.
Hereafter, we consider the initial-boundary value problem for (1.2) in Opr =0, x [0,7, where

O, ={z € R*||z] < ¢} and 0 < T < oo with given conditions,
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0 (Jz] = 0)
v(z,0) = vy(x) = {~ x

(1.2)’ S By(r) € H**(I,) (I, =[0,4], 0 < < 1), §,(0) =5o(£) =0
V(1) 5z = O (2

~r7 2 ~/
vy (£) + ZU()(€> =0

The notations used are conventional (e.g. [1]), so that we do not make any particular comment on them,

unless necessity arises.

Without proof (see [1] and [2]), we state
Theorem 1.1. There exists a unique solution (v, p) of (1.2) — (1.2)" which belongs to
(}1I2+(131+(1/2(0£’T)>3 % B1+a,1+a/2<0£7T>'

Moreover, noting the properties of vy(x) and p,(z), v and p have form

0 (o] =0)
(13) v t) = {6<|x|,t>|i—, (12] #0)
p(z.) = Al )

where g(r,¢) and p(r,t) (r=|z| < {) satisfy

- - 2 __ —(~ 2. 2.\ _ 4
po(r,t) {vt(r,t) + —’UUT} =1 (v,,.,,. + =7, — —Qv> s ==l
(1.3)" r r r 3
' ~ — 2.
pr+ (PU), + - pv =0
(1.3)" (r,0) = By(r), p(r,0) = py(r) = py, 9(0,t) = 8(£,t) =0

Here we note that § is positive, being expressed as

(1.4) prt) =7, (r”(:’ ) )

2

t
exp [*/ b, (F(r, 73t),7)dr
0
with 7(r,7T;t) satisfying the ordinary differential equation
: d_ o _
(1.4) E;r(r,r:t) = 0(F(r,7;t),7), T(rt;t)=r

and with 7,(7,t) being defined by
(14) " T()(T7 t) = F(Ta 07 t)

We note that
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=0 r

p . t
1s) g™ 277,00 = exp | = [ 7, 0,7r | >0
0

Hereafter, we shall discuss the problem (1.2) - (1.2)" mainly from a stand point of blowup or non-
blowup, while we make in the following sections the Assumption (A) :

Besides (1.2)", v, satisfies v, € H***(I,).

2. Fundamental lemmas
We prepare some lemmas in order to discuss our problem.
Lemma 2.1. Let another condition on @, (r) be added to (1.2), i.e.,
(2.1) By(r) <0
and let for some T € (0, 00), (v,p) € (H2+“71+‘¥/2(OLT)>3 x Bitat+e/2(0, 1) satisfy (1.2)-(1.2)", it
holds that
(22) 02 ¥(r,t) = —[F(r)]

Proof. If ©(r,t) takes its positive maximum value at (ry,%;) € (0,£) x (0,T7], then it holds that

e o 20
(2.3) 0 < (B0 — 10, )(ry, ty) = _T_Qv(rlatl) <0
1

which is a contradiction. On the other hand, if ¥(r,t) takes its negative minimum value at

(rg,ty) € (0,£) x (0,T], then it holds that

o 2%
(23)’ 02 (5, = 15,,) (1, Ly) = = 5 (ry, 15) > 0
2
which is a contradiction. Thus, by (1.2)’,(2.1),(2.3) and (2.3)’ we have our assertion. o

From Lemma 2.1 follows that, if blow-up occurs in (1.2) = (1.2)" or (1.3)'=(1.2)", then it does

in (p, Vv) or (p,v,). In order to consider this, we introduce ¥ (r,t) defined by
v -
(24) ¢(7“»t) - _;7 1/)(07t) = _Ur(o’t)

which, as easily seen, satisfies

Y.

r

1

(2.5) Pp(rt) +0(r, 1)y, =

=

(1/;,‘,,,+4 >+¢2 0<r<60<t<T)
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P(r,0) = YP,(r) = _@0(,71>

¥, (0,8) = 0,,.(0,8) = ¢(£,t) =0
¥o(0) = —75(0)

(2.5)"
where (p,7) is the same as in Lemma 2.1.

Lemma 2.2. Let ¥,(7) be non-negative and the premise be the same as in Lemma2.1. Then (r,t) is non-
negative.

Proof. If v(r,t) takes its negative minimum value at (r,%;) € (0,€) x (0,7, then
(2.6) 02> (7/4 " %d]n) (rysty) = (r,t,)2 >0

which is contradictory. o

Remark 2.1. Assumption (A) guarantees the existence of ,,.(0,t), which is equal to

hmv'—)()% and _57”"7‘(070 :

Lemma 2.3. Let w(r,t) satisfy (2.5)—(2.5)". Then w(r,t) defined by w(r,t) = r*¢, (r,t) satisfies the

following equation :

@ wtrt) =5, +{ (5) - L
@7)" wlr,0) = (), w(0,0) =0, w(t,1) = £, (61)

Proof. Differentiating both sides of (2.5) and suitably substituting %, = 7 4w into the resulting equation,

we have (2.7). o

Lemma 2.4. Let +(r,t) be asin the lemma above, yet with additional conditions on (7)., i.e.,
(2.8) $o(0) >0, 94(r) <0

Then we have

(2.9) P (r,t) <0 (0<r<{0<t<T)

Proof. We define W (r,t) by W(r,t) = e*w(r,t), where A is a constant such that A > |rip, — 1|\

Opr°

Then W (r,t) satisfies

_H m _4E ) —
(210) Wt(’rvt) - ﬁ Wrr + { <~> r ﬁ + Tw} Wr + {(Twr w) )‘}w
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and
(2.10)’ W(r,0) = riyi(r), W(0,t) =0, W(,t) <0

If W (r,t) takes its positive maximum at (r1,¢;) € (0,£) x (0,77, then
Qi) 0 (Wo=EW, ) (it = (i = 5= )W, 1) <0

which is a contradiction, and if W (r,t) takes its negative minimum at (75,¢,) € (0,£) x (0,77, then

QI 02 (W =W, ) () =, — = AW} (rauts) >0
/
which is a contradiction. Hence, we have an inequality w(r,t) = r*s, (r,t) < 0, obtaining (2.9). o

Remark 2.2. We note that there holds a relation
(2.12) 0> w(r,t) = rigp, (r,t) > —r*g(r)) (0<r<0)

which follows from the behavior of (7, t) in the equality (2.5) near r = ¢, 0 < t < T,

(2.12)' 0=Q<MT+4%J

p r r=f
ie.
(2.12)" Prrlrme = —4% 20

r={
The equality (2.12)" guarantees w(r,t) does not take its negative minimum at

r=1¥¢, 0 <t <T, finally leading us to (2.12).

Now, let 7, p and v be as in the preceding lemmas. Here, we express (1.3) — (1.3)" by the ¥ - characteristic

coordinates (ry = 7(7,0;t).t, = 1), (0<r, <¥ 0<t,<T) inthe following way :

T . - R o
@(ry,ty) = 40’ p(rosty) = plr(rg,to)sty)s 0(rgty) = 0(r(ry,ty), to)
r(r(,,t(,)

N T, 2.

p()@Qvto (ro:ty) =1 (}’7‘(’: + ;U)
(2.13) , o

ﬁ(TU’tO) = —ﬁQSOQT_
(2.13) o(rg,0) = Ty(rg), p(ry,0) = Py 9(0,ty) = 0(¢,t5) =0

In the same way, (2.5) — (2.5)" are expressed as below :
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Y(ro,ty) = Y(r(ry,ty)s o)

. b, P, - i

2, —c o +4_0 h{_‘(‘0277[)27 Cn = —

(2.14) oy 0 { (%)H . } 0= B
Pty = Sm;
(2.14)’ 1;(7“0,0) = Po(ro)s ZZA’(Oa ty) = T,Z(e: ty) =0, ©(ry,0)=1
From (2.14) — (2.14)", we have
ty
(2.15) @(ry,ty) = exp { Y (7o, T)dT}
0

Lemma 2.5. For r, in (2.13), we have
(2.16) L (ro,to) = ©(0,0) " p(rg, ty)? exp{S(ry, ty)}
where

Ty to
(2.16)’ S(ro,ty) = / et {‘P%(To,to) — Ty(7) _/ (@2)15(,17‘%0} dry

0 0

Proof. We note that

Toto

D D m ,a"n 20 —
(2.17) Py 0y, (T, ty) = 7 (r— + 7) = 7i{log(r,, )}
"o -

By integration in ¢,, we have

oy ty
(2.17)’ / ¢yt 0, dty = ¢yt {99217(7"07 to) — To(ry) — / (‘P2)t(,vdt0}

0 0

‘to

= {log (r,,.o r?)}

- {log(rmr?)}T0 — {1og(r(2))}7.0

Toly,=0

Nextly, by integration in 7, over [€, 7], it holds that
To 1 oA » to 9 N
217" / Co {SO v(ry, ty) — Bolry) _/ (¢ )t()vdt()} dry
& 6]

o
= / {log(r,.”rQ) — log(rg)}% dry, = 10g(r,,0r21"52)|::2=5

£

= log (r,.“ <p‘2) —log (Tm <p“2) |,.0:6

By ¢ — 0, we obtain
Q.17)" S(ry,te) = log(r, ©72) —log(w(0,t,)%)

from which comes (2.16).
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Lemma 2.6. The estimate
to
(218) 0 S —/ w’r‘(, (T(),T)d’r S 0,66012
[¢]
holds, where
_at

@1 a=C (V0 + o020, 1) +2 [ 0,250,
0

Proof. From ©(7g,ty) = To/T(ros ) (2.14),

to
(2.19) T, = (@) = £ (1 - TO/ )1/’7'0 (Tos T)d7'>
¥ ro 0

is obtained. Hence, from Lemma 2.5 and (2.19), we have the equality

to
(2.20) - / Y, (T, T)dT = 15t (@7’7,“ — 1)
0

= 5" ((0, to) 2@ (15 ty) exp{S(ry,ty)} — 1)
Because of Lemma 2.4, (2.14),; and (2.15) , we find that S(ry,ty) < J;"” 2arydry = arg . Consequently,

we obtain

ty
@21) 0= _/ ’w"‘o (’r()v T)dT < T(;l(em"z’ — 1)
0

2(n—-1
el a'n,,ro(” ) 2
= ar, 1+ E —_— | < aroe‘”u
—~ n!

Lemma 2.7. 7r,r, is expressed as below :

to
(2.22) Trgry = ©(0,80) (1, 10)? exp{S(ry, ty)} {/ Yy, (1o, T)dT + 5, (7'(1,15(])}
0

where S, is such that
to
(2.22)" S,,.”(r(,, to) = ¢yt {@27)(7"07 to) — Ty(rg) + / (Wz)t(,vdto}
0
from which follows an easy estimation of ]ST“ |

Proof. The assertion of the lemma comes directly from Lemma 2.5 and Lemma 2.6. ]
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Lemma 2.8. Let ¢ be as in Theorem 1.1. Then, it holds that

(2.23) U,(¢,t) < sup B (r) =k
o<r<y

Proof. Weput V(r.t)

(2.24) V(r,t) =o(r,t) — kyr (<0)

Taking account of (1.3) —(1.3)"', we have a relation

- » _ 2 2
(225) POV, + 5V, + ko)) = T { Vi + 5 (V, 4 o) = 5 (V + kor) |

“n (V7% =)

from which comes an equality

2

~ _ 2 "
(2.25)" POV, =7 (Vi + 2V, =5 V) = BV, + y)

where we remark that

(2.25)" {V(“) = —kyl, V(0,t)=0

0>V(r,0)=0(r,0) — kyr > —ky¢

By the maximum value principle, V(7. t) takes its minimum value at r = £ (¢ > 0). Therefore, on the basis

of its non-positivity, it holds that

(2.26) V.(0,t) =v,(6,t) —ky <0
which is equivalent to (2.23). o
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