Abstract

Gauss’ and Euler’s type infinite product representations for Vignéras multiple gamma function are presented. As an application of the representations, a multiplication formula for the function is derived.

Key words: multiple gamma function, Gauss product representation, Euler product representation, multiplication formula

1. Introduction

In a series of papers [2, 3, 4, 5], Barnes introduced multiple gamma functions associated with a certain generalization of the Hurwitz zeta function. In relevant with a special case of Barnes’ function, Vignéras [15] introduced her multiple gamma functions $G_r(z)$ ($r \in \mathbb{Z}_{\geq 0}$) as a sequence of meromorphic functions uniquely determined by the following relations:

\begin{align}
(i) & \quad G_0(z) = z, \\
(ii) & \quad G_r(1) = 1, \\
(iii) & \quad G_r(z + 1) = G_{r-1}(z)G_r(z)
\end{align}

\begin{align}
(iv) & \quad \frac{d^{r+1}}{dz^{r+1}} \log G_r(z + 1) \geq 0 \quad \text{for } z \geq 0.
\end{align}

This formulation can be considered as a generalization of the Bohr-Morellup theorem. For example, $G_1(z)$ is the celebrated Euler gamma function $\Gamma(z)$ (cf. Artin [1], Whittaker-Watson [16]). $G_2(z)$ is G-function introduced in Barnes [2].

In this paper, we present two types of infinite product representations of Vignéras’ multiple gamma function, which can be considered as a generalization of the Gauss and the Euler product formula of Euler’s gamma function

\begin{align}
\Gamma(z + 1) &= \lim_{N \to \infty} \frac{N!}{(z+1)(z+2)\cdots(z+N)}(N+1)^z \\
&= \prod_{n=1}^{\infty} \left[\left(1 + \frac{z}{n} \right)^{-1} \left(1 + \frac{1}{n} \right)^z \right]
\end{align}

(cf. Artin [1], Whittaker-Watson [16]). Our main theorem is stated as follows: If z is not negative
integer, the multiple gamma function $G_r(z)$ is represented as

$$G_r(z+1) = \lim_{N \to \infty} \left[\prod_{n=1}^{N} \frac{G_{r-1}(n)}{G_{r-1}(z+n)} \prod_{k=0}^{r-1} G_k(N+1) \left(r-\frac{z}{r-k} \right) \right]$$ (4)

$$= \prod_{n=1}^{\infty} \left[\frac{G_{r-1}(n)}{G_{r-1}(z+n)} \prod_{k=0}^{r-1} \left(\frac{G_k(n+1)}{G_k(n)} \right) \left(r-\frac{z}{r-k} \right) \right].$$ (5)

In the case when $r = 1$, these formulas coincide with (2) and (3). We can find the representation for $G_2(z)$ in Jackson [6]. It should be noted that infinite product formulas of these types for a q-analogue of the multiple gamma function were already obtained in [12]. However, in contrast to simplicity in q-case, some delicate techniques are necessary to deal with infinite products of Vignéras’ function. We verify (4) and (5) in section 1. The point is to apply an asymptotic expansion in [13] to estimations for products of Vignéras’ functions.

In section 2, as an application of infinite product representations, we derive a multiplication formula for Vignéras’ multiple gamma function, which can be regarded as a generalization of the well known formula

$$\prod_{m=0}^{p} \Gamma \left(\frac{z + m}{p} \right) = \frac{(2\pi)^{\frac{p-1}{2}}}{p^{\frac{p}{2}}} \Gamma(z)$$ (6)

for Euler’s gamma function (cf. Artin [1], Whittaker-Watson [16]). It is described as follows:

$$\prod_{q_1, q_2, \cdots, q_r = 0}^{p-1} G_r \left(\frac{z + q_1 + \cdots + q_r}{p} \right) = \frac{e^{\phi_r(z)}}{p^{\psi_r(z)}} G(z)$$

It might be seem that formula of this type can be guessed easily from (1). However, it is not easy to determine explicit forms of $\phi_r(z)$ and $\psi_r(z)$. The reason why we can do it is usefulness of our representations (4).

For simplicity, we call Vignéras multiple gamma function only “multiple gamma function” in the following sections.

Notations: In this paper, we use notation $B_r(z)$ for the Bernoulli polynomial defined by the generating function

$$\sum_{r=0}^{\infty} B_r(z) t^r = \frac{te^t}{1-e^t},$$

and B_r for the Bernoulli number defined as $B_r := B_r(0)$. We introduce the Stirling number rS_j of the 1 st kind by

$$t(t-1) \cdots (t-r+1) = \sum_{j=0}^{r} rS_j t^j.$$

The notation $\zeta(s)$ is used to refer to the Riemann zeta function defined as the series $\zeta(s) := \sum_{n=1}^{\infty} n^{-s}$ and its analytical continuation. $\zeta'(s)$ is the first derivative of $\zeta(s)$ defined by $\zeta'(s) := \frac{d}{ds} \zeta(s)$.
2 Infinite product representations

As mentioned in introduction, our main theorem is described as follows:

Theorem 2.1 If z is not negative integer and is included in any finite region of complex plane, the multiple gamma function $G_r(z)$ is represented as

$$G_r(z + 1) = \lim_{N \to \infty} \left[\prod_{n=1}^{N} \frac{G_{r-1}(n)}{G_{r-1}(z + n)} \prod_{k=0}^{r-1} G_k(N + 1)^{\left(\frac{z}{r - k}\right)} \right]$$

(7)

$$= \prod_{n=1}^{\infty} \left[\frac{G_{r-1}(n)}{G_{r-1}(z + n)} \prod_{k=0}^{r-1} \left(\frac{G_k(n)}{G_k(n)} \right)^{\left(\frac{z}{r - k}\right)} \right].$$

(8)

Proof. From the Gauss product representation (7), the Euler product representation (8) follows immediately. So, we give a proof of (7) in this section. We apply an asymptotic expansion for $G_r(z)$, which was firstly appeared in [13].

Theorem 2.2 (Ueno-Nishizawa) Let us put $0 < \delta < \pi$, then, as $|z| \to \infty$ in the sector $\{ z \in \mathbb{C} \mid \arg z < \pi - \delta \}$,

$$\log G_r(z + 1) = \left\{ \begin{array}{l}
\left(\frac{z + 1}{r} \right) + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j}(z) \end{array} \right\} \log(z + 1) -
- \sum_{j=0}^{r-1} G_{r,j}(z) \frac{(z + 1)^{j+1}}{(j + 1)^2} - \sum_{j=0}^{r-1} G_{r,j}(z) \zeta'(-j) + O(z^{-1}).$$

(9)

where a polynomial $G_r,j(z)$ is dened by the generating function

$$\left(\frac{z - u}{r - 1} \right) =: \sum_{j=0}^{r-1} G_{r,j}(z) u^j \quad (r = 0 \cdots r - 1), \quad G_{r,j}(z) = 0, \quad (j \geq r).$$

In our proof, the following lemma is useful:

Lemma 2.3 For arbitrary $x, y \in \mathbb{C}$,

(i) $\sum_{k=0}^{r} \left(\begin{array}{c}
x \\
r - k \end{array} \right) \left(\begin{array}{c}
y \\
k \end{array} \right) = \left(\begin{array}{c}
x + y \\
r \end{array} \right)$,
 (ii) $\sum_{k=0}^{r} \left(\begin{array}{c}
x \\
r - k \end{array} \right) G_{k,j}(y) = G_{r,j}(x + y)$.

Noting this lemma and that

$$\sum_{j=0}^{r-1} G_{r,j}(z + N - 1) \left\{ \frac{(z + N)^{j+1}}{j + 1} - \frac{N^{j+1}}{(j + 1)^2} \right\} = \int_{N}^{z + N} \frac{du}{v} \int_{0}^{v} \left(\begin{array}{c}
z + N - 1 - u \\
r - 1 \end{array} \right) du,$$

we rewrite the logarithms of terms in brackets of (7) and have the following asymptotic behavior as $N \to \infty$:

$$\log \left[\prod_{n=1}^{N} \frac{G_{r-1}(n)}{G_{r-1}(z + n)} \prod_{k=0}^{r-1} G_k(N + 1)^{\left(\frac{z}{r - k}\right)} \right] =$$
As $N \to \infty$, this integral vanishes because of the following lemma, which was already shown in [13]:

Lemma 2.4 (Ueno-Nishizawa) For arbitrary $z \in \mathbb{C}$, we have

\[
\binom{z}{r} + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j}(z-1) = \int_{-1}^{z} \binom{u}{r-1} du + \int_{u}^{z} \binom{z-1-u}{r-1} du + O(N^{-1}).
\]

Therefore, we have proved theorem 2.1.

3 Multiplication formula

As an application of Gauss’ product representation, we demonstrate the multiplication formula of the multiple gamma function.

Theorem 3.1

\[
\prod_{q_{1}, q_{2}, \cdots, q_{r}=0}^{p-1} G_{r} \left(\frac{z + q_{1} + \cdots + q_{r}}{p} \right) = e^{\phi_{r}(z)} G(z) \tag{10}
\]

where

\[
\phi_{r}(z) = \sum_{j=0}^{r-1} \left[\sum_{q_{1}, \cdots, q_{r}=0}^{p-1} G_{r,j} \left(\frac{z + q_{1} + \cdots + q_{r}}{p} - 2 \right) - G_{r,j}(z-1) \right] \zeta'(-j)
\]

\[
\psi_{r}(z) = \binom{z}{r} + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j}(z-1).
\]

Proof. From the infinite product representation (7), it follows that
Infinite Product Representations for Vignéras’ Multiple Gamma Functions

We substitute the asymptotic expansion (9) to the logarithm of terms in the second brackets.

\[
\log \left[\prod_{k=0}^{r} \frac{G_r(N) \sum_{q_1, \ldots, q_r} \left(\frac{(z + q_1 + \cdots + q_r)}{r} \right)}{G_r(p(N - 1))^{\left(\frac{z}{r-1}\right)}} \times \frac{\sum_{m=0}^{p(N-1)-1} \psi_{r-1}(z + m)}{e^{\sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m)}} \right] =
\]

\[
= \left\{ \sum_{q_1, \ldots, q_r} \left(\frac{z + q_1 + \cdots + q_r}{r} \right) + \frac{\sum_{m=0}^{p(N-1)-1} \psi_{r-1}(z + m)}{e^{\sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m)}} \right\} \log N -
\]

\[
- \left\{ \sum_{j=0}^{r} \left(\frac{z + p(N - 1)}{r} \right) + \frac{\sum_{m=0}^{p(N-1)-1} \psi_{r-1}(z + m)}{e^{\sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m)}} \right\} \log (N - 1) -
\]

\[
- \sum_{j=0}^{r} \left\{ \sum_{q_1, \ldots, q_r} \frac{G_r(z + q_1 + \cdots + q_r)}{r} + \frac{\sum_{m=0}^{p(N-1)-1} \psi_{r-1}(z + m)}{e^{\sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m)}} \right\} \log p -
\]

\[
- \sum_{j=0}^{r} \left\{ \sum_{q_1, \ldots, q_r} \frac{G_r(z + q_1 + \cdots + q_r)}{r} + \frac{\sum_{m=0}^{p(N-1)-1} \psi_{r-1}(z + m)}{e^{\sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m)}} \right\} \zeta(-j) -
\]

\[
- \sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m) + o(1).
\]

We show that its divergent terms vanish. First, we compute terms including \(\log p \).

Proposition 3.2 If we define \(\psi_0(z) = 0 \) and

\[
\psi_r(z) := \left(\frac{z}{r} \right) + \frac{\sum_{j=0}^{r-1} B_{j+1} G_{r,j}(z - 1)}{j + 1},
\]

then \(\psi_r(z) \) satisfies \(\psi_0(z) = z \) and

\[
\left(\frac{p(N - 1) - 1}{r} \right) + \frac{\sum_{j=0}^{r-1} B_{j+1} G_{r,j}(z + p(N - 1) - 2)}{j + 1} - \sum_{m=0}^{p(N-1)-1} \psi_{r-1}(z + m) = \psi_r(z).
\]

\(\psi_r(z) \) does not depend on \(N \) and is uniquely determined as the polynomial satisfying the above recurrence relation.

Proof. This proposition immediately follows from the relation
for $L \in \mathbb{Z}_{\geq 0}$.

Next, we simplify terms including $\zeta'(-j)$ and give a explicit form of $\phi_r(z)$.

Proposition 3.3 If we define
\[
\phi_{r,j}(z) := \sum_{q_1,\ldots,q_r=0}^{p-1} G_{r,j} \left(\frac{z + q_1 + \cdots + q_r}{p} - 2 \right) - G_{r,j}(z - 1),
\]
then $\phi_r(z) = \sum_{j=0}^{r-1} \phi_{r,j}(z) \zeta'(-j)$ is uniquely determined as a polynomial satisfying the recurrence relation $\phi_0(z) = 0$ and
\[
\sum_{j=0}^{r-1} \left[\sum_{q_1,\ldots,q_r=0}^{p-1} G_{r,j} \left(\frac{z + q_1 + \cdots + q_r}{p} + N - 2 \right) - G_{r,j}(z + p(N-1) - 1) \right] \zeta'(-j) - \sum_{m=0}^{p(N-1)-1} \phi_{r-1}(z + m) = \phi_r(z).
\]

Proof. It is sufficient to prove
\[
\phi_{r,j}(z) = \sum_{q_1,\ldots,q_r} G_{r,j} \left(\frac{z + q_1 + \cdots + q_r}{p} + N - 2 \right) - G_{r,j}(z + p(N-1) - 1) - \sum_{m=0}^{p(N-1)-1} \left[\sum_{q_1,\ldots,q_r} G_{r-1,j} \left(\frac{z + m + q_1 + \cdots + q_r}{p} + N - 2 \right) - G_{r-1,j}(z + m + p(N-1) - 1) \right].
\]

We can see from the identity
\[
\sum_{m=0}^{L} G_{r,j}(z + m) = G_{r+1,j}(z + L) - G_{r+1,j}(z), \quad (L \in \mathbb{Z}_{\geq 0}),
\]
and
\[
\sum_{m=0}^{p(N-1)-1} \sum_{q_1,\ldots,q_{r-1}=0}^{p-1} G_{r,j} \left(\frac{z + m + q_1 + \cdots + q_r}{p} - 2 \right) = \sum_{q_1,\ldots,q_{r-1},q_r=0}^{p-1} G_r \left(\frac{z + q_1 + \cdots + q_r}{p} + N - 2 \right) - G_r \left(\frac{z + q_1 + \cdots + q_r}{p} - 2 \right),
\]
The uniqueness of $\phi_r(z)$ follows from its polynomiality.

In order to finish our proof, we verify that the rest of terms vanish as $N \to \infty$. By lemma 2.3, we can see that
\[
\sum_{k=0}^{r} \left\{ \sum_{q_1,\ldots,q_r=0}^{p-1} \left(\frac{z + q_1 + \cdots + q_r}{r-k} \right) / p - 1 \right\} \times
\]

\[
\times \left[\binom{N}{k} + \sum_{j=0}^{k-1} \frac{B_{j+1}}{j+1} G_{k,j} (N-1) - \sum_{j=0}^{r} G_{k,j} (N-1) \frac{N^2}{(j+1)^2} \right] - \\
- \sum_{k=0}^{r} \binom{z-1}{r-k} \left(\left(\binom{N}{k} + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{k,j} (N-1) - \sum_{j=0}^{k-1} G_{k,j} (N-1) \frac{N^j+1}{(j+1)^2} \right) \right) \\
= \sum_{q_1, \ldots, q_r=0}^{p-1} \left[\frac{z + q_1 + \cdots + q_r}{p} - 1 \right] + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j} \left(\frac{z + q_1 + \cdots + q_r}{p} + N - 2 \right) - \\
- \sum_{j=0}^{r-1} G_{r,j} \left(\frac{z + q_1 + \cdots + q_r}{p} + N - 2 \right) \frac{N^2}{(j+1)^2} - \\
- \left\{ \binom{z+N-1}{r} + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j} (z + N - 2) - \sum_{j=0}^{r-1} G_{r,j} (z + N - 2) \frac{N^j+1}{(j+1)^2} \right\}.
\]

From the same argument as proof of theorem 2.1, it follows that the above terms tend to zero as \(N \to \infty \). Therefore, we have proved theorem 3.1.

Our result is closely related with Kuribayashi [7]. In order to explain his result, we introduce some functions. \(\zeta_r(s, z) \) is defined as a special case of Barnes’ zeta function [5, 14], which is introduced as the series

\[
\zeta_r(s, z) := \sum_{n_1, \ldots, n_r=0}^{\infty} (z + n_1 + \cdots + n_r)^{-s}
\]

for \(\Re s > r \). This function can be continued analytically to a meromorphic function whose poles are placed at \(s = 1, \cdots, r \). We call the analytic continuation also \(\zeta_r(s, z) \). The gamma function \(\Gamma_r(z) \) associated with \(\zeta_r(s, z) \) is introduced as

\[
\Gamma_r(z) := \exp \left[\frac{\partial}{\partial s} \zeta_r(s, z) \right]_{s=0}.
\]

Kuribayashi exhibit the following multiplication formula:

Theorem 3.4 (Kuribayashi) \(\Gamma_r(z) \) satisfies the following multiplication formula:

\[
\prod_{q_1, \ldots, q_r=0}^{p-1} \Gamma_r \left(\frac{z + q_1 + \cdots + q_r}{p} \right) = p^{Q_r(z)} \Gamma_r(z),
\]

where

\[
Q_r(z) = \frac{(-1)^r}{(r-1)!} \sum_{r=1}^{p} \frac{r!}{l} \left\{ z^l - (-1)^l B_l \right\}.
\]

As a consequence of facts in Vardi [14], a relation between \(G_r(z) \) and \(\Gamma_r(z) \) is expressed as follows:
Thus, we have
\[Q_r(z) = (-1)^r \psi_r(z) = (-1)^r \left(\frac{z}{r} + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j}(z - 1) \right). \] (11)
Our expression is useful in some cases of studies on related functions. For example, noting that \(G_{r,0}(z) = (z,1) \), we can check that the relation follows
\[(-1)^r Q_r(r-z) = Q_r(z) \] from the definition of \(\psi_r(z) \) and (11). It plays an important role in the multiplication formula
\[\prod_{q_1, \ldots, q_r = 0}^{r-1} S_r \left(\frac{z + q_1 + \cdots + q_r}{p} \right) = S_r(z). \]
for Kurokawa’s multiple sine function \([8, 9, 10, 11]\) introduced as
\[S_r(z) := \Gamma_r(r - z) \Gamma_r(z)(-1)^{r+1}. \]
In Kuribayashi’s original proof, (12) is verified through a rather complicated argument, He applied a relation between \(\zeta_r(-m, z) \) \((m \in \mathbb{Z}_0^\geq)\) and the Bernoulli polynomials \(B_l(z) \). However, once (11) is obtained, we can check (12) immediately.

4 Appendix : an elementary proof for (11)
Without facts of zeta functions, we can prove (11) directly as follows: First, we rewrite Kuribayashi’s \(Q_r(z) \) as
\[(-1)^r Q_r(z) = \frac{1}{(r-1)!} \sum_{l=0}^{r-1} r_{r-1} S_l \left\{ \frac{(-1)^{l+1} B_{l+1}}{l+1} - \frac{(z-1)^{l+1}}{l+1} \right\}. \] (13)
The second term can be written as follows:
\[\frac{1}{(r-1)!} \sum_{l=0}^{r-1} r_{r-1} S_l \frac{(z-1)^{l+1}}{l+1} = \int_0^z \left(\frac{t-1}{r-1} \right) dt - \int_0^1 \left(\frac{t-1}{r-1} \right) dt. \]
From Lemma 2.4 and
\[G_{r,j}(0) = \frac{(-1)^j}{(r-1)!} r_{r-1} S_j, \]
it follows that
\[\int_0^z \left(\frac{t-1}{r-1} \right) dt - \int_0^1 \left(\frac{t-1}{r-1} \right) dt = \frac{z}{r} + \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} G_{r,j}(z - 1) - \frac{1}{(r-1)!} \sum_{j=0}^{r-1} \frac{B_{j+1}}{j+1} (-1)^j r_{r-1} S_j. \]
Therefore, we obtain (11) by substituting this to (13).
References