ORIGINAL ARTICLE

PRODUCTION OF GROWTH-RELATED ONCOGENE PROTEIN-α IN A HUMAN ORAL SQUAMOUS CELL CARCINOMA CELL LINE STIMULATED WITH TUMOR NECROSIS FACTOR-α: ROLE IN TUMOR ANGIogenesis AND TUMOR PROLIFERATION

Norihiko Narita1, Tomoh Matsumiya2, Takao Kon1, Ryo Hayakari2, Ryohei Itoh6, Kosei Kubota1, Hirotaka Sakaki1, Ken Furudate1, Hidemi Yoshida2, Tadaatsu Imaizumi2, Wataru Kobayashi1 and Hiroto Kimura1

Abstract

The CXC chemokine growth-related oncogene protein-α (GRO-α) has a wide variety of biological activities including as neutrophil trafficking or migration of vascular endothelial cells. In addition, studies have shown a crosstalk between tumor cells and vascular endothelial cells; GRO-α released by endothelial cells induces invasion of tumor cells toward endothelial cells, indicating an importance of GRO-α in a tumor environment. Oral squamous cells are reported to produce GRO-α in response to cytokines such as tumor necrosis factor-α (TNF-α). However, little is known about how GRO-α is involved in oral cancer. Here, we investigated the biological role of GRO-α for both tumor growth and angiogenesis in oral squamous cell carcinoma cells. We first evaluated the effect of TNF-α on GRO-α expression in three oral cancer cells from different origins. Among the cell lines we used, KOSC-2 cells expressed the highest amount of GRO-α mRNA in response to TNF-α. TNF-α-treated condition medium from KOSC-2 cells enhanced endothelial cell chemotaxis and the chemotactic activity was partially inhibited by the addition of neutralizing anti-GRO-α antibody. In addition, GRO-α exerted tumor cell migration of KOSC-2. From these results, we conclude that GRO-α may contribute to both angiogenesis and proliferation in oral cancer.

Key words: growth-related oncogene protein-α (GRO-α); tumor necrosis factor-α (TNF-α); oral squamous cell carcinoma cells.

抄録　CXC ケモカインファミリーである GRO-α は、好中球走化性因子として知られている他、腫瘍増殖性や血管新生能を有することが明らかとなっている。これまでに口腔粘膜上皮の GRO-α 産生は報告されていたが、GRO-α の口腔癌における役割は不明である。そこで本研究では口腔癌における GRO-α を介した血管新生作用や腫瘍増殖効果について実験的に検討した。3 種類の口腔扁平上皮癌由来細胞に TNF-α 処理をしたところ、GRO-α の発現量は細胞間で大きく異なっており、TNF-α 依存的な GRO-α 産生は個々の腫瘍細胞の性質に依存することが示唆された。GRO-α を最も多く産生した KOSC-2（舌癌由来細胞株）の TNF-α 処理後の培養上清は、血管内皮細胞の走化性を亢進し、GRO-α 特異的な中和抗体の添加はその亢進を部分的に抑制した。さらに、ヒト組換え型 GRO-α は KOSC-2 の増殖を促進した。これらの結果から、口腔癌において GRO-α は腫瘍の増悪因子である可能性が示唆された。

キーワード：GRO-α；腫瘍増殖因子（TNF-α）；口腔扁平上皮癌

1) Department of Dentistry and Oral Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
2) Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Correspondence: T. Matsumiya

Received for publication, December 18, 2013
Accepted for publication, December 26, 2013
Introduction

Tumor necrosis factor-α (TNF-α) regulates a variety of biological functions related to inflammatory reactions, cell growth and apoptosis; and the most important source of TNF-α is macrophages. TNF-α affects carcinoma cells to induce the expressions of many cytokines. Constitutive activation of nuclear factor-κB (NF-κB) is observed in many types of cancer cells, strongly suggesting a critical role in cancer development and progression. Among several carcinogens, TNF-α is thought to be the most potent activator of NF-κB. In the tumor mass, tumor-associated macrophage (TAM) should be major source of TNF-α.

Growth-related oncogene protein-α (GRO-α) / CXCL1 was first identified as a growth factor of melanoma. GRO-α belongs to the C-X-C chemokine family and has chemotactic activity for neutrophils. Some types of the C-X-C chemokine family, which contain the sequence Glu-Leu-Arg (the ELR motif) in front of the C-X-C motif, have been shown to possess a potent angiogenic property. Interleukin-8 (IL-8) / CXCL8, epithelial and neutrophil activating protein-78 (ENA-78) /CXCL5, and GRO-α are the members of this group. A variety of chemokines including GRO-α are rapidly and markedly induced by TNF-α. This indicates that GRO-α acts as the secondary mediator in response to TNF-α. TNF-α has also be reported to induce GRO-α normal oral keratinocytes; however, the role of GRO-α in oral squamous cells has not been proven by experimental analysis.

In healthy oral mucosa, IL-8 and monocyte chemotactic protein-1 (MCP-1) /CCL2 mRNA are constitutively expressed whereas mRNA expression of GRO-γ /CXCL3, a member of GRO family chemokine, is significant lower. In contrast, high level of GRO-α expression is shown to be correlated with both tumor angiogenesis and lymph node metastasis in oral cancer. Furthermore, microarray analysis revealed that GRO-α is more markedly expressed in oral cancer cells than in normal oral epithelial cells. These suggest the essential role of GRO-α in oral cancer cells.

Endothelial cells express NF-κB-dependent GRO-α, mostly in response to TNF-α. CXC chemokines including GRO-α and IL-8 secreted by endothelial cells have been shown to induce tumor cell invasion. On the other hand, the role of GRO-α, which is produced from oral squamous carcinoma, is incompletely understood.

We have been studying the effect of TNF-α on human oral squamous cell carcinoma, and here we report the expression of GRO-α is cell line-specific, even in response to TNF-α. We also studied the effect of GRO-α on tumor growth and endothelial cell chemotaxis.

Materials and Methods

Reagents

Cell culture medium Humedia EB-2 and its supplements were purchased from Kurabo (Osaka, Japan). Primer oligo(dT), M-Mulv reverse transcriptase were from GIBCO-BRL (Gaithersburg, MD, USA). Digoxigenen (DIG)-labeling and detection systems were obtained from Boehringer Mannheim (Mannheim, Germany) and a GRO-α enzyme-linked immunosorbent assay (ELISA) kit from R&D Systems (Minneapolis, MN, USA). An RNeasy total RNA isolation kit and Taq DNA polymerase were from Qiagen (Hilden, Germany). A Northern Max kit and a Lig’nScribe kit were from Ambion (Austin, TX, USA).

Cell culture

A cell line of human oral squamous cell carcinoma, KOSC-2, was a generous gift from...
TNF-α Induces GRO-α in Oral Cancer Cells

The other human oral squamous cell carcinoma cell lines, HSC-3 and Ca9-22 were purchased from JCRB Cell Bank (Osaka, Japan). The cells were cultured using RPMI-1640 (KOSC-2) or DMEM (HSC-3 and Ca9-22) supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin. The cells were subjected to the stimulation with TNF-α when they reached about 80% confluence.

Human umbilical vein endothelial cells (HUVECs) were purchased from KURABO (Tokyo, Japan). The cells were cultured in Humedia EB-2 supplemented with 2% FBS, 10 ng/mL recombinant human (r(h)) epidermal growth factor, 5 ng/mL r(h) basic fibroblast growth factor, 1 μg/mL hydrocortisone and 10 μg/mL heparin. CD45+ cells were found in the cultures.

RNA extraction and quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

Total RNA was extracted from the cells using an RNeasy total RNA isolation kit. Single-strand cDNA was synthesized from 1 μg of total RNA using primer oligo(dT)12,18 and M-Mulv reverse transcriptase. A CFX96 Real-Time PCR System (Bio-Rad) was used for quantitative analyses of GRO-α and 18S rRNA expression. The sequences of the primers were:

GRO-α-F (5’-ATGGCCCGCGTGCTCTCC-3’),
GRO-α-R (5’-GTTGGATTCTCAGTTCCAG-3’),
18S rRNA-F: 5’-ACTCAACACGGGAAACCTCA-3’,
and rRNA-R: 5’-AACCAGACAAATCGCTCAGTTCAG-3’.

Amplifications were performed using iQ SYBR Green Supermix (Bio-Rad), according to the manufacturer’s specifications. Cycling conditions were as follows: 50°C, 2 min; 95°C, 3 min; 40 cycles of 95°C (15s) + 58°C (30 s) + 72°C (30 s). A melting curve was generated by acquiring fluorescence measurements while slowly heating to 95°C at a rate of 0.1°C per second. Melting curves and quantitative analysis of the data were performed using a CFX manager, as previously reported.

ELISA for GRO-α

After the treatment with TNF-α, the KOSC-2 cells were washed twice with RPMI-1640 and incubated for 2 h in RPMI-1640 containing 0.5% human serum albumin (RPMI-HSA). The medium was collected and subjected to ELISA for GRO-α.

Endothelial cell chemotaxis

Endothelial cell chemotaxis was examined using a 24-well chemotaxis chamber as described previously. Briefly KOSC-2 cells were grown to confluence and stimulated for 4 h with 10 ng/mL TNF-α. Then the medium was replaced with Medium 199 containing 0.5% HSA (M199-HSA), and the cells were conditioned for 2 h. Aliquots (100 μL) of the conditioned medium, M199-HSA containing 1 ng/mL r(h) GRO-α, 10 pg/mL vascular endothelial growth factor (VEGF), or control medium were placed in lower chambers and upper chambers filled with 100 μL of HUVEC suspension (1x10⁵ cells/mL M199-HSA). When indicated, an anti-GRO-α neutralizing antibody was added to the medium. After incubating for 4 h at 37°C, the membrane from each chamber was fixed with methanol and stained with Giemsa solution. Transmigrated cells in random four low-power fields were counted under a microscope.

Wound assay

Confluent monolayers of KOSC-2 cells were wounded using a scalpel and a rubber policeman as described. Then the cultures were washed with 20 mM phosphate-buffered saline, pH 7.4 (PBS), and further incubated in the conditioned medium of the cells stimulated for 4 h with 10 ng/mL TNF-α. The cells were washed with PBS, fixed with 10% formaldehyde, and photographed under a microscope. Control
medium and the medium containing 1 ng/mL r(GRO-α) were also tested in parallel.

Statistics

For chemotaxis assay (Fig. 3.), data were analyzed using one-way analysis of variance (ANOVA) to compare the treatment effects. Tukey’s post-hoc analyses were applied for multiple comparisons, with the statistical significance set at P<0.05.

Results

Expression of GRO-α in oral squamous cell lines stimulated with TNF-α

We first asked whether most of the oral squamous cancer cells can induce GRO-α in response to TNF-α. In this study, we used three oral cancer cells from different donors to observe GRO-α expression in response to TNF-α. TNF-α (10 ng/mL) transiently expressed
GRO-α in KOSC-2 and HSC-3 cells. In both cells, GRO-α mRNA reached the maximal level 4 h after the stimulation with TNF-α (Fig 1A). The induced levels of mRNA levels of GRO-α in KOSC-2 were markedly higher than that in HSC-3 cells. In contrast, no such increase of GRO-α was observed in Ca9-22 (Fig 1A). These observations suggested that the induction of GRO-α in response to TNF-α varies depending on the cell type. The time course of GRO-α protein secretion corresponded with that of the mRNA expression (Fig. 1B).

Fig. 2 Concentration-dependent induction of GRO-α by TNF-α. KOSC-2 cells were incubated with 0.01-100 ng/mL TNF-α for 4 h. (A) The expression of mRNA for GRO-α or GAPDH was analyzed by RT-PCR. (B) The conditioned medium of KOSC-2 cells was collected and subjected to ELISA for GRO-α. Means (± SD) of three experiments are shown.

TNF-α enhanced GRO-α mRNA expression of KOSC-2 cells in a concentration-dependent manner (Fig. 2A). The expression of GRO-α was observed from the treatment with 0.1 ng/mL TNF-α. TNF-α also stimulated the secretion of GRO-α protein and the maximal effect was observed at 10 ng/mL (Fig. 2B).

GRO-α has chemotactic activity for endothelial cells

The results of endothelial cell chemotaxis are summarized in Fig. 3. VEGF is known as
N. Narita, et al.

A potent angiogenic factor, and thus we used VEGF as a positive control for this migration assay for endothelial cells. As we expected, only small amount of VEGF could induce chemotaxis in HUVECs. The conditioned medium from TNF-α-treated KOSC-2 cells significantly enhanced the transmigration of endothelial cells, and r(h) GRO-α was also found to be active in this assay. To evaluate the possible role for GRO-α in the TNF-α-treated conditioned medium, we added anti-neutralizing antibody against GRO-α in the conditioned medium, and
found partial, but significant ($P<0.05$) inhibition by GRO-α neutralization. These data suggest a positive role of GRO-α as a secondary mediator. In agreement with this result, $r(h)$ GRO-α induces chemotaxis of HUVECs.

GRO-α promotes migration of KOSC-2 cells

The results of KOSC-2 cell migration in wound assay are shown in Fig. 4. Twenty hours after wound assay, control KOSC-2 cells grew into the wounded area. In contrast, the growth was faster in the cells incubated with the medium conditioned by TNF-α-treated cell. $r(h)$ GRO-α also showed a migration promoting activity on KOSC-2 cells.

Discussion

TNF-α was first identified as a factor that induces necrosis of tumor cells; however, various functions of this cytokine have been demonstrated thereafter$^{22, 23}$. In some case, it serves as a "tumor growth factor"24. TNF-α activates transcriptional factors such as AP-1 and NF-κB, and subsequently induces the expression of various chemokines$^{25, 26}$.

In the present study, we initially found that TNF-α induces expression of GRO-α in KOSC-2 cells. GRO-α is known to be expressed in various types of cells including endothelial cells, bronchial epithelium, macrophages and polymorphonuclear neutrophils$^{27-30}$. Previous report has shown the expression of GRO-α by TNF-α in oral keratinocytes12. However, Ca9-22 derived from an oral squamous cell carcinoma did not express GRO-α in response to TNF-α. Moreover, super-induction of GRO-α was observed in TNF-α-treated KOSC-2 cells. These results suggested that the level of GRO-α is dependent on individual oral squamous cell carcinoma. GRO-α has a neutrophil chemotactic activity and plays an important role in inflammatory responses, but the ubiquitous nature of its expression suggests that GRO-α is involved in biological events other than leukocyte chemotaxis$^9, 10$. In fact some members of C-X-C chemokines that contain ELR motif are demonstrated to act as an angiogenic factor, while the members that lack ELR motif serve as an angiostatic factor10. In the present study, we found that the conditioned medium from TNF-α-treated KOSC-2 cells contained a substantial amount of GRO-α protein and enhanced endothelial cell transmigration. $r(h)$ GRO-α was also found to enhance endothelial migration. Although the medium conditioned by the TNF-α-treated KOSC-2 cells contains many endothelial chemotactic factors, such as IL-8, ENA-78, or VEGF (data not shown), GRO-α may partly account for the activity in the conditioned medium.

GRO-α was originally found as a factor that promotes the growth of melanoma cells, and a subsequent report demonstrated the growth-enhancing effect on other malignant tumors$^{7, 8, 31}$. We demonstrated, in the wound assay, that GRO-α enhances the growth of KOSC-2 cells; and TNF-α may control the autocrine regulation mechanism of the growth of KOSC-2 cells.

In summary, TNF-α stimulates the secretion of GRO-α by KOSC-2 cells and may control the tumor spread through angiogenesis and growth of the tumor cells.

Acknowledgement

This work was supported by Priority Research Grant for Young Scientists Designated by the President of Hirosaki University (to TM).

References

TNF-α Induces GRO-α in Oral Cancer Cells

