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ABSTRACT 

In recent years, to resolve the global energy crisis and environmental pollution 

problems, major economies and automobile manufacturers in the world have 

strengthened the research and development of electric vehicles. As one of the most 

important systems of electric vehicles, a battery management system that ensures the 

accurate estimation of the key states of traction batteries is the key to achieve the safe 

and reliable operation of the batteries. The aging process of lithium-ion batteries is a 

dynamic coupling process affected by various factors, such as temperature and current 

rate. The internal aging mechanism is very complex and the electrochemical parameters, 

such as the property of battery materials, are not easy to be obtained, which greatly 

increases the difficulty of establishing the mechanism model. To improve the state of 

health (SOH) estimation accuracy for lithium-ion batteries, the following studies on 

data-driven methods has been carried out in this dissertation. 

1. Analysis and test of the aging characteristics of lithium-ion batteries. A 

battery aging test platform is built to explore the influence of different factors on battery 

aging. A lithium-ion battery aging test procedure is designed, including aging tests at 

different ambient temperatures, charging rates, and depths of discharge. Based on the 

battery cycling aging test and the battery calendar aging test, statistical analysis and 

comparative research on the aging characteristics of lithium-ion batteries are carried 

out. Two empirical aging models are constructed to calculate the capacity loss of the 

batteries. 

2. Estimation of the SOH of lithium-ion battery cells based on the improved 

Gaussian Process Regression (GPR) model. The single kernel function based on the 

GPR model is not accurate in estimating the SOH of lithium-ion batteries because it 

cannot accurately capture the phenomenon of overall capacity decay and local capacity 
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recovery. Herein, a method for estimating the SOH of lithium-ion batteries based on the 

modified GPR combined with charging and discharging features is proposed. First, the 

changes in battery voltage and temperature curves among different aging cycles are 

analyzed in detail, and health indicators (HIs) that can effectively represent the health 

status of the battery are proposed. Then, the Pearson correlation analysis method is used 

to quantify the correlation between the HIs and SOH, and three HIs with strong 

correlation are employed in this study. Next, a novel compound kernel function is 

proposed for the battery SOH estimation, and different pairs of mean function and 

kernel function chosen from four mean functions and sixteen kernel functions are used 

to construct the GPR models, and their estimation accuracy is compared subsequently. 

Finally, four different batteries with various initial health levels from the NASA battery 

dataset are used to verify the performance of the proposed method. Experiments show 

that its estimated mean-absolute-error (MAE) and root-mean-square-error (RMSE) are 

only 1.7%, and 2.41%, respectively. Compared with a single kernel function, the GPR 

model based on a composite kernel function is more suitable for capturing the battery 

aging characteristics of various trends and can achieve an accurate estimation of the 

battery SOH.  

3. Battery pack health estimation based on early data. For the estimation of 

the SOH of the battery pack, it takes a lot of time and economic cost to complete the 

full-life aging test of the battery pack. Aiming at solving above problems, a method for 

predicting the future health of the battery pack is proposed, which involves the aging 

data of the battery cells over their entire life cycles and the early cycling data of the 

battery pack. Firstly, the HIs are extracted from the experimental data, and high 

correlations between the extracted HIs and the capacity are verified by the Pearson 

correlation analysis method. To predict the future health of the battery pack based on 
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the HIs, degradation models of HIs are constructed by using an exponential function, 

long short-term memory network, and their weighted fusion. The future HIs of the 

battery pack are predicted according to the fusion degradation model. Then, based on 

the GPR algorithm and the battery pack data, a data-driven model is constructed to 

predict the health of the battery pack. Finally, the proposed method is validated by a 

series-connected battery pack with fifteen 100 Ah lithium iron phosphate battery cells. 

The MAE and RMSE of the health prediction of the battery pack are 7.17% and 7.81%, 

respectively, indicating that the proposed method has satisfactory accuracy. Compared 

with the single feature decay model, the fusion feature decay model can predict the 

future HIs of the battery pack with more accuracy, which contributes to the satisfactory 

prediction accuracy of battery pack health based on the GPR model. 

 

Keywords: electric vehicle; lithium-ion battery; health indicator; state of health; data-

driven; Gaussian process regression 

  



 IV 

ACKNOWLEDGEMENTS 

With the completion of my doctoral dissertation, my studies at Hirosaki University 

are coming to an end. Looking back on my youth in the past few years, I have 

experienced the joy of achievement and the anxiety of setbacks, but it is more about 

growth and harvest. I would like to express my most sincere thanks to my supervisors, 

classmates, relatives and friends who have given me infinite help and care during this 

period! 

First of all, I would like to express my sincere gratitude to my Ph.D. supervisor, 

Prof. Abuliti Abudula, for his careful guidance in my studies. My supervisor's profound 

knowledge, diligent and hardworking spirit, rigorous attitude, high responsibility, and 

perfect working style have benefited me greatly and guided me to overcome difficulties 

in my dissertation work. I am grateful to my supervisor for his unlimited help in my life 

and thoughts. I would like to express my high respect and sincere gratitude to my 

supervisor. 

I would like to thank Prof. Guoqing Guan, Graduate School of Science and 

Technology, Hirosaki University, for his kind help and support during my Ph.D. study, 

especially in the doctoral course affairs and thesis guidance. 

I would like to thank Associate Prof. Akihiro Yoshida for his help and advice about 

thesis guidance. Thanks to Mr. Yu Tao for his help and guidance in the research. I would 

like to thank the research group members, such as Aisikaer Anniwaer, Tiancheng Fang, 

Shang Peng, Chao Wang, Zhao Liu, Meng Chen, etc., for their help. Thanks to Dr. Peng 

Yang of Hirosaki University for his guidance and support in scientific research. 



 V 

I am particularly grateful to my supervisor, Prof. Xiaosong Hu, for his careful 

guidance and enthusiastic assistance during my study at Chongqing University. 

Professor Hu is a world-renowned scientist of great talent. His simple and rigorous 

scientific style, keen insight into the frontiers of academia, and the open and relaxed 

research environment created by his group have greatly benefited me. 

I would like to thank Mr. Zhongwei Deng from the VPSL research group of 

Chongqing University for his guidance and help in my study, scientific research, and 

life. Thank you, Mr. Jiacheng Li, for your support and help. At the same time, I would 

like to thank the research group members, Xinchen Deng, Wenxue Liu, Le Xu, Kai 

Zhang; Kaile Peng, Jinwen Li, Yunhong Che, Wentao Zhou, Lulu Jiang, Peng Wang, 

and other members for their help. 

I am grateful to Prof. Lijun Xu of Xinjiang Engineering Institute for his many 

aspects of guidance and assistance in my study and work. 

Thanks to Prof. Qinglian Zheng and Prof. Guangjian Wang of Chongqing 

University for their care, help, and support. 

I would like to thank Associate Prof. Ronghui Zhang of Sun Yat-sen University 

for his help and guidance in research and life. 

I would like to thank my family for their care, concern, support, and tolerance. You 

are always supporting me silently and encouraging me constantly. I am even more 

grateful to my parents and wife for taking good care of my daughter. The tremendous 

and selfless love of my family is my most substantial backing. I love you, and you are 

always healthy and happy is my greatest wish. 



 VI 

Sincere thanks to all the experts who worked so hard to review the dissertation! 

Thank you all very much.  

 

Jiwei Wang 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 VII 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................... I 

ACKNOWLEDGEMENTS ......................................................................................... IV 

TABLE OF CONTENTS ........................................................................................... VII 

LIST OF TABLES ....................................................................................................... XI 

LIST OF FIGURES .................................................................................................. XIII 

Chapter 1. Introduction .................................................................................................. 1 

1.1 Research background and significance ................................................................ 1 

1.1.1 Background .................................................................................................... 1 

1.1.2 Electric vehicles ............................................................................................. 3 

1.1.3 Power battery technology .............................................................................. 6 

1.1.4 Battery management technology.................................................................. 12 

1.2 Battery modeling theory ..................................................................................... 14 

1.2.1 Electrochemical model ................................................................................. 14 

1.2.2 Equivalent circuit model .............................................................................. 16 

1.2.3 Data-driven model ....................................................................................... 20 

1.3 Research content and structure ........................................................................... 30 

1.3.1 Main research content .................................................................................. 30 

1.3.2 Chapter arrangement .................................................................................... 32 

References ................................................................................................................ 34 

Chapter 2. Lithium-ion battery aging characteristics ................................................... 37 

2.1 Introduction of this chapter ................................................................................ 37 

2.1.1 Lithium-ion battery working principle......................................................... 38 

2.1.2 Lithium-ion battery characteristics .............................................................. 40 

2.2 Lithium-ion battery aging mechanism ............................................................... 42 



 VIII 

2.2.1 Battery aging type ........................................................................................ 43 

2.2.2 Battery aging external factors ...................................................................... 45 

2.2.3 Internal mechanism of battery aging ............................................................ 47 

2.2.4 External characterization of battery aging ................................................... 49 

2.3 Battery aging analysis method ........................................................................... 50 

2.3.1 In-situ online analysis method ..................................................................... 50 

2.3.2 Disassembly physical and chemical analysis method .................................. 51 

2.3.3 External characteristics analysis method ..................................................... 51 

2.4 Battery health indicators ..................................................................................... 52 

2.4.1 Measurement-based HIs ............................................................................... 53 

2.4.2 Computation-based HIs ............................................................................... 53 

2.5 Battery aging experiment ................................................................................... 54 

2.5.1 Lithium-ion battery cycle lifetime experimental research ........................... 55 

2.5.2 Lithium-ion battery calendar lifetime experimental research ...................... 59 

2.6 Chapter summary ............................................................................................... 62 

References ................................................................................................................ 63 

Chapter 3. State of Health Estimation based on modified Gaussian Process Regression 

for Lithium-ion Batteries ............................................................................................. 67 

3.1 Introduction of this chapter ................................................................................ 67 

3.2 Battery dataset .................................................................................................... 71 

3.3 Features extraction and selection ....................................................................... 73 

3.3.1 Features extraction ....................................................................................... 73 

3.3.2 Features selection ......................................................................................... 75 

3.4 Methodology ...................................................................................................... 77 

3.4.1 Basic principles of GPR model .................................................................... 77 



 IX 

3.4.2 Mean function .............................................................................................. 79 

3.4.3 Covariance function ..................................................................................... 80 

3.5 Results and discussion ........................................................................................ 81 

3.5.1 Estimation results for different models ........................................................ 82 

3.5.2 Estimation results for different batteries ...................................................... 86 

3.5.3 Estimation results with different starting points .......................................... 88 

3.5.4 Estimation results by using multiple batteries aging information ............... 89 

3.6 Chapter summary ............................................................................................... 91 

References ................................................................................................................ 93 

Chapter 4. Early Prognostics of Lithium-ion Battery Pack Health .............................. 98 

4.1 Introduction of this chapter ................................................................................ 98 

4.2 Aging experiments ............................................................................................ 100 

4.3 HIs extraction and selection ............................................................................. 103 

4.3.1 HIs extraction ............................................................................................. 104 

4.3.2 HIs selection............................................................................................... 105 

4.4 Methodology .................................................................................................... 108 

4.4.1 Battery pack health prognostics ................................................................. 108 

4.4.2 HIs Degradation model .............................................................................. 109 

4.4.3 GPR theory................................................................................................. 113 

4.5. Results and discussion ..................................................................................... 115 

4.5.1 HIs prediction............................................................................................. 115 

4.5.2 Battery pack SOH prediction ..................................................................... 123 

4.6 Chapter summary ............................................................................................. 128 

References .............................................................................................................. 130 

Chapter 5. Conclusion and Outlook ........................................................................... 135 



 X 

5.1 Conclusion ........................................................................................................ 135 

5.2 Outlook ............................................................................................................. 137 

List of publications and presentations........................................................................ 139 

 

 

 

 

 

 

 

 

 

  



 XI 

LIST OF TABLES 

Table 1.1. Many countries and regions have globally participated in the "Carbon 

Neutral" initiative. .......................................................................................................... 2 

Table 1.2. Time of fuel vehicle prohibition plan in different countries (regions/cities) 

worldwide. ..................................................................................................................... 3 

Table 1.3. The comparison of advantages and disadvantages of four different types of 

EVs. ................................................................................................................................ 6 

Table 1.4. Comparison of performance parameters of four different power batteries. 10 

Table 2.1. Comparison of the performance of common types of lithium-ion batteries.

...................................................................................................................................... 42 

Table 2.2. Comparison of advantages and disadvantages of three types of battery aging 

mechanism analysis methods. ...................................................................................... 52 

Table 2.3. Existing HIs extraction methods are based on measured variables. ........... 53 

Table 2.4. Existing HIs extraction methods are based on calculated variables. .......... 54 

Table 2.5. A cyclic aging test program. ........................................................................ 56 

Table 2.6. Storage aging test protocol. ......................................................................... 60 

Table 3.1. Detailed description of experiments for four batteries. ............................... 72 

Table 3.2. Pearson correlation coefficient between HIs and SOH. .............................. 76 

Table 3.3. Expressions of four different mean functions [41]. ....................................... 79 

Table 3.4. Formulas of sixteen different kernel functions [41]. ..................................... 81 

Table 3.5. The statistical errors of SOH estimation for four mean functions (four 

batteries). ...................................................................................................................... 84 

Table 3.6. The statistical errors of SOH estimation for sixteen different kernel functions.

...................................................................................................................................... 85 

Table 4.1. Battery and aging test parameters. ............................................................ 101 



 XII 

Table 4.2. Comparison of the errors of different models under different working 

conditions. .................................................................................................................. 129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XIII 

LIST OF FIGURES 

Figure 1.1. Global sales and sales market share of electric cars, 2010-2021. ............... 4 

Figure 1.2. Representative vehicles of four different types of EVs. .............................. 5 

Figure 1.3. Basic functions of the battery management system. ................................. 12 

Figure 1.4. Schematic diagram of the P2D model. ...................................................... 15 

Figure 1.5. Schematic diagram of the SP model for lithium-ion battery. .................... 16 

Figure 1.6. Schematic diagram of Rint model. .............................................................. 17 

Figure 1.7. Schematic diagram of Thevenin model. .................................................... 18 

Figure 1.8. Schematic diagram of PNGV model. ........................................................ 19 

Figure 1.9. Schematic diagram of the second-order equivalent circuit model. ........... 20 

Figure 1.10. Principle of the insensitive loss function. ................................................ 22 

Figure 1.11. Schematic diagram of the neuron model. ................................................ 28 

Figure 1.12. Schematic diagram of RNN structure...................................................... 29 

Figure 2.1. Schematic diagram of Lithium-ion battery operation. .............................. 39 

Figure 2.2. The aging mechanism of lithium-ion batteries and its effect on external 

characteristics. .............................................................................................................. 43 

Figure 2.3. Schematic diagram of the battery aging mechanism. ................................ 47 

Figure 2.4. Capacity decay characteristic curve of Lithium-ion battery. ..................... 50 

Figure 2.5. The platform for the battery aging experiment. ......................................... 55 

Figure 2.6. Aging curves for different cycle intervals and temperatures. .................... 57 

Figure 2.7. Aging curves for same mean SOC and different temperatures. ................ 58 

Figure 2.8. Aging curves for different temperatures at 30% DOD. ............................. 58 

Figure 2.9. Aging curves for different charging rates at 25°C. .................................... 59 

Figure 2.10. Aging curves for same mean SOC at different temperatures. ................. 59 

Figure 2.11. Battery aging curves are stored at different SOC and temperature. ........ 61 



 XIV 

Figure 2.12. Battery aging curves at different temperatures. ....................................... 62 

Figure 3.1. The framework of the GPR-based model for battery SOH estimation...... 70 

Figure 3.2. Battery aging cycle principle and capacity degradation characteristics. ... 73 

Figure 3.3. Charging and discharging properties of NO.5 battery under different cycles.

...................................................................................................................................... 75 

Figure 3.4. Battery SOH estimation results based on different mean functions. ......... 83 

Figure 3.5. SOH estimation results for different batteries. .......................................... 87 

Figure 3.6. The statistical errors of SOH estimation for four batteries. ....................... 88 

Figure 3.7. Battery SOH estimation results with different starting points. .................. 89 

Figure 3.8. The SOH training result with three batteries. ............................................ 90 

Figure 3.9. The SOH estimation results with NO.18 battery. ...................................... 90 

Figure 3.10. The statistical errors of SOH estimation for any three batteries as training 

set. ................................................................................................................................ 91 

Figure 4.1. Aging test design for battery. ................................................................... 103 

Figure 4.2. Battery aging and capacity degradation curves. ...................................... 103 

Figure 4.3. Battery aging characteristics curves (Cell #4). ........................................ 105 

Figure 4.4. Aging curves of monomer capacity and HIs (Cell #4). ........................... 106 

Figure 4.5. Battery pack capacity and HI decay curves. ............................................ 107 

Figure 4.6. Statistical values of the correlation coefficients of the HIs of single cells 

(Cell #4) and battery packs in the same operating condition. .................................... 108 

Figure 4.7. Flowchart of the proposed scheme for battery pack health prognostics. 109 

Figure 4.8. The network structure and operations LSTM. ......................................... 111 

Figure 4.9. Decay curve of the HI EXP degradation model before and after 10% pack 

correction. .................................................................................................................. 117 

Figure 4.10. Decay curves of the LSTM degradation model with HIs before and after 



 XV 

10% pack correction. ................................................................................................. 118 

Figure 4.11. Decay curves of the LSTM model of the HIs before and after 10% pack 

correction. .................................................................................................................. 119 

Figure 4.12. Decay curves of HI fusion model after 10% pack correction (weight 

coefficient of LSTM degradation model is 0.2) (same operating condition)............. 121 

Figure 4.13. Decay curves of HI fusion model after 10% pack correction (different 

operating conditions). ................................................................................................ 121 

Figure 4.14. Error statistics of three different HI degradation models. ..................... 122 

Figure 4.15. Battery pack SOH prediction results and relative error (same operating 

condition). .................................................................................................................. 124 

Figure 4.16. Error statistics of fusion degradation model with different weights (same 

operating condition). .................................................................................................. 125 

Figure 4.17. Battery pack SOH prediction results and relative error (different operating 

conditions).................................................................................................................. 127 

Figure 4.18. Statistical errors corresponding to different weights of the fusion 

degradation model (different operating conditions)................................................... 128 

 

 

 

 

 



 1 

Chapter 1. Introduction 

1.1 Research background and significance 

1.1.1 Background 

With modern society's continuous progress and rapid development, human beings 

rely on energy considerably. According to the study of World Energy Statistics Yearbook 

2021 [1], the global fossil energy consumption in 2020 occupies 83.1% of the total 

disposable energy consumption, among which oil, coal, and natural gas occupy 31.2%, 

27.2%, and 24.7% of the total energy structure, respectively. The excessive 

consumption of fossil fuels has caused problems such as accelerated depletion of fossil 

fuel energy, increased greenhouse effect, and atmospheric pollution. More than 100 

countries and regions worldwide have reached a broad consensus to address the global 

energy crisis and environmental pollution and proposed implementing the "zero-

carbon" or "carbon neutral" goal. By March 2022, the Energy & Climate Intelligence 

Unit has calculated the progress of the world's major countries and regions toward zero 

emissions, including two countries that have achieved "carbon neutrality," 12 countries 

have enacted legislation, and 32 countries have published policy documents. Some 

countries and regions have participated in the "carbon neutral" global program, as 

shown in Table 1.1. In addition, 61 countries and regions are still in the proposal or 

discussion stage. 
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Table 1.1. Many countries and regions have globally participated in the "Carbon Neutral" 

initiative. 

Type of 

commitment 
Specific countries and regions (planning time) 

amount 

Implemented Suriname, Bhutan 2 

In law 

Germany (2045), Sweden (2045), Japan (2050), France (2050), UK (2050), Korea 

(2050), Canada (2050), Spain (2050), Ireland (2050), Denmark (2050), Hungary (2050), 

New Zealand (2050), EU (2050) 
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In policy 

document 

Maldives (2030), Finland (2035), Antigua and Barbuda (2040), United States (2050), 

Italy (2050), Australia (2050), Belgium (2050), Romania (2050), Austria (2050), Chile 

(2050), Portugal (2050), Greece (2050), Ecuador ( 2050), Panama (2050), Croatia 

(2050), Lithuania (2050), Costa Rica (2050), Slovenia (2050), Uruguay (2050), 

Luxembourg (2050), Latvia (2050), Laos (2050), Malta (2050), Fiji (2050), Belize 

(2050), the Marshallese (2050), Monaco (2050), Turkey (2050), China (2060), Ukraine 

(2060), Sri Lanka (2060) 

 

 

 

32 

Declaration 

/pledge 

Brazil (2050), Thailand (2050), Argentina (2050), Malaysia (2050), Vietnam (2050), 

Colombia (2050), South Africa (2050), United Arab Emirates (2050), Kazakhstan 

(2050), Israel (2050), Estonia (2050), Cape Verde (2050), Andorra (2050), Russia 

(2060), Saudi Arabia (2060), Nigeria (2060), Bahrain (2060), India (2070) 
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Data Sources: ECIU 

Statista research shows that the transportation systems account for 17% of global 

greenhouse gas emissions and is the fastest-growing source of greenhouse gas 

emissions in the world [2]. With the further development of economic globalization, the 

scale of future human and logistics flows will continue to increase for a considerable 

period, and hundreds of millions of fossil fuel vehicles will generate a large amount of 

greenhouse gases into the atmosphere every year and accelerate the climate crisis. To 

effectively solve the problem and reduce the reliance on traditional fossil fuels, the 

development of new energy vehicles has reached a world consensus. China, America, 

Japan, Germany, and other countries are developing rapidly in the research and 

javascript:;
javascript:;
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development of new energy vehicles. Major countries and regions (cities) around the 

world have proposed plans to ban the sale of fuel vehicles, as shown in Table 1.2. 

Table 1.2. Time of fuel vehicle prohibition plan in different countries (regions/cities) worldwide. 

Country/City proposed 

time 

Presenting method Implement-

ation time 

Prohibited range 

Norway 2016 State planning 2025 Gasoline/diesel vehicles 

Netherlands 2016 Motions 2035 Gasoline/diesel 

passenger cars 

Paris, Madrid, 

Athens, Mexico 

2016 Mayor signs action agreement 2025 Diesel vehicles 

California, USA 2018 Government Decree 2029 Fuel Bus 

 

Germany 

2016 Motions 2030 Internal combustion 

locomotive 

France 2017 Oral statements by government 

officials 

2040 Gasoline/diesel vehicles 

 

UK 

2017 Oral statements by government 

officials 

2040  

 

Gasoline/diesel vehicles 2018 Transportation Sector Strategy 

2020 Government documents 2030 

Scotland, UK 2016 Government documents 2032 Gasoline/diesel vehicles 

India 2016 Oral statements by government 

officials 

2030 Gasoline/diesel vehicles 

Taiwan, China 2016 Government Action Program 2040 Gasoline/diesel vehicles 

Hainan, China 2016 Government Planning 2030 Gasoline/diesel vehicles 

Ireland 2016 Oral statements by government 

officials 

2030 Gasoline/diesel vehicles 

Rome, Italy 2016 Oral statements by government 

officials 

2024 Diesel vehicles 

Japan 2020 Government documents 2035 Gasoline/diesel vehicles 
 

1.1.2 Electric vehicles  

The automobile industry is undergoing a big revolution. The internal combustion 
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engine (ICE) system will be upgraded by electric vehicles (EVs) in the future, even 

though it has ruled the automobile industry for a century. From 2010 to 2021, global 

EV growth is shown in Figure 1.1. Although the number of EVs has grown rapidly over 

the past seven years, the total number is still relatively small. In the latter five years, 

the number of EVs grew much more than before. Growth has been particularly 

impressive over recent three years, even as the global COVID-19 pandemic shrank the 

market for conventional cars. In particular, the sales of electric vehicles are more than 

double to 6.6 million in 2021. All of the net growth in global vehicle sales last year 

came primarily from EVs. 

 

Figure 1.1. Global sales and sales market share of electric cars, 2010-2021. 

Compared with traditional fuel vehicles, EVs have become an important part of 

transportation electrification due to their better economy and environmental 

friendliness. According to different sources of driving power, EVs can be divided into 

four categories [3]: battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), 

plug-in hybrid electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs), as 

shown in Figure 1.2. 
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(a) (b)

(c) (d)

 

Figure 1.2. Representative vehicles of four different types of EVs. 

(a) BEV © Tesla; (b) HEV ©BYD; (c) PHEV ©VW; (d) FCEV © Toyota 

(a) BEV 

A BEV means that the driving power comes entirely from the electric motor. The 

electric energy driving the motor comes from the on-board rechargeable battery or other 

electric energy storage device. Compared with fuel cars and other types of EVs, BEVs 

have the highest energy efficiency, cheap electricity, and less cost. In addition, BEVs 

can be charged by using the low valley of electricity at night, which has the function of 

regulating the peak and valley loads of the grid system and improving the grid efficiency. 

(b) HEV 

The HEVs are new energy hybrid vehicles that combine a traditional ICE with an 

electric propulsion system. HEVs have two relatively independent propulsion systems. 

Through the power compensation of the motor drive system and the power adjustment 

of "peak-shaving and valley-filling," the engine can frequently work in a high-

efficiency and low-emission area. Compared with traditional fuel vehicles, HEVs 

improve energy conversion efficiency and reduce fuel consumption. 

 (c) PHEV 

PHEV is one type of hybrid vehicle that can be recharged by plugging in. It has 
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pure electric and hybrid modes, which can be considered as the fusion of EVs and HEVs. 

Compared with HEVs, this type of vehicles have larger capacity power battery packs, 

more powerful electric motor drive systems, and smaller displacement engines. 

(d) FCEV 

An FCEV uses electrical energy generated by an electrochemical reaction in a fuel 

cell with a catalyst between a fuel, such as a hydrogen and oxygen in the air. In contrast 

to typical EVs, FCEVs are powered by an onboard fuel cell unit. This type of vehicles 

have the advantages of energy saving, environmental friendliness, high efficiency, and 

long overload capacity. FCEVs have become one of the most promising development 

directions. However, there are still problems such as high cost and complicated 

auxiliary equipment that need to be further solved. 

The comparison of the advantages and disadvantages of the above four types of 

electric vehicles is shown in Table 1.3 [4]. 

Table 1.3. The comparison of advantages and disadvantages of four different types of EVs. 

Evaluation Indicators BEV HEV PHEV FCEV 

Drive mode motor ICE + motor ICE + motor motor 

Carbon emission zero lower lower near zero 

Noise lower low low lower 

Cost normal higher higher highest 

Range normal farther farther normal 

Energy System electrical energy oil/electrical energy oil/electrical energy hydrogen 

Typical company-model Tesla-Model Y VW-Tiguan BYD-Tang Toyota-Mirai 

1.1.3 Power battery technology 

Power battery, as one of the core technologies of EVs, is the primary power source 

of EVs. The driving range, acceleration performance, and braking energy recovery rate 

of EVs is inseparable related to the performance of the power battery, which are 

reflected in the strong hill-climbing ability, acceleration ability, and range of EVs. The 
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main function of the power battery is significantly different for different types of EVs. 

For BEVs, the power battery is the only power source, mainly used to drive EVs for 

longer mileage and to supply the starting, acceleration, and climbing of EVs with high 

discharge current, which requires higher specific energy of the power battery. For the 

HEVs, the power battery mainly plays an auxiliary role in supplementing the power 

required for acceleration and hill-climbing so that HEVs have better acceleration and 

hill-climbing performance. The power capability of batteries is also very important [5]. 

With the continuous progress of power battery technology, EVs' safety, economy, and 

power have obvious advantages compared with traditional cars. 

(1) The performance of power battery  

Power battery in the EV driving process should meet the following requirements 

[6] [7]: 

High energy density. Higher energy density can effectively reduce the mass and 

volume of batteries, enabling lighter weight and more extended cruising range for EVs. 

High power density. The high power density of batteries can provide enough 

instantaneous power and improve the power performance of the EV. 

Long cycle life. The long cycle life of the battery can effectively reduce the cost 

of using EVs and replacement frequency. 

Excellent charge and discharge characteristics. The ideal charging and 

discharging characteristics of the battery can shorten the charging time and improve the 

usage performance. When the car working in braking mode, it gets higher braking 

energy recovery efficiency. To avoid battery over-charging and over-discharging, which 

can extend the battery's service life to some extent. In addition, the better discharge 

characteristics have a strong continuous power supply capability. 

Good battery consistency. Good battery consistency refers to the small variability 
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of the performance, which can reduce the adverse consequences of significant 

differences in battery performance during battery pack use and rapid aggravation. 

(2) Power battery type 

Power batteries in the field of EVs can be divided into lead-acid batteries, nickel 

metal hydride batteries, lithium-ion batteries, and fuel cells. 

The lead-acid battery is invented by French scientist Gaston Planté in 1859 and is the 

first commercially available rechargeable battery. The basic composition of this battery 

is a positive electrode plate (PbO2), negative electrode plate (Pb), and electrolyte 

(H2SO4 aqueous solution), and its internal chemical energy and direct current (DC) 

energy are converted to each other, in other words, the battery can be reused by charging 

and discharging. Lead-acid batteries are mainly used as ignition devices for car starting. 

Due to their low energy density, short cycle life, irreversible environmental pollution 

caused by a large amount of lead emissions during production and processing, and 

recycling and other shortcomings, they are not suitable for the power supply of modern 

electric vehicle.  

Nickel-metal hydride battery is a new green battery developed in the 1990s. It has 

the advantages of high energy, long life, low pollution, and good low-temperature 

characteristics, and its all-around performance is better than that of lead-acid batteries. 

Therefore, NiMH batteries are used in batch for HEVs under Toyota, Honda, Ford, and 

other large automobile brands. However, NiMH batteries have not eliminated the 

memory effect. There are also new problems, such as severe heating during charging, 

which may cause safety accidents and poor performance in high-current charging. 

Lithium-ion battery is a kind of secondary battery that mainly relies on the 

movement of lithium ions between the positive and negative electrodes. It mainly 

comprises a positive electrode, negative electrode, electrolyte, separator, etc.[8]. Since 
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1991, Sony Japan launched commercial lithium-ion batteries, and lithium-ion battery 

technology has been developed rapidly. Lithium-ion batteries have higher energy 

density and power density than NiMH batteries. In addition, Lithium-ion battery owns 

long cycle life, low self-discharge rate, high operating voltage and have other excellent 

performance. 

The fuel cell is a device that converts the chemical energy of a fuel directly into 

electrical energy through electrode reaction, which is the fourth type of power 

generation technology after hydroelectric, thermal, and nuclear power generation. As a 

new type of power generation technology, the reaction process of fuel cells does not 

involve combustion. So this kind of battery has the remarkable characteristics of high 

efficiency and cleanliness. Based on the above advantages, the research and 

development of fuel cell technology are highly valued by governments, which will 

become the clean and efficient power generation technology in the 21st century. Today, 

fuel cell developers Ballard Power Systems, international fuel cell companies, and 

automobile manufacturers DaimlerChrysler, Ford Motor Company, Toyota Motor 

Corporation, and Volkswagen have joined hands to develop fuel cells and fuel cell 

vehicles. 

A comparison of the performance of four types of power batteries currently 

applicable to EVs is in Table 1.4 [9, 10]. Lead-acid batteries are inexpensive and relatively 

abundant in resources, but their specific energy and power density are low. Compared 

with lead-acid batteries, the performance of NiMH batteries has been improved 

obviously, but their charging and discharging efficiency and specific energy efficiency 

are still not satisfactory. Although the fuel cell is one of the most environmentally-

friendly batteries, its cost has to be reduced, and further improving the performance of 

the fuel cell is still the focus of future research. Through comprehensive comparison, 
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the lithium-ion battery has the best all-around performance. At present, the lithium-ion 

battery has been widely used in BEVs and hybrid vehicles. 

Table 1.4. Comparison of performance parameters of four different power batteries. 

Battery 

Type 

Specific energy 

density(Wh/Kg) 

Specific power 

density(Wh/L) 

Specific 

power(W/Kg) 

Lifetime

（cycle） 

Cost 

(USD/Kwh) 

Lead-acid 

battery 
30~50 60~100 200~400 400~600 120~150 

NiMH 

battery 
60~120 100~300 200~400 600~1200 150~300 

Lithium-

ion battery 
120~200 140~280 200~450 1000~2000 150~180 

Fuel Cell 300~400 50~200 30~1000 5k~10k (h) 200~240 

(3) Battery performance indicators 

As the power source of EVs, the battery plays an essential role in EVs, and the 

actual effect of the battery is mainly evaluated through its indicators of the battery. The 

performance indicators for assessing the battery are voltage, capacity, internal 

resistance, energy, output efficiency, self-discharge rate, service life, etc. [11]. 

Voltage refers to the potential difference between the positive and negative 

electrodes and is one of the critical parameters used to characterize the performance 

and state of the battery. 

The amount of electricity that can be released from the battery under certain 

discharge conditions is called the capacity of the battery, which can be calculated by 

the product of discharge current and discharge time. Battery capacity can be divided 

into actual capacity and rated capacity. The actual capacity is equal to the product of 

discharge current and discharge time. Its value is less than the theoretical value. The 

parameter reflects the size of the battery's actual storage capacity, which is proportional 

to the range of EVs. 

The internal resistance of the battery refers to the assistance of the current flowing 



 11 

through the battery. The higher the internal resistance of a battery, the more energy it 

consumes and the lower the efficiency of its use. As the number of times the battery is 

charged and discharged increases, the internal resistance of the battery will increase to 

different degrees due to the consumption of electrolytes and the reduction of chemical 

activity inside the battery. 

The battery's energy refers to the electrical energy that the battery can output under 

certain discharge conditions. The battery's specific energy is a comprehensive index to 

reflect the quality level of the battery and affect the overall quality and range of the 

electric vehicle. Energy density refers to the electric energy output per unit volume of 

the battery. 

The battery's power refers to the energy output per unit time under certain 

discharge conditions, which can evaluate the electric vehicle's acceleration performance 

and hill-climbing ability. The power output per unit mass of the battery becomes the 

specific power, and the power output per unit volume is called power density. 

Self-discharge rate refers to the rate of capacity decline of the battery during 

storage, i.e., the battery without load is the rate of capacity loss due to its discharge. 

SOC is the ratio of the remaining power to the battery's rated capacity under a 

specific discharge rate, and the relative amount of the percentage of SOC is usually 

used to indicate the changing state of charge in the battery. 

SOH refers to the percentage of the maximum available capacity of the battery to 

the rated capacity; the higher the value, the better the health of the battery. 

Battery lifetime includes calendar life and cycle life, and the remaining useful life 

(RUL) can be obtained by subtracting the used life from the calibrated life. 
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1.1.4 Battery management technology 

Battery Management System (BMS) is a device used to safely monitor and 

effectively manage the battery pack and improve battery usage efficiency. For EVs, its 

main task is to ensure the safety and reliability of the power battery system, provide the 

status information required for vehicle control and energy management, and take 

effective intervention measures for the power battery system when abnormalities occur. 

Through the system's effective control of battery pack charging and discharging, it can 

achieve increased range, extended service life, reduced operating costs, and ensure the 

safety and reliability of power battery applications. The main functions of BMS include 

battery state detection, battery state analysis, battery safety protection, energy control 

management, and battery information management, as shown in Figure 1.3 [12, 13]. 

 

Figure 1.3. Basic functions of the battery management system. 

(1) Battery state detection 

Detecting physical quantities such as voltage, current, and temperature is the 

most basic function of BMS, so collecting accurate and reliable information is very 

important.     

(2) Battery state analysis 

Battery state analysis includes state of charge (SOC), state of health (SOH), and 
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state of power (SOP). Among them, SOC is the percentage of available capacity of the 

battery to the rated capacity. SOH reflects the aging degree of the battery. It is usually 

used to assess the battery's health status by the declining capacity or increasing internal 

resistance. SOP indicates the power that the battery can provide or absorb for the vehicle 

drivetrain in an instantaneous time. 

(3) Battery safety protection 

Battery safety protection mainly refers to the safety control of the battery, mainly 

including over-current protection, over-charge, and over-discharge protection, over-

temperature protection. For example, lithium batteries are prone to permanent damage 

under the working conditions of overcharge and over-discharge, resulting in capacity 

decay or even fire and explosion, so the safety protection function of BMS is essential. 

(4) Energy control management 

Energy control management includes charging, discharging, and equalization 

control management. As the electric vehicle driving conditions are very complex, 

emergency acceleration, braking, up and down hills, and other driving operations of the 

random trigger will cause complex and variable dynamic load. Battery charging and 

discharging management provides real-time optimal control of voltage, current, and 

other parameters during battery charging and discharging, which can bring out the more 

excellent performance of the power battery pack. Battery balance control management 

refers to the practical measures to reduce the adverse effects caused by inconsistent 

batteries, optimize the battery pack's overall discharge efficiency and extend the battery 

pack's overall life.  

(5) Battery information management  

The battery management system needs to integrate several functional modules and 

reasonably coordinate the communication between the modules. The BMS needs to 
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process the operating data of the power battery. The above data is used to notify the 

driver through the meter, is transmitted to other controllers or the vehicle cloud through 

the communication network, and is stored as the intermediate historical data of the 

battery management system. 

1.2 Battery modeling theory 

To monitor the operation status of lithium-ion batteries in real-time, establishing a 

more accurate battery model has become a key link to achieving battery health 

management. Since the power battery is a very complex electrochemical system with 

many factors and uncertainties, its mathematical modeling is a multidisciplinary 

intersection problem and has become a hot spot. Currently, battery models mainly 

include the electrochemical mechanism, equivalent circuit, and data-driven models. 

1.2.1 Electrochemical model 

The electrochemical model describes the ion transport and electrochemical 

reaction processes inside the battery using complex and mutually coupled nonlinear 

partial differential equations. The model can not only predict the variation of the 

external voltage of the cell more accurately, but also model the microscopic parameters 

such as electrolyte over potential, electrode current density, solid-phase ion 

concentration, and the rate of internal side reactions [14]. It has obvious advantages in 

the research, prediction and evaluation of electrochemical reaction/coupling process, 

but the model involves many nonlinear equations, and the calculation is complicated. 

Reducing the computational load and developing simplified electrochemical models 

have become essential research directions. Currently, the two commonly used 

simplified electrochemical models are the pseudo-two-dimensional (P2D) model and 

the single-particle (SP) model. 
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(1) P2D model 

In the mid-1990s, M. Doyle et al. at the University of California, Berkeley, created 

the P2D model with porous electrodes and solution theory, laying the foundation for 

developing the electrochemical mechanism model. The model assumes equal current 

density on the battery poles and believes that the battery can be approximated as 

multiple identical structures (sandwich structures) inside the battery. The whole battery 

is simplified as a sandwich structure. The schematic diagram of the P2D model of the 

lithium-ion battery, as shown in Figure 1.4 [15], mainly consists of a copper collector, 

negative electrode coating, diaphragm, positive electrode coating, and aluminum 

collector. 

Meanwhile, the model simplifies the active battery material as a uniform sphere 

and uses Fick's diffusion law to describe the radial diffusion of lithium-ion particles to 

produce another dimension. P2D model can accurately describe the internal processes 

such as the Faraday effect, lithium-ion diffusion within the active particles, 

electrochemical reactions on the active particle surface, lithium-ion diffusion and 

migration in the electrolyte, and Ohm's law in the anode and diaphragm [15, 16]. 

 

Figure 1.4. Schematic diagram of the P2D model. 

(2) SP model 

To reduce the complexity of the mechanism model, White et al. proposed a single-

particle model based on the P2D model, and the structure is shown in Figure 1.5 [17]. 

This schematic is based on the simplification of liquid-phase mass transfer and the 
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assumption of uniformity of current density, and the simulation of the overall cell 

behavior is achieved by replacing the whole electrode with a single active substance 

particle. 

In the P2D model, the lithium-ion diffusion process integrates the ion diffusion in 

the solid phase active material and the ion transport in the electrolyte phase. However, 

the solid-phase diffusion time factor is usually several orders of magnitude higher than 

the liquid-phase diffusion time factor [18]. The effect of the electrolyte on the cell 

behavior is simplified and equated to the liquid-phase diffusion resistance in the SP 

model to reduce the number of solution domains and improve computational efficiency 

[19]. 

 

Figure 1.5. Schematic diagram of the SP model for lithium-ion battery. 

With the continuous development of model simplification and numerical 

calculation methods, electrochemical mechanism models have received more and more 

attention and applications in the field of lithium-ion battery simulation and design in 

recent years. However, in the process of model construction, it is difficult to obtain 

material property parameters such as electrical conductivity and diffusion coefficient. 

Therefore, it is still difficult to transfer to the existing BMS platform for online 

applications. 

1.2.2 Equivalent circuit model 

The equivalent circuit model uses circuit elements such as resistors, capacitors, 
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and voltage sources to form a circuit network based on the physical characteristics to 

describe the static and dynamic characteristics of the battery. The equivalent circuit 

model has the characteristics of small calculation, easy parameter identification, simple 

model, etc. In recent years, the study of battery state estimation based on the equivalent 

circuit model has become one of the hot spots in academic research, and the commonly 

used equivalent circuit models include the Rint model, Thenenin model, PNGV model, 

and 2RC network model [20]. 

 (1) Rint model 

Rint model is the simplest equivalent circuit model for the battery, as shown in 

Figure 1.6, where the voltage source VOC represents the open-circuit voltage, the ohm 

internal resistance R0 of the battery can be calculated from the current ratio of the 

voltage across the battery, I is the load current, and Vb is the terminal voltage. 

 

Figure 1.6. Schematic diagram of Rint model. 

The output voltage versus input current for the Rint model is shown in Equation 

(1.1). 

b OC oV V IR                         (1.1) 

The Rint model is used as the basic equivalent circuit model, which has the 

advantage of a simple model equivalent circuit and easy parameter identification, but it 

cannot accurately simulate the transient characteristics of the battery. Especially under 

high current pulses, the polarization effect is ignored. Under complex conditions such 

as short circuits, overload, or transient high power output, the model accuracy is poor. 
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Therefore, the Rint model is only suitable for simulation environments with small current 

variations but lays the foundation for building a more accurate higher-order equivalent 

circuit model. 

(2) Thevenin model 

The Thevenin model is shown in Figure 1.7, which mainly consists of an open-

circuit voltage source VOC, an RC parallel network characterizing the battery 

polarization phenomenon, and an ohm internal resistance R0. Compared with the Rint 

model, this model considers both the transient and steady-state characteristics of the 

battery, where the open-circuit voltage source is used to simulate the steady-state 

characteristics of the battery, while the RC parallel network and the ohm resistance R0 

are used to simulate the transient characteristics of the battery. 

 

Figure 1.7. Schematic diagram of Thevenin model. 

According to Kirchhoff's law, the relationship between voltage and current for the 

Thevenin model is shown in Equation (1.2). 

1 1

1 1 1

1b OC o

dV VI
dt C R C

V V V IR


 


   

                       (1.2) 

Thevenin model is based on the Rint model with the addition of RC parallel 

networks characterizing the effects of capacitance and resistance generated during the 

electrolysis of the battery, which can describe the dynamic characteristics of the battery. 

Due to the moderate accuracy and computational complexity of the model, it is suitable 
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for modeling the battery characteristics. 

(3) PNGV model 

The PNGV model is the standard equivalent circuit model for PNGV as proposed 

by the United States Council for Automotive Research (USCAR) in the PNGV Battery 

Test Manual published in 2001. This model adds a series equivalent capacitor Cb to the 

Thevenin equivalent circuit model to describe the open-circuit voltage change with time 

accumulation of load current, as shown in Figure 1.8. Where Voc is the open-circuit 

voltage, R0 is the ohm internal resistance, and R1 and C1 represent the polarized internal 

resistance and polarized capacitance of the battery, respectively. 

 

Figure 1.8. Schematic diagram of PNGV model. 

According to Kirchhoff's law, the PNGV model corresponds to the expression 

shown in Equation (1.3). 

1
1 ( )b OC o

b

V V Idt V IR
C

                   (1.3) 

The PNGV model has a higher computational complexity than the Thevenin model, 

and the relative accuracy is improved to some extent. 

(4) 2RC network model 

The 2RC network model adds an RC network to the Thevenin model for 

representing the diffusion effect of the cell, as shown in Figure 1.9. Where Voc denotes 

the open-circuit voltage, R0 denotes the ohm internal resistance, R1 and C1 denote the 

polarization internal resistance and polarization capacitance of the cell, respectively, 
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and R2 and C2 denote the diffusion internal resistance and diffusion capacitance of the 

cell, respectively. 

 

Figure 1.9. Schematic diagram of the second-order equivalent circuit model. 

According to Kirchhoff's law, the PNGV model corresponds to the expression 

shown in Equation (1.4). 

0 1 2b OCV V R I V V                        (1.4) 

The model can simulate the dynamic performance of the battery more accurately. 

However, due to the addition of an RC network, the model parameters of the battery 

and the dimensionality of the state space equations are increased, so the computational 

complexity and computational time of the model are better than those of the Thevenin 

model.  

1.2.3 Data-driven model 

Data-driven model is one of the methods to realize the health state estimation of 

the Lithium-ion battery, which is analyzed from the perspective of the external 

characteristics of the Lithium-ion battery and uses the current, voltage, and other data 

in the charge/discharge characteristic curve to build the battery health state estimation 

model. The method does not need to consider the complex electrochemical processes 

inside the battery. The main methods to achieve battery health state estimation are based 

on data-driven models including support vector machine (SVM), relevance vector 

machine (RVM), Gaussian process regression (GPR), and artificial neural network 
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(ANN). 

(1) SVM  

SVM is a modeling method based on statistical learning theory that maps the input 

space to a high-dimensional feature space through a nonlinear transformation to obtain 

a nonlinear relationship between the input and output variables [21, 22]. Today, it has 

become an essential tool in machine learning and data mining, and the algorithm has 

gained widespread applications in text classification, handwriting recognition, image 

classification, bioinformatics, etc. The SVM model that is usually used for regression 

estimation is shown in Equation (1.5) [23]. 

( ) ( ) , ,mf x x b x R b R                 (1.5) 

where the input space is denoted by Rm while satisfying x belongs to Rm and f(x) belongs 

to R. With the help of φ(x), x can be mapped into the feature space, φ(x) represents the 

nonlinear mapping, and w, b denote the weights and intercepts of the hyperplane, 

respectively. 

To apply SVM to solve the regression problem, the insensitive loss function is 

introduced, while the SVM model requires the minimization of the -insensitive loss 

function, as in Equation (1.6). 
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( ( ), )
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         y f x

L f x y
y f x





 
 

 
           (1.6) 

where f(x) denotes the predicted value, y denotes the observed value, and  denotes the 

allowable error between the true value and the estimated value. The loss function of 

Equation (1.6) defines an -tube centered on f(x), 2 -insensitive loss function is shown 

in Figure (1.10). If the difference between the observed and predicted values of the 

sample are less than , the loss is equal to 0, the higher the accuracy of the regression 

model, while for samples outside the -band region, they are considered by slackening 
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the variables ξ, ξ* and a non-negative penalty coefficient C. 

 

Figure 1.10. Principle of the insensitive loss function. 

Minimizing the  -insensitive loss is equivalent to solving the optimization problem for 

w and b. The problem of regression estimation using a standard SVM can be expressed 

as an optimization problem as in Equation (1.7) [24]. 
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where C denotes the penalty factor to balance the mean square error and the 

generalizability of the model over the test data;  denotes the radius of the pipeline; and 

ξi, ξi* denotes the slack variables corresponding to sample xi. 

For the optimization problem of Equation (1.7), the Lagrange Function (1.8) is 

introduced.
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where * *, , ,i i i i    is the Lagrange multiplier. 

According to the Karush-Kuhn-Tucker (KKT) condition, the problem of Equation 
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(1.7) can be transformed into a pairwise optimization problem, as in Equation (1.9). 
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By solving Equation (1.8), the regression function is obtained as in Equation (1.10). 

 
1
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l
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i
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where k(·,·) denotes the kernel function that satisfies the Mercer condition. 

The main thought of SVM is to solve the problem. First, the original data set is 

mapped to a high-dimensional space by introducing some kernel function, which makes 

the data linearly separable in the high-dimensional space. However, SVM still has some 

shortcomings, such as the prediction results do not contain probabilistic information to 

determine the uncertainty of the prediction results; the kernel function k(x, xi) must 

satisfy the Mercer condition. The above shortcomings become a bottleneck for SVM to 

improve the accuracy of results in the problem-solving process, which restricts the 

application scope of SVM and its practical application in engineering. 

(2) RVM  

To address the shortcomings of SVM, Michael E. Tipping proposed RVM, a 

machine learning method based on Bayesian theory, Markov property, auto-correlation 

decision prior, and maximum likelihood theory [25]. This method has high sparsity and 

probability-based learning characteristics, which overcomes the SVM kernel function 

and must satisfy the Mercer condition, the basic principle of RVM is described below 

[26]. 

Assuming that the training sample 1 1 2 2{( , ), ( , ),..., (( , ))}N ND x t x t x t  , N is the 
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number of samples, the regression model of RVM is as in Equation (1.11). 

 
1

( ; ) ( , )
N

i i i
i

y x w k x x 


 w      (1.11) 

Where k(x,xi) is the kernel function,w={wi}N 
i=1 represents the different weights, and i is 

the Gaussian white noise i~N(0,σ2) that satisfies the normal distribution, and the 

probability distribution of the target value can be derived, as in Equation (1.12). 

 2( | ) ( | ( ; ), )i i ip t x N t y x  w    (1.12) 

Where N( ) denotes a Gaussian distribution function based on an expectation of y(xi;w), 

variance σ2 over ti, and it is reasonable to assume that the targets ti are mutually 

independent random variables, and the likelihood function of the entire training set is 

as in Equation (1.13). 
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where 0( ,..., )T
Nw ww  is the weight vector, 1 2[ ( ), ( ),..., ( )]T

Nx x x    is an N × 

(N + 1) kernel matrix, 1( ) (1, ( , ),..., ( , ))T
n n n Nx K x x K x x , where ( , )n iK x x is the kernel 

function. w,σ2 can be obtained by performing the maximum likelihood estimation of 

Equation (1.13). 

In RVM, to improve the generalization ability, a hyper-parameter vector α is 

introduced, and a Gauss prior distribution with zero mean is assigned to the weight 

vector w as in Equation (1.14). 
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Suppose the sample to be tested is t*, and the distribution of the corresponding 

predicted values is as in Equation (1.15). 

 2 2 2
* *( | ) ( | , , ) ( , , | )p t t p t p t d d d      w w w    (1.15) 
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The derivation of Equation (1.15) from Markov's property and Bayes' theorem 

leads to Equation (1.16). 
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where the covariance matrix 2 1( )T A       , the mean of the weights 

2 T t    , and the diagonal array 0 1( , ,..., )NA diag    . 

The partial differential of Equation (1.16) is found and made zero. The hyper-

parameter and variance update Equations are obtained as in Equation (1.17) (1.18). 
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where 1i i ii    , ii  are the i-th diagonal elements. The hyper-parameters α and 

σ2 estimates can be obtained through continuous iterations, while the weighted posterior 

mean μ and the covariance matrix Σ are continuously updated until the convergence 

requirement is satisfied (the hyper-parameter values stop changing or the maximum 

number of iterations is reached), thus obtaining the optimal values of the variables αMP 

and σ2 
MP. 

In the iterative process, most of the hyper-parameters αi will tend to infinity, and 

the corresponding weights will slowly converge to zero. Therefore, some of the kernel 

functions with zero weights will be removed from the model and will not have any 

effect on the prediction results. Therefore, the correlation vector machine has a more 

sparse performance than the support vector machine, and the other αi will steadily 

converge to a finite value, and the corresponding xi is called the correlation vector. 

Finally, the expectation is y *  according to Equation (1.15), and the noise 
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variance is σ2 
* . 

 *( )Ty x     (1.19) 

 2 2
* * *( ) ( )T

MP x x         (1.20) 

(3) GPR  

GPR is a nonlinear modeling method in the field of machine learning. It has a 

rigorous statistical learning theoretical foundation and can effectively handle the 

identification of high-dimensional nonlinear complex systems [27]. Since Gaussian 

process regression is a model based on statistical learning, its properties are completely 

determined by its mean function m(x) and covariance function k(x,x'), assuming a 

random process f(x), the Gaussian process can be defined as Equation (1.21). 

 ( ) ~ ( ( ), ( , '))f x GP m x k x x    (1.21) 

where the mean value function m(x) represents the expected value E(f(x)) of the 

function f(x) at the input point x. In general, the mean function specifies the central 

tendency of the potential function, but in most practical applications, there is usually a 

lack of a priori knowledge of the mean function m(x), which is usually set zero in 

consideration of symmetry. The covariance matrix contains information about the shape 

and structure of the potential function, which is determined by the covariance function 

and its corresponding parameters. The covariance function k(x, x') is a measure of the 

confidence level of the mean function m(x) and is denoted by E[(f(x) - m(x))(f(x ) - 

m(x ))]. 

For the regression problem, the model can be expressed as an Equation (1.22). 

 ( )y f x   ， 2(0, )N     (1.22) 

where f(x) is the value of the function corresponding to the input vector x,  is Gaussian 

white noise with mean taken as zero and variance σ2, and y denotes the measured value. 
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From this, the prior distribution of y is obtained as in Equation (1.23). 

 2(0, ( , ) )y N K X X I    (1.23) 

According to the Gaussian process definition, the joint prior distribution of the 

observed value y and the predicted value y * is as in Equation (1.24). 

 
2( , ) ( ', )

0,
( , ') ( ', ')k

y K X X I K x X
y K X x x x





    
     

    
     (1.24) 

where K(X, X) = Kn*n= (kij) is the n×n order positive definite and symmetric covariance 

matrix, K(X, x ) = K(X, x ) T denotes the n×1 order covariance matrix between the test 

sample input x' and the training sample input x and K(x', x') is the covariance scalar of 

the test input. 

According to the Bayesian formula, the posterior probability can be calculated to 

obey the Gaussian distribution as in Equation (1.25). 

 | , , ' ( ,cov( ))y X y x N y y      (1.25) 

where the predicted mean and corresponding variance are Equation (1.26) and (1.27), 

respectively. 

 2 1( , ')( ( , )) )xy K X K X X I y 

     (1.26) 

 2 1cov( ) (, ', ') ( ( , '))[ ( , )] )k x x xy K X K X X I y 

      (1.27) 

y is the predicted mean of the GPR model at the test point, and the confidence interval 

of the prediction result is determined by the variance of the covariance matrix cov( )y . 

(4) ANN  

ANN is an information processing system established by human beings based on 

understanding the operation law of neural networks in the brain, which can imitate the 

structure of neural networks in the brain to achieve specific functions [28]. Since ANN 
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is an adaptive nonlinear dynamic system formed by many linear or nonlinear neurons 

following a certain method of interconnection, the learning process of the neural 

network is to continuously adjust the connection weights among the neurons according 

to the input patterns, so as to form a memory of the input patterns. Therefore, ANN has 

the advantages of high speed of information processing, high fault tolerance, nonlinear 

operation, and self-learning. The neuron model with n input data is shown in Figure 

1.11. The model mainly includes input data, weights and deviations, activation function, 

and output data.  

 

Figure 1.11. Schematic diagram of the neuron model. 

In the neuron model, X=(x1,x2,...,xn) is the input of the neuron; W=(w1,w2,...,wn) is the 

weight value corresponding to each input; b is the bias value of the neuron; f(·) is the 

activation function of the neuron and y is the output of the neuron, as shown in Equation 

(1.28). 

 
1

( )
n

i i
i

y f w x b


      (1.28) 

ANN can be divided into convolutional neural networks and recurrent neural 

networks according to their principles and structures, and this paper introduces 

recurrent neural networks as an example. A recurrent neural network (RNN) is a neural 

network model proposed by Saratha Sathasivam in 1982 for processing sequential 

problems [29]. In this neural network, the hidden layer neurons receive information not 

only from the input layer but also from the hidden layer at the previous moment, and 

the basic structure of the RNN network is shown in Figure 1.12. 
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Figure 1.12. Schematic diagram of RNN structure. 

Where xt denotes the input of the t-th sequence and st is the state of the t-th step of the 

hidden layer, which is the memory unit of the network. st is calculated based on the 

output of the current input layer and the state of the hidden layer of the previous step. 

It can be considered that the hidden layer state st is the memory unit of the network; st 

contains the hidden layer states of all previous steps. ot is the output of the t-th step, and 

the output ot of the output layer is only related to st of the current step. In the RNN, 

each layer shares parameters U, V, and W, which greatly reduces the number of 

parameters to be learned in the network and increases the training speed. RNN input-

to-hidden connections are parameterized by the weight matrix U, the hidden-to-hidden 

cyclic connections are parameterized by the weight matrix W and the hidden-to-output 

connections are parameterized by the weight matrix V. The left side of Figure (1.12) 

represents the RNN drawn using cyclic connections, and the right side of Figure (1.12) 

represents the computational plot of the expansion. 

Based on the analysis and comparison of the above three different models, it can 

be seen that the electrochemical mechanism model has a clear physical meaning of 

parameters and has the advantages of high accuracy and good reliability. However, the 

model parameters are difficult to obtain and the calculation time is long, so it cannot be 

matched with the existing BMS hardware environment for online applications. The 

equivalent circuit model, as a semi-empirical semi-mechanical model, can meet the 

accuracy application requirements with limited computational resources and has lower 

empirical dependence and better scalability and reliability [15]. The data-driven 
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approach is based on learning and analyzing the historical data of the research object 

with the help of data-driven theories and techniques. The raw data are transformed into 

relevant information and behavioral models for battery state estimation and prediction. 

Especially for nonlinear problems with obvious advantages, the use of data-driven 

models for battery modeling can better establish the relationship between battery input 

and output. 

1.3 Research content and structure 

1.3.1 Main research content 

In this dissertation, based on the problems related to the health status of lithium-

ion batteries, three targeted research points are summarized. Firstly, battery aging 

experiments are built to analyze the effects of temperature, rate, and state of charge on 

battery aging, and based on analyzing the battery aging mechanism, relevant 

characteristics of battery aging are summarized. Secondly, based on the improved 

Gaussian process regression, a novel composite kernel function is proposed to capture 

the overall decay trend and local regeneration characteristics of battery aging, and a 

battery single cell health state estimation model is established by combining three 

different groups of HIs. Finally, three new sets of HIs are proposed based on the whole-

life data of battery cells and the early-life data of battery packs, and a decay model of 

the fused characteristics of battery pack HIs is constructed; combined with Gaussian 

process regression, the estimation of the battery pack health state is realized. The main 

relevant studies are as follows: 

（1）Analysis and test of the aging characteristics of lithium-ion batteries. 

Given the influence of different environmental factors on battery aging, a battery aging 

test platform is built. A lithium-ion battery aging test procedure is designed, including 
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aging tests at different temperatures, different charging rates, and different depths of 

discharge. Based on the battery cycle aging test and the battery calendar aging test, 

statistical analysis and comparative research on the aging characteristics of lithium-ion 

batteries are carried out.  

（2）Estimation of the SOH of lithium-ion battery cells based on the improved 

GPR model. The single kernel function based on the GPR model is not accurate in 

estimating the SOH of the lithium-ion battery, and cannot accurately capture the 

phenomenon of overall capacity decay and local capacity recovery. A method for 

estimating the SOH of lithium-ion batteries based on modified GPR combined with 

charging and discharging features is proposed. First, the changes in battery voltage and 

temperature curves among different aging cycles are analyzed in detail, and health 

indicators (HIs) that can effectively represent the health status of the battery are 

proposed. Then, the Pearson correlation analysis method is used to quantify the 

correlation between HIs and SOH, and three HIs with strong correlation are employed 

in this paper. Next, a novel compound kernel function is proposed for battery SOH 

estimation, and different pairs of mean function and kernel function chosen from four 

mean functions and sixteen kernel functions are used to construct GPR models, and 

their estimation accuracy is compared subsequently. Finally, four different batteries 

with various initial health conditions from the NASA battery dataset are used to verify 

the performance of the proposed method. Experiments show that its estimated mean-

absolute-error (MAE) and root-mean-square-error (RMSE) are only 1.7%, and 2.41%, 

respectively. The results show that compared with a single kernel function, the GPR 

model based on a composite kernel function is more suitable for capturing the battery 

aging characteristics of various trends and can achieve an accurate estimation of the 

battery SOH.  
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（3）Battery pack health estimation based on early data. For the estimation of 

the SOH of the battery pack, it takes a lot of time and economic cost to complete the 

full-life aging test of the battery pack. Aiming at the above problems, a method for 

predicting the future health of the battery pack is proposed, which uses the aging data 

of the battery cells over their entire life cycles and the early cycling data of the battery 

pack. Firstly, HIs are extracted from the experimental data, and high correlations 

between the extracted HIs and the capacity are verified by the Pearson correlation 

analysis method. To predict the future health of the battery pack based on the HIs, 

degradation models of HIs are constructed by using an exponential function, long short-

term memory network, and their weighted fusion. The future HIs of the battery pack 

are predicted according to the fusion degradation model. Then, based on the GPR 

algorithm and the battery pack data, a data-driven model is constructed to predict the 

health of the battery pack. Finally, the proposed method is validated with a series-

connected battery pack with fifteen 100 Ah lithium iron phosphate battery cells. The 

MAE and RMSE of the health prediction of the battery pack are 7.17% and 7.81%, 

respectively, indicating that the proposed method has satisfactory accuracy. The results 

show that compared with the single feature decay model, the fusion feature decay model 

can predict the future HIs of a battery pack with more accuracy, which contributes to 

the satisfactory prediction accuracy of battery pack health based on the GPR model. 

1.3.2 Chapter arrangement 

Around the research content and main work of this dissertation, the content of each 

chapter is arranged as follows. 

Chapter 1. First, the global background and significance of this research are 

outlined, and EVs are introduced as an important part of future green transportation. 
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The characteristics of four different types of EVs are analyzed and compared. The key 

role played by battery management technology in the field of EVs is focused on. Then, 

the main research results on battery modeling theory are reviewed and the advantages 

and disadvantages of the three main battery models are compared. 

Chapter 2. The aging characteristics of lithium-ion batteries are verified and 

analyzed through experiments. Firstly, the battery aging experimental platform is built, 

and the cycle aging experiment and calendar aging experiment is conducted on 

Lithium-ion batteries to verify the effects of different temperature, rate, SOC, and other 

indexes on battery aging. Secondly, the common methods for extracting battery 

characteristic factors are analyzed and compared.  

Chapter 3. Estimation of the SOH of lithium-ion battery cells based on the 

improved GPR model. The single kernel function based on the GPR model is not 

accurate in estimating the SOH of a lithium-ion battery, and cannot accurately capture 

the phenomenon of overall capacity decay and local capacity recovery. A method for 

estimating the SOH of lithium-ion batteries based on modified GPR combined with 

charging and discharging features is proposed. 

Chapter 4. Battery pack health estimation based on early data. For the estimation 

of the SOH of the battery pack, it takes a lot of time and economic cost to complete the 

full-life aging test of the battery pack. Aiming at the above problems, a method for 

predicting the future health of the battery pack is proposed, which uses the aging data 

of the battery cells over their entire life cycles and the early cycling data of the battery 

pack. 

Chapter 5. The research work and related results in the full paper are summarized, 

and the research related to the health status of lithium-ion batteries prospects. 
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Chapter 2. Lithium-ion battery aging characteristics 

In 1985, Aki Yoshino et al. discovered that carbon material could be used as the 

anode material of lithium rechargeable batteries. They proposed a carbon material with 

a graphite structure instead of a lithium metal anode by using lithium and transition 

metal composite oxide as the battery's cathode material[1]. Since the first 

commercialization of lithium-ion batteries by Sony Corporation in Japan in 1991, 

lithium-ion batteries have been widely used in many fields such as electric vehicles, 

mobile electronic devices, and large-scale energy storage due to their excellent 

performance in terms of energy density, power density, cycle life, and environmental 

friendliness[2, 3]. In recognition of their outstanding contributions to the field of lithium-

ion batteries, Akira Yoshino et al. were awarded the Nobel Prize in Chemistry in 2019. 

However, the battery performance will inevitably decay when using lithium-ion 

batteries repeatedly. When the battery's state of health no longer meets the actual 

requirements, the battery needs to be replaced promptly.  Since battery cost is a high 

percentage for many applications, extending and predicting battery life can 

significantly increase its economic value. So, it is necessary to quantify lithium-ion 

battery aging, determine the degradation mechanism, and establish aging models for 

life diagnosis and prediction. 

2.1 Introduction of this chapter 

A lithium-ion battery is a dynamic and time-varying electrochemical system with 

a nonlinear and complex internal reaction mechanism. The main manifestation is that 

the specific performance of lithium-ion batteries shows a gradual deviation from normal 

indicators, including capacity decay or diving, shortened service life, deterioration of 

multiplier performance, and increased self-discharge rate [4]. To ensure the stability of 
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the battery system, different types of Lithium-ion batteries must work in a specific 

voltage window interval. The upper voltage limit of the battery is determined by the 

upper limit of the electrochemical window of the organic electrolyte. The lower voltage 

is determined by the reduction potential characteristics of the cathode material itself, 

and the actual working voltage of the battery beyond the voltage window is usually 

called over-charge or over-discharge. When the battery is overcharged, the organic 

electrolyte solvent is oxidized and decomposed on the cathode surface, resulting in the 

electrolyte deviating from the optimal state and the ionic conductivity decreasing. 

When the battery is over-discharged, it easily leads to the reduction of transition metal 

cations in the cathode material and the destruction of the original lattice structure, 

resulting in battery capacity decay [5]. 

2.1.1 Lithium-ion battery working principle 

Lithium-ion battery is a kind of secondary battery in which lithium-ions can go 

back and forth between the positive and negative electrodes and de-embed, which is 

named "rocking chair battery". It is mainly composed of a positive electrode, negative 

electrode, diaphragm, and electrolyte, and its working principle is shown in Figure 2.1 

[6]. When charging, the lithium atoms in the positive electrode ionize into lithium ions 

and electrons that are removed from the lattice of the positive electrode material. The 

lithium ions pass through the electrolyte and diaphragm under the action of the applied 

electric field and are embedded in the lattice of the negative electrode material, which 

is reduced to lithium atoms to form a compound of carbon inserted into the laminar 

structure of the negative electrode graphite. The more lithium ions embedded in the 

negative electrode material, the higher the charging capacity. When discharging, it is 

the opposite of the charging process.  
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Figure 2.1. Schematic diagram of Lithium-ion battery operation. 

During the charging and discharging process of a lithium-ion battery, the de-

embedding of lithium ions usually causes the change of crystal layer spacing without 

destroying crystal structure, and the chemical structure of positive and negative 

electrode materials is unchanged. The battery's actual capacity is determined by the 

lithium-ion content of the round-trip de-embedding and the potential difference 

between the positive and negative electrodes in the de-lithium and embedded lithium. 

During the first few charge and discharge cycles of the battery, the electrode surface 

will form a passivation film due to the decomposition of the electrolyte, which is known 

as a solid electrolyte interphase (SEI) film. Taking the widely used lithium iron 

phosphate ion battery as an example, the electrode reactions occurring during charging 

and discharging can be expressed as Equation (2.1-2.2) and the total reaction as 

Equation (2.3) [7]. 

 Positive reaction：
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2.1.2 Lithium-ion battery characteristics 

Due to the differences in the positive and negative electrode materials, electrolyte 

materials, and production processes of lithium-ion batteries, the batteries exhibit 

different performances, resulting in a wide variety of lithium-ion batteries. The different 

of battery shape structure can be divided into square batteries, cylindrical batteries, and 

soft pack batteries. The electrolyte material used can be divided into lithium-ion 

batteries and lithium polymer batteries. According to the cathode material, they can be 

divided into Lithium Cobalt Battery (LCO), Lithium Manganese Oxide Battery (LMO), 

Ternary Material Battery (NCM), and Lithium Iron Phosphate Batteries (LFP). A brief 

introduction and comparative analysis of the above four batteries of different materials 

as follow. 

The cathode material of LCO battery is lithium cobalt oxide, which is generally 

available in two types: layered structure and spinel structure, which is unstable and has 

poor cycling performance. The preparation methods of lithium cobalt oxide include the 

solid-phase method, spray drying method, sol-gel method, etc. The advantage of using 

lithium cobalt oxide as a cathode material is that it is relatively easy to prepare and has 

a stable structure, but its cost is relatively high due to the scarcity of cobalt resources. 

The cathode material of LMO battery is lithium manganese oxide, which is more 

price advantageous, and the manganese has non-toxicity and less pollution. Manganese 

oxides mainly have tunnel structure and layer structure, and tunnel structure manganese 

oxides include MnO2 and its derivatives, which are mainly used in lithium primary 

batteries, and the cycle performance of the battery is not ideal when used as lithium-ion 

battery cathode material. While the lithium manganese oxide with layered structure 

mainly includes orthogonal LiMnO2, LiMnO3, and their lithiated derivative. Among 

them, the preparation methods of orthogonal LiMnO2 include the sol-gel method, 
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hydrothermal method, solid-phase reaction method, and ion-exchange method. The de-

lithium capacity of this class of lithium manganese oxide is high in the voltage range 

of 3.0~4.5V, but the structure is not stable enough, resulting in poor cycling 

performance. 

Ternary material batteries, modified doping of orthogonal LiMnO2 can effectively 

improve its cycling ability, such as doping with Al, Cr, Co, Ni, and other elements. 

Among them, doping with Co and Ni can obtain ternary material electrodes. The 

preparation methods of ternary materials mainly include the sol-gel method, solid-

phase reaction method, simple combustion method, co-precipitation method, and spray 

pyrolysis method. The electrochemical properties of the ternary materials obtained by 

different preparation methods will also be different, but the safety performance of this 

type of battery needs to be further improved. 

The cathode material of LFP battery is lithium iron phosphate, which does not 

contain cobalt, nickel, and other precious metal elements, the raw material price is 

relatively low, and phosphorus, iron, lithium, and other elements are abundant in the 

earth's crust. In addition, LFP stack density, multiplier performance, low-temperature 

performance, and other issues have been gradually resolved in recent years through 

technical means, significantly broadening the application of lithium-ion batteries. 

Currently, the commercialized lithium iron phosphate batteries have excellent safety 

performance, long cycle life, and good stability in high temperature and high heat 

environments, which has led to the widespread application of lithium iron phosphate 

batteries in energy storage and electric vehicles [8, 9]. 

A comparison of the performance of common lithium-ion batteries is shown in 

Table 2.1 [10-12]. 
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Table 2.1. Comparison of the performance of common types of lithium-ion batteries. 

Battery LCO LMO NCM LFP 

Chemical formula LiCoO2 LiMnO4 LiNixCoyMn(1-x-y)O2 LiFePO4 

Operating voltage(V) 3.6 3.7 3.7 3.3 

Crystal structure layered rock salt spinel layered rock salt olivine 

Energy density (Wh/kg) 150~200 100~150 150~220 100~130 

Cycle life (cycle) 500~1000 300~700 1000~2000 >2000 

Thermal runaway 

temperature (℃) 
180 265 210 310 

Security features normal good better best 

2.2 Lithium-ion battery aging mechanism 

Battery failure and gradual performance degradation result from complex, 

interrelated phenomena that depend on battery chemistry, the environment, and the 

actual operating conditions [13]. The aging mechanism and external characteristics of 

lithium-ion batteries are shown in Figure 2.2. Due to the numerous external factors 

affecting battery aging, such as environmental and mechanical stress, and the complex 

electrochemical system inside the battery involving multiple physical fields such as 

electric-thermal-mechanical, the performance of the battery decays continuously during 

long-term use and storage. Generally, each aging mechanism results from the mutual 

interaction of two or more external factors. For example, the presence of SEI film plays 

an inhibitory role in the formation of new SEI films. In contrast, the cracks formed after 

the decomposition or breakage of the old SEI film will further promote the generation 

of new SEI films. In addition, the exfoliation of graphite leads to the reduction of 

contact area between collector and electrode materials and the increase of contact 

impedance, resulting in the decay of cell power characteristics. In summary, the 

complex aging mechanism manifests as an aging pattern of active lithium loss and loss 

of positive and negative active materials, which is a fundamental cause of battery power 

javascript:;
javascript:;
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degradation and capacity decay [14, 15]. 

 

Figure 2.2. The aging mechanism of lithium-ion batteries and its effect on external characteristics. 

2.2.1 Battery aging type 

According to the different application conditions of aging, the battery aging type 

can be divided into calendar aging and cycle aging [16]. 

(1) Calendar aging 

Calendar aging refers to the self-discharge reaction of the battery during the 

storage process, resulting in the gradual decay of its performance index. When the 

lithium-ion battery works normally, an SEI film is generated on the contact surface of 

the electrode and electrolyte, whose main component is the product of electrolyte 

reduction at the negative electrode. This film has a specific protective effect on the 

stability of the battery's internal structure, and its thickness, composition, and structure 

deteriorate during the aging process of the battery, becoming the leading cause of 

battery power decay and capacity decline [14]. Existing studies show that the calendar 

aging of lithium-ion batteries is related to the growth of the thickness of the SEI film 

and the gradual decrease of the number of lithium-ions in the cycle. 

Considering the calendar aging of Lithium-ion batteries is related to the state of 
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charge (SOC) and storage temperature of Lithium-ion batteries, and the higher the state 

of charge and storage temperature, the faster the capacity of Lithium-ion batteries 

decreases. To effectively slow down the calendar aging of Lithium-ion batteries, it is 

usually necessary to turn down the charge state of Lithium-ion batteries and store them 

at a lower temperature when storing them. 

(2) Cycle aging  

Unlike calendar aging, lithium-ion batteries are accompanied by irreversible 

capacity loss during cycling, and their internal phenomena, such as performance decay 

and component aging are called cyclic aging [17, 18]. Battery cyclic aging is mainly 

caused by fatigue fracture caused by lattice strain cycling of the active material. For 

LFP particles, the strain field distributed along the phase interface will lead to lattice 

dislocation or fracture, and the increase of defects will significantly reduce the diffusion 

rate of lithium ions, leading lead to the degradation of battery performance. The lattice 

fracture will also lead to the disassociation of the active material from the conductive 

agent and the inability to obtain the electrons required for the electrochemical reaction, 

ultimately leading to the loss of available capacity. For negative graphite electrodes, the 

lattice sheets are maintained by weak van der Waals forces between the layers, and 

lithium-ion de-embedding tends to cause distortion and destruction of the lattice, which 

continuously drives electrolyte decomposition and deposition on the newly exposed 

graphite surface to form SEI films, eventually causing battery aging. Many factors 

affect cyclic aging, mainly the ambient temperature and charge/discharge rate. The 

higher the temperature, the greater the charge/discharge rate will be the capacity decay 

rate.  
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2.2.2 Battery aging external factors 

The external factors affecting battery aging mainly include temperature, 

charge/discharge rate, depth of discharge (DOD) and SOC. This section analyzes the 

chemical reaction mechanism of battery decay under the influence of a single external 

factor's influence [12]. 

(1) Temperature  

The ambient temperature plays a crucial role in the internal chemical reaction rate 

of the battery. When the temperature rises, the impact on battery aging occurs mainly 

at the positive electrode, with less impact on the negative electrode. While in a low-

temperature environment, lithium ions are neither easy to complete the deem bedding. 

In contrast, the liquid material will lead to increased viscosity or even solidification 

under low-temperature conditions, which eventually makes crossing the diaphragm 

difficult. In addition, the mass transfer process of charged ions and the speed of 

electrochemical reactions is also reduced, which ultimately leads to the reduction of 

lithium metal ions, lithium deposition, and the crystal structure of the active material is 

easily damaged. Therefore, in low-temperature conditions, resulting in increased 

resistance of lithium-ion batteries, the actual capacity will rapidly decline, ultimately 

leading to rapid battery aging. 

(2) Charging and discharging rate  

The charge/discharge rate is another major factor that affects battery aging. When 

the battery exceeds the rated charge and discharge rate, the thermal effect of the current 

increases the temperature of the battery itself, accelerates the electrochemical reaction 

rate inside the battery, and gradually intensifies the side reactions of aging. A high 

current will further aggravate the polarization phenomenon inside the battery. In 

addition, a high current brings a large number of lithium ions embedded in the cathode 
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material, causing an impact on the stability of the material. When discharging at a high 

current, there is also the stability problem of heating and de-embedding of cathode 

material. At this time, too many lithium-ions are transported to the negative electrode, 

making the deposition of lithium monomers occur, leading to loss of capacity. The high 

current destroys the structural stability of the battery electrode material and causes the 

cathode material to react with the electrolyte. This further causes corrosion of the 

cathode and the deposition of lithium salts on the cathode surface, resulting in the 

thickening of the SEI film and loss of active material, which in turn increases the 

internal resistance of the lithium battery and decreases the actual available capacity. 

(3) DOD 

DOD refers to the ratio of the capacity released during the discharge process to the 

battery's nominal capacity, and the value is negatively correlated with the number of 

charge/discharge cycles. When a lithium-ion battery is discharged deeply for a long 

time, a large number of active lithium ions and electrolytes inside the battery are 

consumed, which reduces the ionic conductivity and leads to an increase in electrolyte 

impedance and electrode interface charge transfer impedance. The larger the DOD 

value, the fewer remaining cycles. Therefore, the battery should be charged in time to 

prevent deep discharge and accelerate battery aging. 

(4) SOC 

SOC is one of the main causes of battery aging, and the mean SOC within the 

cycle interval is positively correlated with the battery capacity decay rate. In addition, 

the greater the difference between the upper and lower limits of the cycle interval, the 

faster the capacity decay. From this point of view, the full charge and discharge of the 

battery will accelerate the aging of the battery, so when using it, shallow charge and 

discharge will help delay the aging of the battery. If the battery needs to be stored for a 
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long time, try to avoid the battery in a fully charged state or high SOC. 

2.2.3 Internal mechanism of battery aging 

As the number of charges and discharge cycles of Lithium-ion batteries continues 

to increase, their performance and lifetime gradually decay. Common causes of lithium 

battery aging include structural changes of active material, the phase change of active 

material, cracking or breaking of active particles, transition metal leaching, volume 

expansion, solid electrolyte interface overgrowth, SEI decomposition, etc. [19]. As its 

internal aging mechanism is very complex as shown in Figure 2.3 [4, 14], the main causes 

of lithium-ion battery aging can be divided into three categories: 1) loss of lithium 

inventory (LLI) [20]; 2) loss of positive active material (LAMp) [14]; and 3) loss of 

negative active material (LAMn) [21, 22]. Along with the capacity decay of Lithium-ion 

batteries, there is often an increase in the internal resistance of the battery and the 

consumption of electrolytes. 

 

Figure 2.3. Schematic diagram of the battery aging mechanism. 

(1) LLI 

The active lithium ions inside the battery are continuously detached and embedded 

between the positive and negative electrodes to complete the charging and discharging 

of the lithium-ion battery. As the amount of cathode material is closely related to the 

active lithium inside the battery, when the limited amount of lithium ions in the battery 
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is decreasing, the battery capacity is also reduced accordingly. During the initial cycling 

phase, the growth rate of SEI film is relatively fast, and then the growth rate is relatively 

flat. The stability of the SEI film has an important impact on the amount of active 

lithium inside the cell during the long-term continuous cycling process, accompanied 

by irreversible reactions and loss of active lithium. Existing studies show that the loss 

of reactive lithium becomes the main cause of battery capacity degradation [23-25]. 

(2) LAMp 

The cathode material is one of the critical factors in determining the lifetime of 

lithium batteries. The dissolution of transition metals in the anode will not only lead to 

the loss of anode material, but the dissolved transition metals will also pass through the 

diaphragm and precipitate on the surface of the anode, accelerating the formation of the 

negative SEI film. For LFP batteries, the graphite system cells have faster capacity 

decay in high-temperature cycles, mainly due to the dissolution of Fe3+ in the anode 

and deposition on the anode surface, which further undergoes reduction and generates 

Fe metal particles, leading to increased anode polarization [26, 27]. The volume expansion 

of the LFP material during the charging and discharging process is 6.77%, so the LFP 

material exhibits a very excellent cycle life. However, LFP is also accompanied by 

partial dissolution of Fe elements during cycling and precipitation on the anode surface, 

catalytic electrolyte decomposition causing an increase in cell impedance and loss of 

active Li, which eventually leads to capacity decay and power degradation. 

(3) LAMn 

The reactions that occur during the aging and decay of the negative electrode 

material are mainly the rupture/regeneration of SEI film and solvent molecule co-

embedding. In the pre-cycle after cell synthesis, the SEI film is generated on the surface 

of the active particles. It leads to an increase in the internal resistance of the negative 
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electrode. The rupture and regeneration of SEI film lead to the loss of active material 

and the consumption of available lithium ions and electrolytes, increasing the battery's 

internal resistance. Under low-temperature charging or high-rate charging, lithium 

metal is easily precipitated from the cathode surface. The precipitated lithium metal is 

very active and reacts with the electrolyte, causing the loss of available lithium ions and 

increased internal resistance. Similar to the positive electrode, the negative electrode 

collector and binder will also decompose and corrode during use, eventually leading to 

capacity degradation and power degradation. 

The above three internal environmental factors interact and influence, resulting in 

the decline of the available capacity of lithium-ion batteries. Of course, the internal 

environment of lithium-ion batteries is not closed and will also be affected by the 

external environment. An unsuitable external climate will exacerbate the changes in the 

internal environment of the lithium-ion battery, which will accelerate the decline in 

available capacity. In order o slow down the decline of the available capacity of 

Lithium-ion batteries, effective battery management strategies are needed to reduce the 

external environment's influence on the battery's internal environment [28].  

2.2.4 External characterization of battery aging 

For most power batteries, the capacity decay shows non-linearity, as shown in 

Figure 2.4. Usually, the capacity decay characteristics are divided into three stages 

during the whole life cycle of the battery. In the first stage, mainly because the SEI film 

formed at the beginning is unstable, the electrolyte will continue to decompose on the 

surface of the negative electrode, so the consumption of active lithium and the growth 

of SEI film become the main factors of rapid capacity decay in this stage. In the second 

stage, the thickness of SEI film increases significantly, the decomposition rate of 
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electrolyte on the negative electrode surface decreases greatly, and the decay rate of 

battery capacity decreases significantly, while some other side reactions eventually lead 

to a flat trend of the capacity decay curve. In the third stage, the pores inside the cathode 

at the end of life are filled with a large amount of SEI film, causing the precipitation of 

metallic lithium on the cathode surface, which accelerates the loss of active lithium  in 

the battery and leads to the rapid decay of battery capacity [14]. 

 

Figure 2.4. Capacity decay characteristic curve of Lithium-ion battery. 

2.3 Battery aging analysis method 

The study of the aging mechanism of lithium-ion batteries involves various fields, 

such as electrode material science, electrochemistry, health management, etc. The 

research methods are mainly divided into three types: in situ online analysis method, 

disintegration physical and chemical analysis method, and external characterization 

analysis method [29-31]. 

2.3.1 In-situ online analysis method 

The in-situ online analysis method uses in-situ analysis equipment to monitor the 

changes in internal physical quantities of the battery online during the cycling process. 

It analyzes battery aging by studying the evolution of the internal physical quantities of 

the battery during the aging process. In-situ testing techniques mainly include in-situ 

X-ray diffraction analysis (XRD) technology, neutron wire technology, preparation of 

transparent model cells to observe online the aging mechanism, and evolution of the 
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battery during charging and discharging with the help of an optical microscope, 

scanning electron microscopy (SEM), or Transmission Electron Microscopy (TEM), 

etc. 

2.3.2 Disassembly physical and chemical analysis method 

The disassembled physical-chemical analysis method disassembles the aged 

battery sample under a specific environment to obtain the battery's internal components 

and obtain the battery's aging characteristics by utilizing material analysis or 

reassembling the buckling. This analysis method mainly includes SEM, energy-

dispersive X-ray spectroscopy (EDS), etc. It is used to investigate the changes of 

elements or structures in the active material, diaphragm, and other battery components 

before and after aging or reassemble the positive and negative electrode layers into a 

buckle half-cell to investigate the aging mechanism of the battery. 

2.3.3 External characteristics analysis method 

The external characteristics analysis method extracts the aging characteristics of 

the battery by comparing the changes of exterior features, such as charge/discharge 

curves and impedance spectra, before and after aging and doing appropriate processing 

on these external characteristics. This analysis method mainly includes incremental 

capacity analysis (ICA), differential voltage (DVA), discharge curve fitting, and 

electrochemical impedance spectrum methods. The existing methods to analyze the 

aging mechanism of batteries can be divided into three categories: the external 

characterization method, the disassembly analysis method, and the in-situ online 

analysis method. The above three battery aging analysis methods and their 

corresponding advantages and disadvantages are shown in Table 2.2 [29]. 
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Table 2.2. Comparison of advantages and disadvantages of three types of battery aging mechanism 

analysis methods. 

Analysis Method Main Methods Advantages Disadvantages 

In-situ 

testing 

techniques 

In-situ XRD, 

neutron line 

techniques, 

model cells 

Non-destructive, real-time 

observation, clear and intuitive 

for study subjects 

Precise and expensive experimental 

equipment, scarce experimental time, difficult 

equipment construction and sample 

preparation 

Disintegration 

materialization 

Deductive 

power, SEM. 

TEM, EDS 

Direct observation of internal 

changes in the battery and 

verification of the cause of aging 

Damage to the object of study, the ability to 

investigate only a specific state of aging, the 

need for a reference sample 

External 

Characteristics 

ICA、DVA、 

EIS、R-Q 

Non-destructive to the object of 

study, and can investigate the 

evolution of the aging process 

Based on hypothetical speculation, a certain 

combination of disintegration materialization 

analysis is required 

Among the above three battery aging analysis methods, the in situ observation 

technique requires high experimental equipment and sample requirements. It is difficult 

to guarantee the testing time, so it is less applied in battery aging analysis. Although the 

disintegration physical analysis method can directly observe the internal changes of the 

battery and verify the cause of aging, it will cause damage to the research object and is 

often used in the laboratory environment. The external characterization method has a 

wide range of application scenarios because it can achieve damage-free analysis of the 

battery. Therefore, researchers in different fields can use appropriate schemes to 

analyze the battery aging mechanism according to the actual needs. 

2.4 Battery health indicators 

Health indicators (HIs) extracted and selected are essential data pre-processing 

steps for data-driven estimation and significantly impact estimation performance. This 

chapter divides the battery HIs into performing direct measurements and indirect 

calculations [32]. 
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2.4.1 Measurement-based HIs 

The variables that BMS can measure include current, voltage, temperature, and 

time. Therefore, a simple method is to extract the HIs from these measured variables, 

which researchers have widely studied. The measured variable-based HIs can be 

divided into four categories: voltage curve-based, time-based, temperature-based, and 

others. Existing HI extraction methods are based on measured variables, as shown in 

Table 2.3. 

Table 2.3. Existing HIs extraction methods are based on measured variables. 

 

2.4.2 Computation-based HIs 

The health information reflected by measured variables is limited. The calculated 

variables are used to extract HIs that reflect more details about the SOH. This method 
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transforms the measured variables, and then the HIs are extracted from the transformed 

curves. The mainstream transformations include incremental capacity (IC) analysis, 

differential voltage (DV) analysis, and differential temperature (DT) analysis [33, 34]. 

Existing HIs extraction methods are based on calculated variables, as shown in Table 

2.4.   

Table 2.4. Existing HIs extraction methods are based on calculated variables. 

 

2.5 Battery aging experiment 

The analysis of the whole life cycle external characteristics of the power battery 

and the study of the aging model is inseparable from the support of the battery life cycle 

data. Accurate and systematic aging experimental data simulating the realistic 

environment is essential in the battery lifetime evaluation system. Therefore, the design 
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of a reliable battery cycle aging test and calendar aging test, and highly accurate 

equipment to establish the whole life cycle database are the prerequisites for battery 

aging model research. As shown in Figure 2.5, the experimental platform is set up for 

the battery aging test. It includes a battery tester, a data logger, a thermal chamber, an 

electrochemical workstation, a computer, and some batteries. The platform is used to 

verify the effects of different temperatures, mean SOC, DOD, charge-discharge rate, 

storage SOC, and storage time on battery aging. 

 

Figure 2.5. The platform for the battery aging experiment.  

2.5.1 Lithium-ion battery cycle lifetime experimental research 

(1) Test purpose 

In this test, to investigate the factors influencing the cyclic aging rate of NCM622 

lithium battery, a test platform for a single-cell battery test is built, and a cyclic aging 

test scheme considering different temperatures, mean SOC in cyclic intervals, DOD 

and charging rate is designed. This test platform provides the basis for studying the 

battery cyclic aging model. 

(2) Experimental steps 

The cyclic aging test is mainly considered in four dimensions: temperature, 

charging rate, DOD, and mean SOC of the cyclic interval. The cyclic aging test scheme 
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is shown in Table 2.5, with a discharge rate of 1C and no resting between charging and 

discharging. 

Table 2.5. A cyclic aging test program. 

NO. 
Test conditions Test termination 

conditions 
sample 

size SOC interval /% Charge rate/C temperature/℃ 

1 0~30 

1 

25 

the capacity 
decay reaches 

20% 

2 

2 45~55 2 

3 70~100 2 

4 35~65 2 

5 10~90 2 

6 0~100 2 

7 10~90 1.2 2 

8 10~90 1.5 2 

9 0~30 

1 45 

2 

10 45~55 2 

11 70~100 2 

12 35~65 2 

13 10~90 2 

14 0~100 2 

Note: C=50Ah, upper/lower limit voltage: 4.2V/2.75V, the battery has a cycle life of 1500 at 
1C 100% DOD at 25°C. 

A cycle aging test is conducted monthly to retest the battery characteristics data. 

(a) Actual battery capacity: discharge with C/3 constant current until the lower cut-

off voltage reaches 2.75V, take C/3 constant current charge to 4.2V, charge with 

constant voltage until the current is less than C/20, then discharge with C/3 constant 

current until the lower cut-off voltage is 2.75V, repeat two times. 

(b) Low current discharge curve: charge with C/3 current to the cut-off voltage, 

leave it for 1h, and discharge with C/20 current to 2.75V. 

(c) Hybrid Pulse Power Characterization (HPPC) test for all cells at different SOC 

levels at 25℃  ambient temperature: The cells were fully charged and gradually 
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discharged to 80%, 60%, 50%, 40%, 20% SOC state for HPPC test and 80%, 50%, 20% 

SOC state for EIS test. Before the test is set aside for 2h, the frequency range of EIS is 

selected as 100 mHz~5kHz, constant potential mode, and the amplitude is 2mV. HPPC 

test is discharged with 2C current for 18s, set aside for 40s, then charged with 1C for 

10s. then set aside for 40s. then charged with 2C current for 18s, set aside for 40s, 

discharged with 1C current for 10s, and finally set aside for 40s. 

(3) Calculation of experimental results and analytical discussion 
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Figure 2.6. Aging curves for different cycle intervals and temperatures. 

(a) 25℃ under different DOD; (b) 45℃ under different DOD. 

As shown in Figure 2.6, at different temperatures, full charge and discharge for the 

0% to 100% SOC interval intensifies the battery aging process, reaching the 80% life 

cutoff at approximately 650 cycles. 0% to 30% SOC interval cycles have the slowest 

aging rate, indicating that the smaller the mean SOC of the cycle interval, the slower 

the battery decline. 
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Figure 2.7. Aging curves for same mean SOC and different temperatures. 

(a) 25℃ under same mean SOC; (b) 45℃ under same mean SOC. 

 As shown in Figure 2.7, the larger the DOD, the faster the battery aging rate under 

the same temperature conditions, mean SOC of the cycling interval, and charging rate. 

Comparing the 0%~100% SOC and 10%~90% SOC cycling intervals, full charge and 

discharge will significantly accelerate the aging process, and cycling between 10%~90% 

SOC will slow the battery aging. 
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Figure 2.8. Aging curves for different temperatures at 30% DOD.  

As shown in Figure 2.8, the slowest cyclic aging rate was observed between 0% 

to 30% SOC at 30% DOD and 25°C. At 30% DOD and 45°C, the cyclic aging rate is 

the fastest between 70%~100% SOC, indicating that the smaller the mean SOC of the 

cyclic interval, the slower the battery decay. Meanwhile, the decay rate will be 

accelerated with the increase in temperature. 
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Figure 2.9. Aging curves for different charging rates at 25°C. 

Figure 2.9 shows that the aging rate is the fastest at 1.5C charging rate, while the 

battery aging rate is the slowest at 1.2C charging rate, indicating that this type of battery 

is suitable for charging between 1C and 1.5C charging rate. 
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Figure 2.10. Aging curves for same mean SOC at different temperatures. 

As seen in Figure 2.10, the aging rate is exacerbated by full charge and discharge 

at different temperatures. The battery decay rate is faster at 0% to 100% SOC at 25°C 

than at 10% to 90% SOC at 45°C, indicating that large interval cycling has a more 

significant effect on the battery aging rate than temperature. 

2.5.2 Lithium-ion battery calendar lifetime experimental research 

(1) Test purpose 



 60 

A lithium battery test platform was built for this test to explore the factors that 

affect the calendar aging rate of NCM622 lithium batteries, and a calendar aging test 

scheme was designed considering different storage temperatures, storage SOCs, and 

storage times. The test platform establishes the calendar aging data of the NCM622 

lithium battery for one year, which provides a basis for studying the calendar aging 

model.  

(2) Test steps 

The calendar aging test mainly considers temperature, storage SOC, and storage 

time. After the battery is discharged at C/3 to the cut-off voltage, it is charged at C/3 to 

the corresponding SOC. The calendar aging test is shown in Table 2.6. 

Table 2.6. Storage aging test protocol. 

NO. SOC status/% temperature/℃ Test termination conditions sample size 
1 100 

25 

Storage for 12 months 

2 
2 95 2 
3 90 2 
4 70 2 
5 50 2 
6 20 2 
7 100 

45 

2 
8 95 2 
9 90 2 
10 70 2 
11 50 2 
12 20 2 

Note C=50Ah, upper/lower voltage limit: 4.2V /2.75V. 

The battery characteristic data is re-tested once a month in the calendar aging test.  

(a) Actual battery capacity: discharge at C/3 constant current until the lower cut-

off voltage is 2.75V. Take C/3 constant current charge to 4.2V and constant voltage 

charge until the current is less than C/20. Then C/3 constant current is discharged  until 

the lower cut-off voltage of 2.75V. Repeat the above operation two times. 

(b) Small current discharge curve: charge with C/3 current to cut-off voltage, let 
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stand for 1h, and discharge with C/20 current to 2.75V. 

(c) Perform HPPC tests on all cells at different SOC levels at an ambient 

temperature of 25°C: gradually discharge the batteries to 80%, 60%, 50%, 40%, and 

20% SOC after fully charged, and perform HPPC tests at SOC. EIS test is performed 

under 80%, 50%, and 20% SOC states. Before the test, it was put on hold for 2h, the 

frequency range of EIS was selected as 100 mHz~5kHz, the potentiostatic mode was 

selected, and the amplitude was 2mV. During the HPPC test, first discharge with 2C 

current for 18s, put it on hold for 40s, then charge it with 1C for 10s, and then put it on 

hold for 40s. Charge with 2C for 18s, put on hold for 40s, then discharge with 1C for 

10s, and finally put on hold for 40s. 

(3) Calculation and analysis of experimental results 

As can be seen from Figure 2.11, at different temperatures, the aging rate of the 

battery stored at 20% SOC is the slowest, followed by storage at 50% SOC, and storage 

at greater than 50% SOC will accelerate battery degradation, but the difference is not It 

is not obvious, so such batteries are suitable for storage under low SOC conditions. 
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Figure 2.11. Battery aging curves are stored at different SOC and temperature. 

 (a) 25℃ under different SOC intervals; (b) 45℃ under different SOC intervals. 

As shown in Figure 2.12, the aging rate of the battery stored at 45°C is significantly 

greater than that stored at 25°C. This phenomenon is more apparent  when stored at 
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high SOC, indicating that such batteries are suitable for storage at room temperature. 
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Figure 2.12. Battery aging curves at different temperatures. 

(a) aging curves under high SOC; (b) aging curves under normal SOC. 

2.6 Chapter summary 

This section mainly analyzes and verifies the aging mechanism of lithium-ion 

batteries. Firstly, the working principle of the Lithium-ion battery is introduced, and the 

characteristics of four common Lithium-ion batteries are analyzed and compared. 

Secondly, the internal and external factors affecting the aging of Lithium-ion batteries 

are analyzed in detail and the battery aging mechanism analysis method is introduced, 

while the health indicators characterizing the battery aging are investigated and studied. 

Finally, lithium-ion battery cycle aging experiment is designed to verify the effects of 

temperature, mean SOC of cycle interval, DOD, and charge rate on battery aging, in 

which temperature, mean SOC of cycle interval, and charge/discharge rate show a 

positive correlation with battery aging cycle. Meanwhile, a lithium-ion battery calendar 

aging experiment was designed to verify the effects of temperature, storage SOC, and 

storage time on battery calendar aging, and the results showed that temperature, storage 

SOC, and storage time were positively correlated with battery calendar aging. 
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Chapter 3. State of Health Estimation based on modified 

Gaussian Process Regression for Lithium-ion Batteries 

3.1 Introduction of this chapter 

Lithium-ion batteries (LIBs) have been commercially produced by Sony for the 

first time for 31 years, which have been widely used in consumer electronics, electric 

vehicles, and micro-rids due to their low and falling costs, low self-discharge, high 

energy densities, and long lifetimes [1-3]. The battery management system (BMS) plays 

an irreplaceable role in ensuring the safety and durability of LIBs, especially for electric 

vehicles [4]. However, with the increase of cyclic charging and discharging operations 

or storage time, battery performance gradually declines, resulting in a decrease in 

battery capacity and an increase in internal resistance. Battery state of health (SOH) has 

been used to evaluate the aging status of the battery in actual operation. The current 

energy storage capacity of the battery or the power supply capacity compared with a 

fresh battery can be used to quantify SOH [5]. SOH plays a key role in ensuring the 

timely maintenance of the battery system and preventing safety accidents [6]. Ideally, 

the SOH of the battery when it leaves the factory can be considered 100%, and it 

decreases with the increase of the number of cycles and reaches zero at the end of life 

(EOL) of the battery. Therefore, accurate SOH can help us correctly judge the aging 

degree of the battery and provide guidance for the rational use of the battery [7]. In the 

present research, the definition of SOH is generally divided into two types: internal 

resistance definition method and capacity definition method. Wherein the second 

definition is more widely used, usually defined as the ratio of the current maximum 

capacity to the rated capacity of the battery [8]. According to the definition of battery 

SOH, considering that the actual capacity of the battery is less than 70% of the rated 

capacity, many of its performance deteriorations have increased. Therefore, 70% ~ 80% 
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battery SOH is regarded as EOL[9, 10]. As far as we know, LIBs are non-linear 

electrochemical systems, and their internal electrochemical reactions are coupled with 

each other, and they are affected by the mechanical-electrical-thermal coupling, which 

makes it difficult to accurately describe their aging process, which makes SOH 

estimation a huge challenge. 

To cope with the above-mentioned problems, in recent years, researchers have 

proposed a variety of battery SOH estimation methods. Especially with the large-scale 

increase in the number of electric vehicles, research on battery SOH estimation and 

remaining useful life (RUL) prediction has received unprecedented attention [11]. The 

battery SOH estimation approaches can be roughly divided into three categories 

according to the principle and structure, specifically: empirical approaches, model-

based approaches, and data-driven approaches [12, 13]. Empirical approaches is mainly 

through calendar test or cycle test, and the data obtained is used to describe the simple 

characteristics of battery aging, and its accuracy and reliability are not high enough [9]. 

However, their accuracy is limited because the battery degradation is generally affected 

by some unknown stressing factors. In addition to empirical methods, model-based 

approaches mainly use differential equations or differential equations to simplify 

battery electrochemical systems to quantify battery health over the entire battery life, 

such as equivalent circuit models (ECMs) [14-16], and electrochemical models (EMs) [17, 

18]. Generally, EMs with partial differential equations (PDE) has a relatively large 

computational cost, and it is difficult to apply to vehicle embedded systems for long-

term prediction [19]. Compared with the previous two methods, the data-driven method 

has attracted widespread attention in recent years due to its flexibility and model-free 

characteristics [20].  

Recently, machine learning as an important data-driven method has been rapidly 

developed and widely used. Artificial neural network (ANN) [21], support vector 
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machine (SVM) [22], Gaussian process regression (GPR) [23] are important components 

of machine learning. Since GPR is a probability model that can quantify the level of 

uncertainty through confidence intervals, it has obvious advantages compared with the 

other two non-probabilistic models of machine learning. In addition, because GPR is 

constructed based on Bayesian theory, the prediction results can be clearly explained in 

a probabilistic way [24]. Furthermore, the structure of the GPR is especially simple, as 

its performance is mainly decided by a mean function and a covariance function [19]. In 

most of the current literature, the mean function in the estimation methods based on 

GPR mainly includes zero mean [25, 26], constant mean [27], linear mean, and quadratic 

polynomial (QP) mean [28, 29]. The covariance function (also called kernel function) of 

GPR is generally single, such as squared exponential (SE) kernel [26, 28, 30-32], Periodic 

(Per) kernel [28, 31], and Matern kernel [31-33]. Among them, the zero mean function 

combined SE kernel function is widely used to realize SOH estimation [9]. Due to the 

irreversible nature of the aging of the battery during operation, the battery exhibits the 

aging characteristics of continuous capacity degradation and small-scale capacity 

regeneration during the full life cycle. A single kernel function based on the GPR model 

is hard to meet the accuracy requirement of SOH estimation for batteries with different 

aging trends because of its limited ability to capture the battery aging process. To solve 

this problem, the double squared exponential (DSE) function [28] and the period function 

combined with the standard SE function [30] are proposed to achieve high prediction 

performance. More attention needs to be paid to composite kernel function to further 

improve the estimation accuracy.  

Although the GPR has been successfully used to estimate battery SOH with 

acceptable accuracy, it is also valuable to research the method to further improve its 

accuracy. In this chapter, a method for estimating the SOH of lithium-ion batteries based 

on modified GPR combined with charging and discharging features is proposed. First, 
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the changes in battery voltage and temperature curves among different aging cycles are 

analyzed in detail, and HIs that can effectively represent the health status of the battery 

is proposed. Then, the Pearson correlation analysis method is used to quantify the 

correlation between HIs and SOH, and three HIs with strong correlation are adopted in 

this article. Next, a novel compound kernel function is proposed for battery SOH 

estimation, and different pairs of mean function and kernel function chosen from four 

mean functions and sixteen kernel functions are used to construct GPR models, and 

their estimation accuracy is compared subsequently. Finally, four different batteries 

with various initial health conditions from the NASA battery dataset are used to verify 

the performance of the proposed method. Three indicators, MAE, RMSE, and 95% 

confidence interval (CI), are used to evaluate the calculation results of each pair of 

different mean and kernel functions. The proposed SOH estimation method mainly 

includes three parts: Data Acquisition, Estimation Algorithm, and Error Analysis. The 

specific flowchart is shown in Figure 3.1. 

 

Figure 3.1. The framework of the GPR-based model for battery SOH estimation. 

The main contributions of this chapter include the following three points: 

(1) Three health indicators (HIs) closely related to battery SOH are extracted from 

the charging and discharging curves. The time corresponds to the three HIs of the same 
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charging voltage interval, the same charging voltage interval, and the same discharging 

temperature interval, respectively. 

(2) A novel composite kernel function with automatic relevance detection is 

proposed for the GPR model to improve the accuracy of battery health estimation. This 

model can effectively capture the two different phenomena presented by battery 

capacity decay. 

(3) For the first time, a comparative study of the four mean functions and sixteen 

kernel functions based on the GPR model is carried out. The best pair of mean function 

and kernel function is determined for battery SOH estimation. 

The remainder of this chapter is as follows. The aging process and experimental 

data are analyzed in Section 3.2. Section 3.3, HIs related to SOH are selected by the 

Pearson correlation analysis method. Section 3.4 describes the basic principles of GPR 

and proposes a new compound kernel function for accurate SOH estimation. The 

experimental results, verification, and discussion are in Section 3.5. The conclusion is 

arranged at the end of this article. 

3.2 Battery dataset  

The battery dataset of NASA Ames Prognostics Center of Excellence has been 

widely concerned and applied worldwide due to its good data integrity and early 

publication time. This chapter uses the battery data numbered NO.5, NO.6, NO.7, and 

NO.18 from this public dataset [34]. The rated capacity and voltage of batteries are all 

2Ah and 3.7V, respectively. In the cyclic aging stage, each battery undergoes three 

different test conditions, including charging, discharging, and impedance measurement 

at room temperature (24 °C), as shown in Figure 3.2(a). First, charge all batteries with 

a current of 1.5A until the voltage reaches 4.2V, and then switch to the constant voltage 
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(CV) charging mode and keep the voltage constant until the charging current drops to 

20mA. The above process can make the batteries fully charged and is usually called the 

constant current and constant voltage (CC-CV) charging process. During the constant 

current (CC) discharging process, batteries are discharged with 2A CC until the voltage 

of the four batteries drop to the discharge cut-off voltages of 2.7V, 2.5V, 2.2V, and 2.5V, 

respectively. Electrochemical impedance spectroscopy (EIS) is conducted in each aging 

cycle with a frequency range of 0.1Hz and 5kHz. With the repeated cycling of the 

battery, the battery will gradually decline until the available capacity reaches 70% of 

the rated capacity and end the experiment. The detailed description of the experiment 

is shown in Table 3.1. 

Table 3.1. Detailed description of experiments for four batteries. 

Battery 

ID 

Rated 

Capacity 

(Ah) 

Rated 

Voltage 

(V) 

Voltage 

upper/lower 

limit(V) 

Charge /Discharge 

current 

magnitude(A) 

Tempera

ture(℃) 

NO.5 2 3.7 4.2/2.7 1.5/2 24 

NO.6 2 3.7 4.2/2.5 1.5/2 24 

NO.7 2 3.7 4.2/2.2 1.5/2 24 

NO.18 2 3.7 4.2/2.5 1.5/2 24 

Figure 3.2(a) presents the corresponding changes in voltage, current, and 

temperature under each cycle test. It notes that the temperature reaches its maximum at 

the end of discharge. While the capacity degradation is shown in Figure 3.2(b), in which 

a long-term downward trend with the increase of cycle number is evident, some local 

capacity regeneration is observed during the aging process. The degradation trends of 

the four batteries are relatively similar. Still, the degradation speeds show apparent 

difference and the corresponding cycles when the four batteries reach 70% of the rated 

capacity are also different. 
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Figure 3.2. Battery aging cycle principle and capacity degradation characteristics. 

(a) aging cycle test for voltage, current, and temperature; (b) aging curves of different batteries. 

3.3 Features extraction and selection 

Based on machine learning algorithms, extracting data related to labels as output is 

necessary to establish a supervised data-driven model. The data quality directly affects 

the training effect and estimation accuracy of machine learning, so the extraction and 

selection of features are vital. 

3.3.1 Features extraction  

During the normal operation of the battery, battery parameters such as current, 

voltage, temperature, and time can be directly measured by BMS. Only a tiny amount 

of data can be used to analyze the battery aging process, even though the large amount 

of data collected by BMS and screening high-value data from massive data has become 

a vital issue that needs to be solved. As one of the effective methods to solve the above 

problems, extracting features from considerable data has been widely used in data-

driven methods. Data preprocessing is a critical step of features for GPR estimation and 

determines the reliability of the estimation method to a certain extent. Features 

dramatically reduces data redundancy and plays an essential role in improving the 
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efficiency of raw data [6]. Researchers have conducted a lot of in-depth research on 

different methods of extracting features from experimental battery measurement or 

historical data, such as voltage, time, temperature [23]. 

As the number of battery cycles increases, the electrolyte inside the battery is 

consumed, and the electrode activity decreases, resulting in an increase in resistance 

and a decrease in capacity [35]. The voltage and temperature curves of NO.5 battery 

under different charge and discharge cyclic conditions are shown in Figure 3.3. The 

experimental results show that these different cycle curves can reflect the aging process 

of the battery from multiple angles. These charging-discharging curves shift to the left 

with the cycle gradually increasing. In the CC-CV charging and CC discharging modes, 

three features are extracted as features to represent the change process of battery health 

and performance, named HI1, HI2, and HI3.  

HI1: The time corresponds to the same charge voltage interval. Due to the 

irreversibility of the electrochemical reaction inside the battery, the battery capacity 

continuously reduces as its repeated use. With the gradual decrease of the active 

electrolyte, the electrode activity continues to weaken, and the available capacity of the 

battery and the charging capacity during the same voltage range gradually decrease, 

especially between 3.8V and 4.1V. Considering the positive correlation between the 

above two parameters, HI1 can be used as a feature factor to characterize the battery 

aging process. 

HI2: The time corresponds to the same discharge voltage interval. As the internal 

resistance of the battery becomes larger and larger during the aging process, the aging 

is further aggravated, resulting in the gradual shortening of the time from 3.8V to 2.8V, 

and the shorter discharge time. Therefore, the time corresponding to the discharge 

voltage of the CC operating mode can be used as an important indicator to quantify 



 75 

battery health. 

HI3: The time corresponds to the same discharge temperature change. Due to the 

positive correlation between the discharge temperature and the internal resistance, the 

internal resistance of the battery gradually increases as the number of cycles increases. 

Therefore, when the same energy is released, the time required for the battery to rise by 

9°C from the lowest temperature is gradually shortened, so HI3 can be used to 

characterize the change process of the battery's entire life.  

 

Figure 3.3. Charging and discharging properties of NO.5 battery under different cycles. 

(a) voltage aging curve (charging); (b) voltage aging curve (discharging); (c) temperature aging 

curve (discharging). 

3.3.2 Features selection 

Features selection is an important preprocessing process in the early stage of battery 

SOH estimation based on the GPR model. The purpose of HI selection is to give priority 

to the features closely related to battery health and ignore the less important ones. That 

is, removing unimportant and redundant features not only helps to reduce the 

calculation cost but also helps to obtain more accurate and reliable results [36]. In the 

process of studying battery aging, the characteristics of battery aging from different 

perspectives are proposed, such as based on voltage, current, and temperature [6]. 

Therefore, it is very important to ensure that HIs that have a strong correlation with the 

battery SOH are used as the training data set of the compound kernel function based on 
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the GPR model. To quantify the correlation between the selected HI and SOH, it is 

necessary to adopt a method that can effectively measure the correlation between HI 

and SOH. The high-value features not only retain valuable data and eliminate a large 

amount of irrelevant data, reduce the calculation cost, but also improve the reliability 

and efficiency of battery SOH estimation [37]. Since the HIs extracted in this paper are 

characterized by a normal distribution with a good linear relationship with the labels, 

Pearson correlation analysis (PCA) was used to analyze the correlation between HI and 

SOH, and the PCA expression is shown in Equation (3.1) [38]: 

 
  

   1 1

y
1

2 2



 

 


 



 

n
i ii

x n n
i ii i

x x y y
r

x x y y
 (3.1) 

Where the value of rxy ranges from -1 to 1. The closer the absolute value of the 

correlation coefficient is to 1, the better the relevant feature value of the label. 

Accordingly, the absolute value of the correlation coefficient is closer to 0, indicating a 

poorer correlation. In this chapter, three HIs are selected as comparison sequences, and 

SOH is used as the reference sequence. Through the PCA algorithm, we can get the 

correlation between the characteristics of the battery and the SOH, as shown in Table 

3.2, which shows that there is a strong correlation between SOH and HIs. Therefore, 

they are used as the input data of the GPR model to complete the battery SOH 

estimation. 
Table 3.2. Pearson correlation coefficient between HIs and SOH. 

Battery ID HI1     HI2        HI3 

NO.5  0.9947 0.9958  0.9918 

NO.6  0.9875 0.9958 0.9838 

NO.7 0.9878 0.9871 0.9774 

NO.18 0.9745 0.9954 0.9898 
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3.4 Methodology 

The GPR model is based on Bayesian framework and has the advantages of 

flexibility, probability, and non-parameter, which leads to a lot of research on battery 

SOH estimation. The basic principles of the GPR model are described first in Section 

3.4.1. Then the mean function and kernel function that plays a key role in Gaussian 

Process (GP) are analyzed in Section 3.4.2. According to the corresponding analysis 

results, a novel composite kernel function is proposed in Section 3.4.3. 

3.4.1 Basic principles of GPR model 

The GPR model is a probabilistic modeling framework that applying Bayesian 

inference by combining machine learning and statistics [27]. GP can be expressed as 

( )~ ( ( ), ( , '))ff x GP m x k x x . Its properties are completely determined by m(x) and kf (x,x') as 

shown in Equation (3.2). 
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where m(x) is the mean function and kf (x,x') is the covariance function. The zero mean 

function and the squared exponent (SE) covariance function (also known as the RBF 

kernel) have become the most commonly used combination of the GPR model [31]. As 

for practical application, the observed value y can be expressed by function f(x) with 

Gaussian noise as shown in Equation (3.3).  

 ( )y f x     (3.3) 

where  is the white noise that obeys the Gaussian distribution, which plays a key role 

in the prior distribution of GP. The specific Equation , as shown in Equation  (3.4) - 

(3.5). 
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There is a positive correlation between the distances of the corresponding xi and xj, 

σ 2 
f and l represent signal variance and length scale, respectively. The maximum 

likelihood method is one of the most effective methods to learn the hyper-parameter set

[ , , ]f nl   through the training data set. The corresponding negative logarithmic 

marginal likelihood (NLML) expression is as Equation (3.6) follows:  

 2 1 21 1 2( | , ) [ ( , ) ] ( ( ( , ) ))
2 2 2

T
f n n f n n

nlogL logp y X y K X X I y log det K X X I


          (3.6) 

The conjugate gradient method is widely used to find the optimal solution. The basic 

principle is to obtain the maximum values of objective function by deriving the log-

likelihood function, as shown in Equation (3.7).  
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  (3.7) 

in which 2 1( ( , ) )f n nK X X I y   . The variables of the new training set X* all obey the 

Gaussian distribution. The prediction of the test sample is achieved through the 

conditional probability distribution function  * *| , ,p y X y X  .Therefore, the joint prior 

distribution of the observed value y and the predicted value y* are expressed as Equation 

(3.8). 
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The GP prediction equation is expressed by Equation (3.9). 
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Wherey* and σ2(y*) are given as Equation (3.10) [39].  
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Wherey* and σ2(y*) are the predicted mean and covariance, respectively. In addition, 

to evaluate the predictive performance of the GPR model, this paper uses three key 

indicators, including 95% confidence interval (CI), Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE). The 95% CI of the GPR model based on the 



 79 

compound kernel function represents the uncertainty of the estimation results as shown 

in Equation (3.11). MAE and RMSE shown in Equation (3.12) are used to describe the 

deviation between the predicted value and the actual test value.  

 * *95% 1.96 ( )i iCI y y   (3.11) 
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Here, yi and y* 
i represent actual and estimated values, respectively. 

3.4.2 Mean function 

The properties of the GPR model are completely determined by the mean function 

and the covariance function. The mean function has a significant impact on the data far 

away from the field of prediction, so a proper choice of the mean function is very 

important [39]. Since different mean functions have a greater impact on the long-term 

prediction (training input and test input are farther), the commonly used mean functions 

include: zero mean function [27], constant mean function [40], linear mean function [28, 29], 

and QP mean function [29] . The long-term prediction will eventually return to the above-

mentioned mean function. The expressions of the four mean functions as listed in Table 

3.3. This chapter combines the above four mean functions with different kernel 

functions to construct GPR models. 

Table 3.3. Expressions of four different mean functions [41].  

NO. Mean Function Expression 

1 Zero[29] 0 

2 Constant[40] C 

3 Linear[28, 29] AX B  

4 Quadratic Polynomial [28] 2AX BX C   
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3.4.3 Covariance function 

Covariance function is another important component that affects the accuracy of 

battery SOH estimation. Figure 3.2(b) shows that the battery capacity has experienced 

a long-term downward trend, while there are occasional, obvious discontinuities and 

rising steps. However, a GPR model based on a single SE kernel function commonly 

used to describe the battery aging trend is not enough to capture different trends well. 

The entire degradation trend and local regeneration phenomenon of LIBs should be 

considered to achieve accurate estimation. For the above battery aging process, a 

compound covariance function can be built by combining different single kernel 

functions to describe the complex problem [27, 31]. 

In this paper, the local regeneration phenomenon in the entire aging process is 

approximated by the linear covariance function with isotropic distance metric (LINiso), 

while the long-term capacity decay is described by the squared exponent (SE) 

covariance function with automatic relevance determination (SEard). Therefore, a 

compound covariance function with better battery aging capturing ability can be 

constructed by combining the LINiso covariance function and the SEard covariance 

function, and can be expressed in Equation (13).   

 2 2 2
iso _

1( , ') ( '( ) ( ))
2

' ' T T
LIN SEard fk x x x l x exp x x x x        (3.13) 

Where  ( )diag l   is a diagonal matrix corresponding to the dimension of the input 

space, and σ2 
f is the signal variance. The length scale l is also called the ARD parameter, 

which is used to determine the change rate of the function in the relevant input space. 

In addition to the proposed compound kernel function, other compound kernel 

functions can also be formed by combining different single ones. Finally, a total of 

sixteen different kernel functions including single and compound kernel functions are 
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introduced, and their formulas are listed in Table 3.4. The performance of the above 

kernel functions on battery SOH estimation will be compared in next section.  

Table 3.4. Formulas of sixteen different kernel functions [41]. 

NO. Kernel Function Formula 

1 linear covariance function 

(LIN) 

( , ') 'T
LINk x x x Ix  

2 linear covariance function 

with ARD (LINard) 

2'  ( , )      ( )'T
LINardk x x x x diag     

3 linear covariance function 

with isotropic distance 

measure (LINiso) 

 
2( , '') T

LINisok x x x l x  

4 diagonal squared exponential 

(SEiso) 

2 2( , ) ( (( ) ( )) / (2 ))' ' 'T
SEiso fk x x exp x x x x l     

5 ARD squared exponential 

(SEard) 

2 1 2( , ') ( 2  (' ))'( )T
SEard fk x x exp x x x x       

6 Maternard_5/2 [27] 52

52

2

52 52

2
52

( , ') (1 ( 5( )) /

5( ) / (3 )) ( ( 5( )) / )

'

' '
M

M

M M

M

k x x exp x x

x x exp x x









 



 

 

 

7 SEiso + SEiso _ _1 _ 2' '( , ) ( , ) ( , )'SEiso SEiso SEiso SEisok x x k x x k x x   

8 SEard + SEard _ _1 _ 2' '( , ) ( , ) ( , )'SEard SEard SEard SEardk x x k x x k x x   

9 SEiso + SEard _ ( , ) ( , ) ( , )' ' 'SEiso SEard SEiso SEardk x x k x x k x x   

10 SEiso + Periodic [25] 
2

_

2 2

( , ) ( , ) ( , )

( , ) ( (2 ( ( ) / 2 )))

' ' '

' '
SEiso per SEiso per

per Per Per

k x x k x x k x x

k x x exp l sin x x  


 

  
 

11 SEard + Periodic _ ( , ) ( )' , )' ( ',SEard per SEard perk x x k x x k x x   

12 LIN + SEiso _ ( , ) ( ,' ) ( ,' ')LIN SEiso LIN SEisok x x k x x k x x   

13 LINiso + SEiso _ ( , ) ( , ) ( , )' ' 'LINiso SEiso LINiso SEisok x x k x x k x x   

14 LINiso + SEard _ ( , ) ( , ) ( , )' ' 'LINiso SEard LINiso SEardk x x k x x k x x   

15 LINard + SEiso _ ( , ) ( , ) ( , )' ' 'LINard SEiso LINard SEisok x x k x x k x x   

16 LINard + SEard _ ( , ) ( , ) ( , )' ' 'LINard SEard LINard SEardk x x k x x k x x   

3.5 Results and discussion 

The proposed GPR model based on a novel composite kernel function is analyzed 

and verified for battery SOH estimation in this section. The effect of different mean and 

kernel functions on estimation results is compared in section 3.5.1. Four batteries are 

used to analyze the generalization and effectiveness of the GPR models in section 3.5.2. 
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In sections 3.5.3 and 3.5.4, the robustness of the proposed method is verified for 

batteries with various initial health. 

3.5.1 Estimation results for different models 

In order to verify the estimation accuracy of the four different mean functions and 

the new composite kernel function (LINiso-SEard), taking battery NO.5 as an example, 

its battery health estimation results and the corresponding results of relative errors are 

shown in Figure 3.4. The first 52 cycles of NO.5 battery data are used as the training 

set, and the remaining data are used as the test set. Among them, Figure 3.4 (a), (c), (g), 

(e) is the estimation results of the new composite kernel function based on four different 

mean functions. The black dots represent the actual cycle corresponding to the SOH, 

the dark blue solid line represents the estimated SOH value, and the light blue area is 

the 95% confidence interval. Accuracy is better than the QP mean function but worse 

than the zero mean function. Figure 3.4(b), (d), (f), (h) represent the relative errors 

corresponding to the four mean functions. With the continuous increase of the cycle, 

the relative errors have two characteristics. The relative errors were less than 1% in the 

first 52 cycles and gradually increased in the subsequent cycles. The maximum relative 

error corresponding to the first three mean functions is less than 6%, and the fourth 

mean value is as high as 20%. In contrast, the relative error corresponding to the first 

mean function is less than 2% in the first 100 cycles, which is better than the other three 

mean functions. Therefore, the GPR model constructed with zero mean and the new 

composite kernel function (LINiso-SEard) has satisfactory estimation accuracy. 
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Figure 3.4. Battery SOH estimation results based on different mean functions. 

(a) and (b) results of zero mean; (c) and (d) results of constant mean; (e) and (f) results of linear 

mean; (g) and (h) results of QP mean. 

To verify the generalization ability of the proposed method, four batteries (NO.5, 

NO.6, NO.7, and NO.18) are used to verify and compare the MAE and RMSE based 

on the four mean functions. The results as shown in Table 3.5. The MAE and RMSE 

corresponding to the QP mean function is much larger than those of the other three. The 
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MAE and RMSE value corresponding to the NO.6 battery is the largest, 15.69% and 

20.71%, respectively. The results show that the GPR estimation model constructed by 

the QP mean function and the LINiso-SEard kernel function cannot simultaneously 

capture the global decay trend and the local capacity regeneration phenomenon 

characterized by battery capacity decay. The MAE and RMSE corresponding to the 

zero-mean function are better than those of the other three. Even though the RMSE of 

the NO.6 battery corresponding to the constant-mean function is slightly larger than the 

zero-mean function. The corresponding errors of the constant mean function and the 

linear mean function are between that of zero and QP mean functions, and their MAE 

and RMSE are very close. For different GPR models, the zero mean function is the 

most widely used for battery health estimation [27], which is also employed in this paper. 

Table 3.5. The statistical errors of SOH estimation for four mean functions (four batteries). 

NO. 
Mean 

Function 

Estimation Error (%) 

NO.5 NO.6 NO.7 NO.18 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1 Zero 1.70 2.41 1.58 1.96 0.59 0.79 0.43 0.53 

2 Constant 2.98 3.78 1.69 1.81 0.91 1.14 0.69 0.86 

3 Linear 2.29 2.83 1.83 1.95 0.81 1.03 0.70 0.87 

4 QP 7.24 10.16 15.69 20.71 6.12 8.78 1.47 2.01 

Then, to further verify the generalization ability of the proposed method, four 

batteries (NO.5, NO.6, NO.7, and NO.18) are used to verify and compare based on 

sixteen kernel functions corresponding to MAE and RMSE, the results as shown in 

Table 3.6. The sixteen kernel functions (refer to Table 3.4 for details) can be divided 

into two categories: single kernel function (former six) and compound kernel function 

(later ten).In a single kernel function, the estimation results of the first three kernel 

functions all have better estimation accuracy. It can be seen from Table 3.6 that the 

SEiso kernel function has the larger error among all kernel functions, then the SEiso 
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kernel function has the largest MAE and RMSE errors, reaching 15.84% and 22.12%, 

respectively. Therefore, the commonly used single SEiso kernel function cannot 

accurately capture battery aging information. Besides, the composite kernel function 

obtained by adding the two SEiso does not improve the accuracy, and the four 

compound kernel functions (NO.8,9,10,11) also have poor estimation accuracy. In 

contrast, the five combinations of the linear and SE kernel function (NO.12,13,14,15,16) 

have relatively good estimation accuracy. The MAE and RMSE of the LINiso-SEard 

kernel function are 0.3% and 0.39%, respectively, which are better than the single 

LINiso and SEard. It indicates that the SEard kernel function can effectively improve 

accuracy. The above results verify that the composite kernel function formed by 

combing LINiso and SEard kernel functions can accurately capture the trends of battery 

aging. 

Table 3.6. The statistical errors of SOH estimation for sixteen different kernel functions. 

NO. 
Kernel 

Function 

Estimation Error (%) 

NO.5 NO.6 NO.7 NO.18 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1 ( , ')LINk x x  1.51 1.79 0.51 0.69 1.64 2 0.52 0.64 

2 ( , )'LINardk x x  1.27 1.5 0.55 0.71 1.62 1.97 0.57 0.7 

3 ( , ')LINisok x x  1.6 1.9 0.51 0.68 1.67 2.04 0.52 0.64 

4 ( , )'SEisok x x  7.32 10.24 3.69 4.75 10.95 15.09 0.93 1.32 

5 ( , ')SEardk x x  4.39 6.26 0.75 0.96 15.84 22.12 0.49 0.65 

6 52 ( , ')Mk x x  2.57 3.44 4.31 5.86 7.47 10.16 1.7 2.32 

7 _ ( , )'SEiso SEisok x x  7.32 10.24 3.69 4.75 10.95 15.09 0.93 1.32 

8 _ ( , )'SEard SEardk x x  4.39 6.26 0.96 1.28 0.83 1.14 0.49 0.64 

9 _ ( , )'SEiso SEardk x x  4.37 6.24 1.03 1.31 4.56 6.02 0.41 0.53 

10 _ ( , )'SEiso perk x x  4.38 6.25 1.21 1.63 4.64 5.84 0.58 0.76 

11 _ ( , )'SEard perk x x  4.39 6.26 1.21 1.63 4.64 5.85 0.58 0.76 

12 _ ( , )'LIN SEisok x x  1.49 1.84 0.33 0.47 1.41 1.8 0.31 0.42 

13 _ ( , )'LINiso SEisok x x  2.82 3.79 0.33 0.48 1.53 1.96 0.3 0.42 

14 _ ( , )'LINiso SEardk x x  0.42 0.55 0.28 0.45 1.26 1.61 0.3 0.39 
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15 _ ( , )'LINard SEisok x x  1.46 1.83 0.43 0.56 1.3 1.67 0.44 0.56 

16 _ ( , )'LINard SEardk x x  1.46 1.83 0.82 0.94 1.87 2.31 0.58 0.71 

3.5.2 Estimation results for different batteries 

In this section, the batteries numbered No.5, No. 6, No.7, and No.18 are used to 

verify the generalization ability of the proposed method. Figure 3.5 presents the SOH 

estimation results and relative errors of the four batteries and the corresponding 

statistical errors are shown in Figure 3.6. The first 52 cycles of the battery are used as 

the training set, and the remaining are used as the test set. The confidence interval is 

closely related to the confidence level of the prediction results, 95% confidence interval 

(blue shaded area) is also provided in Figure 3.5 to quantify the uncertainty of the 

battery SOH estimation. The narrower the blue area, the higher the degree of credibility 

of the prediction model estimation results. According to the Figure 3.5 (a), (c), (g), (e), 

the feasibility of the SOH estimation results of the other three batteries is better than 

NO.5. The relative errors of the four batteries are shown in Figure 3.5(b), (d), (f), (h). 

It can be seen that the maximum relative error of the NO.5 battery is 5.92%, which is 

greater than the other three batteries. The maximum relative error of NO.18 battery 

accuracy is less than 1.42%. As the first two batteries continue aging, the relative error 

also increases. However, Figure 3.5(f), (h) show different results, and their errors 

change not obviously. The NO.18 battery has a higher accuracy, part of the reasons are 

that it enters the cut-off state earlier than the other three batteries. Although the 

estimated accuracy of each cell is different, they are all less than 1.8% in MAE. The 

above results show that the proposed method has good generalization ability for 

different batteries. 
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Figure 3.5. SOH estimation results for different batteries.  

(a) and (b) results of NO.5; (c) and (d) results of NO.6; (e) and (f) results of NO.7; (g) and (h) 

results of NO.18. 
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Figure 3.6. The statistical errors of SOH estimation for four batteries. 

3.5.3 Estimation results with different starting points 

In order to further illustrate the robustness and effectiveness of the proposed method 

throughout the battery lifespan cycle, the data of the NO.5 battery with different starting 

points is used to test the proposed method. The SOH estimation results with different 

starting points are shown in Figure 3.7. As indicated in Figure 3.7(a), (c), (g), (e), the 

first 40 cycles, the first 70 cycles, the first 100 cycles, and the first 120 cycles are 

selected as the training data, respectively. It can be observed that as increase of the 

training set, the accuracy continues to improve, and the region of the confidence interval 

gradually becomes narrower. This indicates that its reliability gradually improves. The 

relative error of each cycle corresponding to different training sets is shown in Figure 

3.7(b), (d), (f), (h). As the training data increases, the relative error gradually decreases. 

The above results indicate that the proposed method has a strong robustness and high 

accuracy under training sets with different estimated starting points. 
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Figure 3.7. Battery SOH estimation results with different starting points. 

(a) and (b) results of 40 cycles; (c) and (d) results of 70 cycles; (e) and (f) results of 100 cycles; 

(g) and (h) results of 120 cycles 

3.5.4 Estimation results by using multiple batteries aging information 

In order to analyze the relationship between the aging data of multiple batteries and 

a single battery. This part uses the aging data of any three of the four known batteries 

as the training set to estimate the lifespan cycle of the fourth battery. The three batteries 

numbered NO.5, NO.6, and NO.7 are used as the training set as shown in Figure 3.8, 

which shows that it has high training accuracy. The relative error is mostly less than 

1%, and the maximum relative error is 1.96 %. The NO.18 battery is used as the test 

set, and its estimation results are shown in Figure 3.9. It can be seen that high accuracy 
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is obtained, and most of the relative errors are less than 2% and the maximum relative 

error is 2.94%.  

Further, any three of the four batteries are used as the training set, and the fourth 

battery is used as the test set. The statistical errors of SOH estimation are shown in 

Figure 3.10 (including the other three cases). The accuracy of NO.18 as test set is the 

highest, its MAE and RMSE are 1.04% and 1.27%, respectively. The worst accuracy 

happens on NO.6, with the above two errors up to 3.52% and 3.61%, respectively. The 

reason for the above phenomenon may be that NO.18 has the shortest SOH variation 

range, while NO.6 has the longest SOH variation range. When using NO.6 as the test 

set, the training set cannot cover the SOH range of the test set, which leads to larger 

errors inevitably. In general, by using multiple battery aging data as training sets, high-

precision SOH estimation models can be obtained.  

 

Figure 3.8. The SOH training result with three batteries.  

(a) NO.5, NO.6, and NO.7 as the training set; (b) training set cyclic relative error. 

 

Figure 3.9. The SOH estimation results with NO.18 battery.  

(a) lifespan cycle estimation result; (b) test set cyclic relative error. 
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Figure 3.10. The statistical errors of SOH estimation for any three batteries as training set. 

 

3.6 Chapter summary 

In this chapter, a battery SOH estimation method based on features extraction and 

a modified GPR model is presented. Based on the analysis of measured battery current, 

voltage, and temperature, three effective features are extracted from the charge and 

discharge processes. Due to the different characteristics of the battery aging process, a 

single kernel function cannot be used to achieve a satisfactory estimation accuracy. A 

novel composite kernel function by combining the LINiso and SEard kernel functions 

is proposed, which can effectively describe the local regeneration phenomenon and the 

long-term degradation trend of battery health.  

Experiments on four batteries of the same material from NASA show that the 

proposed method is suitable for estimating battery with different initial starting points 

and suitable for other batteries with the same starting points. The MAE and RMSE of 

SOH estimation are only 1.7% and 2.41% for NO.5 battery, respectively, and are lower 

than 1.8% and 2.5% for all batteries. By using multiple battery data as a training set, a 

high-precision model can be established to estimate battery SOH over its whole life 

cycle.  
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Due to the difference of different batteries during charging and discharging, the 

limitations of this method may not be suitable for other types of batteries. In order to 

solve the shortcomings of this method, we will focus on its improvement to ensure the 

applicability for different kinds of battery cells and battery packs in the future. In 

addition, data-driven battery SOH estimation will play an essential role in battery health 

management and secondary utilization guidance. More advanced algorithms will be 

proposed by combining big data technology. 
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Chapter 4. Early Prognostics of Lithium-ion Battery Pack 
Health 

4.1 Introduction of this chapter 

Lithium-ion batteries (LIBs) have been widely used in portable electronics, 

electric vehicles, and grid-side energy storage systems because of their high energy 

density, no memory effect, low self-discharge current, long lifecycle, wide temperature 

range, and other advantages [1–3]. In LIBs, as a complex electro-thermal coupled, time-

varying nonlinear electrochemical system, the increasing number of charge–discharge 

cycles or long storage times cause the loss of active materials inside the battery and the 

precipitation of lithium ion, which eventually leads to the aging of the lithium-ion 

battery (e.g., increased internal resistance or reduced capacity [4,5]). The probability of 

potential safety problems increases dramatically in the later stages of aging, so the 

accurate prediction of battery health during regular operation plays a vital role in 

eliminating the battery life anxiety of energy storage, providing maintenance strategies, 

and avoiding safety incidents. As an essential indicator to characterize the health and 

life of a battery, the end of life (EOL) is defined as 80% state of health (SOH), where 

the ratio of current maximum available capacity to the rated capacity of the battery is 

defined as the SOH [6]. 

In recent years, research related to battery health has received much attention from 

scholars, who have obtained a series of research results [5,7–9]. Usually, the battery SOH 

prediction is performed through the battery management system by combining models 

with related algorithms based on collected key parameters (e.g., voltage, current, 

temperature, time, etc.). The research approaches in battery health are mainly divided 

into model-based methods and data-driven approaches. Model-based approaches 

describe the internal dynamics of the battery at different scales through mathematical 
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models (e.g., empirical models [8,10], equivalent circuit models [11–13], and 

electrochemical models [14–16]), while determining the balance between the complexity 

of the battery model and the prediction accuracy is still a complex problem that needs 

to be further addressed. In contrast, data-driven approaches based on machine learning 

algorithms are dedicated to mining the close relationship between battery aging data 

and the state of health in the laboratory or under actual operating conditions, without 

the need to construct mathematical models. Currently used machine learning algorithms 

mainly include: artificial neural network (ANN) [17], support vector machines (SVM) 

[18], relevance vector machines (RVM) [19], and Gaussian process regression (GPR) [5,20–

22]. Among these, the first three algorithms have a common disadvantage that can easily 

lead to overfitting [23]. However, GPR is generally computationally efficient, flexible, 

and easy to implement, though it lacks higher robustness scores. Thus, this paper uses 

GPR to capture the potential coupling between HIs and battery capacity for achieving 

battery health prediction since it uses a statistical machine learning process and shows 

better accuracy and uncertainty expression. 

At present, the demand for a long lifetime of battery packs in the field of energy 

storage is becoming more and more prominent. However, the lifetime test of battery 

packs takes up much time and much expense. Due to the inconsistency between cells 

and a higher increase in temperature in the battery pack, the battery presents totally 

different degradation characteristics compared with its individual cells, and it usually 

has a much shorter lifetime. To make full use of the aging data of battery cells and to 

reduce battery pack aging test time, this chapter proposes a method for predicting the 

future health of the battery pack using the aging data of the battery cells along with the 

entire lifecycle and early cycling data of the battery pack. An exponential function, a 

long short-term memory network (LSTM) model, and their weighted fusion are 

employed to construct the degradation models of HIs, so that the future HIs can be 
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predicted. Then, by combining the early cycling data of the battery pack with the GPR 

algorithm, a data-driven model is constructed to achieve the health prediction of the 

battery pack. The main contributions of this paper include: 

(1) An HI fusion degradation model is established to capture the global decay and 

the local variation of battery HIs simultaneously. An exponential degradation model is 

fitted to capture the global decay of HIs, while the LSTM degradation model is 

constructed to imitate the local variation of HIs. By weighting the exponential-based 

model and LSTM-based model, a fusion degradation model can be created, which can 

inherit the advantages of these two models. 

(2) An early prognostic method of battery pack health is proposed. Based on the 

early cycling data of the battery pack and the fusion degradation model of HIs, the 

future HIs of the battery pack can be obtained. Taking the HIs as the inputs of the GPR 

algorithm, data-driven models can be constructed to predict the future health of the 

battery pack. 

(3) Three health prediction models based on the GPR algorithm are constructed for 

comparison, including the exponential function-based (EXP-GPR) model, an LSTM-

based (LSTM-GPR) model, and the weighted fusion-based (EXP-LSTM-GPR) model. 

The results show that the fused degradation model has better accuracy. 

The remaining of the paper is organized as follows: Section 4.2 introduces the cell 

and aging experiments; Section 4.3 describes the principle of cell HI extraction and 

correlation analysis; Section 4.4 presents the main methods used in this paper; Section 

4.5 presents the results and discussion, and finally the conclusion of this chapter. 

4.2 Aging experiments 

This section selects the battery cells under different operating conditions (sixteen 

battery cells divided into six groups, as shown in Table 4.1) and the battery pack under 
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the same operating conditions (35 °C_0.5C-0.5C) to complete the aging experiment. In 

order to analyze the effects of temperature and current on battery aging, battery cells 

under four different temperatures and three different currents are used for the 

experiments; to improve the reliability of the experiments, two or three cells are set up 

in the same experimental environment for each group of cells. The battery cells with a 

lithium iron phosphate (LiFePO4) cathode have 100 Ah-rated capacity. The battery 

pack is made up of 15 cells of the same type connected in a series (six groups). The 

voltage, current, time, and temperature data of the continuous cycle can be collected 

directly by the charge/discharge tester. The tested battery cells and battery packs are 

charged and discharged under constant current and constant voltage (CC-CV) 

conditions. The temperature of the battery pack is set to 35 °C, and the charge/discharge 

current is 0.5 C. Four types of temperature settings are set for the single-cell experiment: 

25, 35, 45, and 55 °C. Three types of charge current settings are set: 0.3, 0.5, and 1C. 

Finally, two kinds of discharge current settings are set: 0.5C and 1C. The sampling time 

interval is 30 s for the battery pack and 10 s for the battery cells. The resting time is set 

to 10 min, as shown in Table 4.1. 

Table 4.1. Battery and aging test parameters. 

Experimental Setup Conditions Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 Cell #6 Pack 

Temperature (°C ) 25 25 35 35 45 55 35 

Charge and discharge policies 

 (CC-CV/CC) 

0.5C 

/0.5C 
1C/1C 

0.3C 

/1C 

0.5C 

/0.5C 
1C/1C 1C/1C 

0.5C 

/0.5C 

Actual temperature range (°C ) 25/29 25/31 35/44 36/40 45/52 54/64 36/47 

The platform for the aging experiment of the battery as show in Figure 4.1(a), 

which includes a battery tester, a data logger, a thermal chamber, a computer, a series-

connected battery pack, and sixteen battery cells. In the battery aging test experiment, 

a complete cycle of the charging and discharging process of Cell #4 as show in Figure 
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4.1(b), where the solid red line indicates the charging and discharging current. The solid 

blue line indicates the charging and discharging voltage. In the charging phase, the 

battery is first charged with a constant current (CC) of 0.5C, and when the voltage 

reaches the upper cutoff voltage, it switches to constant voltage (CV) charging mode 

until the charging current drops to C/20, which ends the charging process. In the 

discharging stage, the battery is discharged with constant current discharge at 0.5C until 

the discharge voltage reaches the lower cutoff voltage; then, the discharging process is 

finished. The above charging and discharging steps are repeated until the battery 

capacity decays to 80% of its rated capacity, which marks the end of the experiment. 

The battery capacity aging curve is shown in Figure 4.2, where Figure 4.2(a) is the 

capacity decay curve of Cell #4 alone, and Figure 4.2(b) is the capacity decay curve of 

the battery pack. The battery cell offers different degrees of capacity regeneration in 

the decay process, among which there are three apparent fluctuations due to the long 

resting time. The comparison between the battery cell’s aging curve and the battery 

pack’s aging curve shows that the number of cycles of the pack is significantly less than 

the number of cycles of the battery cell when it reaches 80% SOH. 

 

Thermal chamber

Battery tester

Computer

Data logger

Power 
line

Measurement 
line

Ethernet 
cable

Measurement 
line

Can bus

Battery cell & pack

(a)
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Figure 4.1. Aging test design for battery. 

(a) platform for aging experiment of battery; (b) complete cycle charge and discharge curves. 

 

Figure 4.2. Battery aging and capacity degradation curves.  

(a) battery cell aging curves; (b) battery pack aging curves. 

4.3 HIs extraction and selection 

Batteries generate large amounts of data in aging tests, and for data-driven battery 

health prediction methods, extracting HIs directly or indirectly from battery aging data 

is an essential step toward eliminating redundant data and improving computational 

efficiency. The extraction principle of extracting three sets of HIs from battery aging 

data is outlined in section 4.3.1. The correlation analysis of HIs is performed by the 

Pearson correlation analysis method in section 4.3.2. 
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4.3.1 HIs extraction 

This section presents the extraction principles of the three HIs. In our previous 

work [24–26], two HIs, the standard deviation Q sequence (stdQ) and the standard 

deviation of different Q sequence (stddQ), have been verified to have excellent 

performance as the basis for the research of battery pack health prediction in this paper. 

The incremental capacity (IC) analysis method, as a non-destructive and effective 

means, has been widely used to evaluate the health status of LIBs. Since the IC_peak 

can capture the electrochemical processes occurring inside the battery and is closely 

related to the capacity decay [27], it is used as the third HI extracted in this paper. 

Figure 4.3(a) represents the Q-V discharge curve of the battery under two different 

aging cycles (100th cycle and 1000th cycle), with the increasing number of cycles 

releasing the same amount of electricity at a decreasing voltage value. Firstly, a constant 

discharge voltage interval is selected, and the discharge voltage fragment Vseg is shown 

in Equation (4.1): 

  seg max max max min, , 2* , ,V V V V V V V     (4.1) 

where ΔV is the voltage interval that can be obtained through the ampere–time 

integration of the same voltage interval corresponding to the capacity sequence Q(v), 

as shown in Equation (4.2): 

   1 2, , ,
PNQ V Q Q Q     (4.2) 

The difference between the capacities of two different cycles can be noted as ΔQc2-

c1(v). The standard deviation of the capacity sequence is indicated as Q(v), and the 

capacity sequence of different cycle differences are indicated as stdQ and stddQ, 

respectively. 
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As shown in Figure 4.3(b), the increasing number of cycles leads to the increase in 

the amount of lithium ion loss inside the cell, causing the peak of the IC curve to 

decrease gradually. Its decay characteristics describe the aging process of the cell. The 

expression of the IC curve as show in Equation (4.3) [20]: 

 1( ) dQ I dt dtf I
dV dV dV

  
     (4.3) 

Where min max3.1 , 3.4 , 50, 6 , 70 .pV v V v N V mv dv mv       

 

Figure 4.3. Battery aging characteristics curves (Cell #4). 

(a) Q-V discharge curves for different cycles; (b) IC curves for different cycles. 

4.3.2 HIs selection 

According to the principle of HIs extraction in Section 4.3.1, the capacity and three 

sets of HIs decay curves of the battery cells and battery packs can be obtained. Figure 

4.4(a) shows the aging decay curve corresponding to the single cell with a rated capacity 

of 100Ah. With the increasing number of cycles, the first 100 cycles show exponentially 

decreasing characteristics. From the 101st cycle to the end of life, the capacity showed 

a linear decay trend, and three capacity regeneration phenomena appeared locally. 

Figure 4(b), (c), (d) show the decay curves of stdQ, stddQ, and IC_peak, respectively. 

After normalizing the extracted three groups of HIs, their decay curves are consistent 
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with the decay curves of the monomer capacity, indicating that the proposed three 

groups of HIs have a closely related aging characteristic with the capacity. 

 

Figure 4.4. Aging curves of monomer capacity and HIs (Cell #4). 

(a) capacity aging curve; (b) stdQ aging curve; (c) stddQ aging curve; (d) IC peak aging curve. 

Figure 4.5 shows the decay curves of the pack capacity and three HIs of the fifteen 

cells. Figure 4.5(a) shows the decay curves of the pack capacity; after the abnormal data 

are eliminated, the remaining capacity shows a linear monotonic decreasing trend with 

slight local fluctuations. In Figure 4.5(b), (c), the decay curves of stdQ and stddQ are 

shown, respectively. There are two apparent fluctuations and opposite directions in two 

cluster decay curves, indicating that anomalies occurred in two regions during the aging 

experiments. Figure 4.5(d) shows that IC_peak has the same aging characteristics as 

the capacity decay curve. Although there are two fluctuations in the same direction as 

the fluctuations in Figure 4.5(b), the changes are minor. 
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Figure 4.5. Battery pack capacity and HI decay curves.  

(a) capacity aging curve; (b) stdQ aging curves; (c) stddQ aging curves; (d) IC peak aging curves. 

The above analysis shows that the HIs of cells and the battery pack shows a decay 

characteristic consistent with the overall capacity. To further quantify the correlation 

degree between the HIs and the capacity, the quantitative analysis is carried out in this 

paper using the Pearson correlation analysis method, as shown in Equation (4.4) [28]: 
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 (4.4) 

where xi and yi are the sample observations of x and y, respectively, and x  and y  

are the mean of the sample values of variables x and y, respectively. 

The HI correlation coefficients between cells, pack, and the corresponding 

capacity can be obtained from Equation (4.4), and the results are shown in Figure 4.6. 

As can be seen from the figure, the three sets of HIs used for the same operating 

condition battery cell and pack all reach 0.99. The stdQ HIs contain both battery voltage 

and discharge capacity curve information. The stdQ reflects the uneven battery 

discharge energy with the voltage, revealing the essential factors to achieve high-
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accuracy prediction using this feature. It indicates that the HIs strongly correlate with 

the battery capacity, and the extracted three sets of HIs that meet the requirements are 

used to establish the HI degradation model in the next stage. 

 

Figure 4.6. Statistical values of the correlation coefficients of the HIs of single cells (Cell #4) and 

battery packs in the same operating condition. 

4.4 Methodology 

In this section, a method for battery pack health prognostics is proposed. A brief 

description of the overall prediction process is given in Section 4.4.1, the degradation 

model used to predict the future HIs of the pack is introduced in Section 4.4.2, and the 

pack health estimation model based on the GPR algorithm is presented in Section 4.4.3. 

4.4.1 Battery pack health prognostics 

The proposed scheme in this chapter consists of three sections and the flowchart of 

the proposed scheme for battery pack health prognostics as show in Figure 4.7. First 

section: data acquisition. First, the measured data of the battery with noise and 

abnormalities are pre-processed, including filling, deletion, noise reduction, smoothing, 

and normalization. Then, the critical data, such as voltage, current, time, etc., are 

screened out from the battery cells and battery pack data. Second section: the model 
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construction process. First, three sets of HIs—stdQ, stddQ, and IC_peak—are extracted 

from the Q-V partial discharge curve based on the principle of HI extraction. Second, 

the correlation between the HIs and capacity is assessed based on the Pearson 

correlation analysis method. Next, the exponential degradation model and the LSTM 

degradation model are established based on the cell’s entire life aging data. Then, the 

first 10% of the battery pack HIs are used to fine-tune the above two degradation models 

to obtain the battery pack HI exponential degradation model and LSTM degradation 

model, and the two models are fused according to different weights to obtain the battery 

pack HI fusion degradation model. Finally, the battery pack capacity estimation model 

is constructed based on the GPR algorithm combined with the early battery pack HIs 

and capacity. Third section: battery pack health prediction. First, the predicted value of 

the battery pack’s future cycling HIs can be obtained by fine-tuning the HI fusion 

degradation model. Then, the predicted value is used as the input of the battery pack 

capacity estimation model, which can realize the battery pack health prediction. 

 

Figure 4.7. Flowchart of the proposed scheme for battery pack health prognostics. 

4.4.2 HIs Degradation model 

A HI fusion degradation model is proposed for predicting the HIs of the future 

cycles of the battery pack in this section. The main components of the fusion model are 
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also explicitly described: exponential (EXP) model and LSTM model. 

(1) EXP model 

In this section, the battery pack HI degradation model is established based on the 

battery pack full-life HIs through the double exponential empirical formula. The early 

battery pack HIs are used to realize the correction of the battery cell HI degradation 

model. A degradation model of battery cell HIs is established to recursively predict 

future cycle HIs, based on a data-driven approach to achieve the prediction of battery 

pack health. 

By analyzing the aging characteristics of the battery, it is seen that the exponential 

model is closely related to the decay characteristics of the extracted HIs and can 

accurately track the global aging trend of the battery HIs, and the exponential model is 

shown in Equation (4.5): 

 bx dxy ae ce   (1.5) 

where a, b, c, and d denote the model parameters to be determined, x is the number 

of battery cycles, and y is the HI. 

Taking Cell #4 as an example, the HI EXP degradation model is constructed, and 

it includes two steps. Firstly, the model parameters are initialized as para0 = [a, b, c, d] 

= [0.02, −0.00701, 0.968, −0.9155×10−5]. Then, the updated model parameters (para1 

= [a, b, c, d] = [0.024, 2.7219×10−4, 1.0416, −8.4452×10−5]) are obtained using least-

squares identification to track the real degradation curve of the cell. 

(2) LSTM model 

LSTM is a kind of specialized recurrent neural network (RNN) for avoiding 

gradient vanishing and exploding problems [29]. The network structure of LSTM, as 

shown in Figure 8, mainly consists of three gates and two memory states [6] (e.g., 

forgetting gate ft, input gate it, output gate Ot, long memory Ct, and short memory ht). 
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The forgetting gate ft, which is used to calculate the degree of forgetting of the 

information, is processed by the sigmoid function and takes a value between zero and 

one, where one means all retained and zero means all forgotten. The input gate it, used 

to calculate the information saved to the state unit, consists of two parts, it as the amount 

of current input information to save to the unit state, and tc  as the new information 

generated by the current input to add to the unit state, both of which generate a new 

memory state. As a result, the current moment of the unit state consists of the product 

of the forgetting gate input and the previous moment state plus the product of the two 

parts of the input gate, that is, Ct. The output gate Ot is used to calculate the extent to 

which the information is output at the current moment. In the previous hidden state ht−1, 

the current input xt is passed to the sigmoid function. The updated cell state is passed to 

the tanh function, and the tanh function is multiplied with the sigmoid function output 

to determine the information that the hidden state should carry and what the hidden 

state should use as the output. Then, the new cell state and the new hidden state are 

transferred to the next time step, and the corresponding expression of the LSTM 

structure can be shown by Equation (4.6) [30–33]:  
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Figure 4.8. The network structure and operations LSTM. 
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where σ and tanh are the sigmoid and hyperbolic activation functions, respectively, 

w and b are different weight matrices and bias matrices, respectively. Ct−1 and Ct are 

the previous moment cell state and current cell state, respectively, and Ct is the updated 

cell state. ht−1 and ht, are the previous hidden state and the current hidden state. Ct−1, 

ht−1, and xt are the inputs of LSTM, while Ct and ht are the outputs. 

Based on the above introduction of the three gates and two memory states in the 

LSTM network, the HI degradation model is established as follows. Firstly, the battery 

cell HIs and pack HIs as inputs to the LSTM network are rearranged in the data format. 

Secondly, the neural network (including the LSTM network layer and the fully 

connected layer) is constructed, the input single-unit HIs are trained for the network, 

and the trained network parameters are drawn from the battery single-unit HI 

degradation model. Finally, the long short-term memory network is frozen, and the 

early cyclic HIs of separate cells in the battery pack are input into the neural network. 

The fully connected layer in the network is trained again, a new fully connect layer is 

trained, and the new neural network is the LSTM degradation model of the HIs of every 

single cell in the battery pack. 

(3) Fusion degradation model of HIs 

Since the HI EXP degradation model only captures the global aging characteristic 

of the battery HIs but ignores the influence of local fluctuations on the results, it will 

lead to the loss of crucial information. The LSTM degradation model has the advantage 

of capturing local changes. However, with continuous recursion, the errors gradually 
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accumulate, leading to too many errors to meet the accuracy requirements. To solve the 

problem of simultaneously capturing the global aging characteristic and local 

fluctuations of the HIs, a fusion degradation model in which different weights combine 

the exponential degradation model and the LSTM degradation model is proposed. The 

fusion HI degradation model (FHDM) as show by Equation (4.7): 

 * (1 )*FHDM LSTM EXP     (4.7) 

where a is the weight of the LSTM degradation model, taking values between 0 and 1. 

LSTM is the long short-term memory neural network degradation model, and EXP is 

the exponential degradation model. 

4.4.3 GPR theory 

The Gaussian process regression (GPR) algorithm is a machine learning method 

based on Bayesian theory. The advantages of being flexible, nonparametric, and able 

to integrate uncertainty expressions are widely valued in battery health prediction. This 

section provides a brief introduction to the GPR algorithm [34]. 

A formula for any GPR problem as shown in Equation (4.8): 

 y ( )f x    2~ (0, )N   (4.8) 

where y is the observed value containing the noise, ε is a Gaussian white noise that 

satisfies the mean value of zero, and f(x) is a function that obeys the Gaussian 

probability distribution, as shown in Equation (4.9): 

 ( )~ ( ( ), ( , '))ff x GP m x k x x  (4.9) 

where m(x) is the mean function, usually taken to zero, kf is the kernel function, used 

to characterize the distance or similarity between the two points of the input quantity, 

and the commonly used covariance function is the squared exponential (SE) covariance 

function, as shown in Equation (4.10) [35]: 
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 2 11exp( ( ') ( '))
2f fK x x l x x      (4.10) 

where the signal covariance σ2 
f is the output amplitude and l is the characteristic length 

scale. 

For the observed value y that obeys a Gaussian distribution and considers Gaussian 

white noise, the prior distribution is as shown in Equation (4.11): 

 2~ (0, ( , ) )f n ny N K X X I  (4.12) 

The set of parameters n= , ,    f l  in Equation (4.10) is the hyper-parameter, and 

the optimal solution of the hyper-parameter is obtained by establishing the negative 

logarithmic marginal likelihood function (NLML) to find the partial derivatives of the 

hyper-parameter, and then using the conjugate gradient method to minimize the partial 

derivatives, as shown in Equation (4.12): 

2 1 21 1 2( | , ) [ ( , ) ] ( ( ( , ) ))
2 2 2

T
f n n f n n

nlogL logp y X y K X X I y log det K X X I


          (4.12) 

The joint Gaussian distribution of the observed value y and the predicted value y* 

as shown in Equation (4.13): 
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According to Bayesian theory, the posterior distribution as show in Equation 

(4.14): 
    * * * * 2 *| , , | , ( )p y X y X N y y y  (4.14) 

where *
y is the predicted mean, and 2 *( )y is the predicted covariance, as given 

in Equation (4.15):  
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To quantitatively evaluate the actual effect of the proposed scheme, three 

indicators—the 95% confidence interval (CI), the mean absolute error (MAE), and the 

root mean square error (RMSE)—are used to evaluate the prediction performance of 

the GPR algorithm, as shown in Equation (4.16): 
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 (4.16) 

where 95%CI is the confidence interval, y  and y  are the predicted value and 

variance, respectively. N is the size of the testing set, yi is the actual value, and *
iy  is 

the estimated value. 

4.5. Results and discussion 

In this section, the experimental aging data are used to evaluate battery pack health 

prognosis methods. The single degradation and fused degradation models are validated 

based on the HIs by using the experimental data of battery aging under the same and 

different operating conditions in section 4.5.1. The effect of the battery pack’s health 

prediction model is verified by the future cycling the HIs predicted by the single 

degradation model and the fused degradation model, and the prediction results are 

quantitatively analyzed and discussed in section 4.5.2. 

4.5.1 HIs prediction 

This section describes two types of HI degradation models: the single degradation 

models (EXP degradation model and LSTM degradation model) and the fusion 

degradation model. Firstly, the prediction accuracy of the single degradation model is 
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verified by using three sets of HIs under the same and different operating conditions, 

and the applicability range of each single degradation model is compared. Secondly, 

the prediction accuracy of the fusion degradation model is verified using the HIs under 

the same condition and the different operating conditions, and the results are analyzed 

and discussed accordingly. 

(1) Single degradation model 

The single degradation model includes the EXP degradation model and the LSTM 

degradation model. For the EXP degradation model under the same operating condition 

(charge and discharge current is 0.5C and temperature is 35°C), the corresponding 

decay curves before and after the correction of the HI degradation model for Cell #4 

under the same operating condition are shown in Figure 4.9. Figure 4.9(a1), (b1), (c1) 

shows the decay curves of the three HIs of Cell #4 under the same operating condition 

(before correction), where the blue line is the actual value and the red line is the 

estimated value of the EXP degradation model based on the least-squares method. 

Using the battery pack early 10% HIs to correct the HI EXP degradation model, the 

model of the battery pack corresponding to the three sets of HI decay curves (after 

correction) are shown in Figure 4.9(a2), (b2), (c2), where the dotted line is the actual 

value and the solid line is the fitted value. The MAE and RMSE between the actual 

values and the predicted values for the EXP degradation model of the battery pack 

under the same operating condition are 0.034, 0.021, 0.006, and 0.2745, 0.2746, 0.3191, 

respectively. The aging characteristic of individual HIs in the battery pack is in good 

agreement with the global aging characteristic of the predicted values, indicating that 

the EXP degradation model can capture the global HI decay tendency with high 

accuracy, but cannot capture the local HI variation trend. 
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Figure 4.9. Decay curve of the HI EXP degradation model before and after 10% pack correction.  

Before correction: (a1) stdQ; (b1) stddQ; (c1) IC peak. After correction: (a2) stdQ; (b2) stddQ; 

(c2) IC peak. 

For the LSTM degradation model under the same operating condition, the three 

sets of the HI decay curves corresponding to Cell #4 with the fitted curves are shown 

in Figure 4.10(a1), (b1), (c1) (before correction), where the blue line is the actual value 

and the red line is the predicted value of the LSTM degradation model. Figure 4.10(a2), 

(b2), (c2) shows the decay curves of the three HIs corresponding to the battery pack 

with the predicted values (after correction). Due to the gradual accumulation of errors 

in the recursive rolling process of the LSTM model, although the deviation of the 

predicted values from the actual values is slight for the first 900 cycles, the errors 

increase rapidly from the 901st cycle to the 1742nd cycle as the cycles continue to 

accumulate. Then, the LSTM degradation model experiences the error accumulation 

effect under the same operating condition, and the error is too large to correct at the 

later stage. The MAE and RMSE between the actual values and the predicted values 
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for the LSTM degradation model of the battery pack under the same operating condition 

are 0.0523, 0.0401, 0.11 and 0.1624, 0.1933, 0.0939, respectively. The results show 

that the local aging characteristics of the pack HIs are in good agreement with the 

predicted values, indicating that the LSTM degradation model can capture the ageing 

characteristic of local HIs. Nevertheless, the ability to capture the aging characteristic 

of global HIs is relatively poor due to the disadvantages of cumulative errors. 

 

Figure 4.10. Decay curves of the LSTM degradation model with HIs before and after 10% pack 

correction. 

Before correction: (a1) stdQ; (b1) stddQ; (c1) IC peak. After correction: (a2) stdQ; (b2) stddQ; 

(c2) IC peak. 

For the LSTM degradation model under the different operating conditions, the 

corresponding three sets of HI aging curves and fitted curves (before correction) for six 

groups of battery cells under different operating conditions are shown in Figure 

4.11(a1), (b1), (c1), where the blue line is the actual value. The red line is the predicted 

value of the LSTM degradation model. The three sets of HI decay curves of the battery 
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pack are shown in Figure 4.11(a2), (b2), (c2), where the dotted line is the actual decay 

curve and the solid line is the LSTM degradation model prediction curve (after 

correction). Compared with the same condition decay curves in Figure 4.10(a2), (b2), 

(c2), the corresponding prediction accuracy of the LSTM degradation model prediction 

values under the different operating conditions is improved, where the improvement of 

stddQ and IC peak is prominent. The MAE and RMSE between actual values and the 

predicted values for the LSTM degradation model of the battery pack under the 

different operating conditions are 0.0203, 0.128, 0.197 and 0.2417, 0.2543, 0.2855, 

respectively. By comparing this with the LSTM degradation model under the same 

operating condition, the result shows that the consistent local and global aging 

characteristics of the pack HI aging trends with the predicted values are significantly 

improved. The results indicate that the type, quantity, and quality of the battery aging 

data under the different operating conditions play crucial roles in enhancing the ability 

of the LSTM degradation model to capture the local and global HI aging trends. 

 

Figure 4.11. Decay curves of the LSTM model of the HIs before and after 10% pack correction.  

Before correction: (a1) stdQ; (b1) stddQ; (c1) IC peak. After correction: (a2) stdQ; (b2) stddQ; 

(c2) IC peak. 
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(2) Fusion degradation model 

The single HI EXP degradation model cannot capture the local variation of the HI 

decay characteristics. In contrast, the single HI LSTM degradation model cannot 

capture the global variation of the HI decay characteristics. The battery aging data of 

the same and different operating conditions are used here to verify the proposed fusion 

degradation model to solve the above shortcomings. 

The actual decay curves and the predicted decay curves are based on the fusion 

degradation model for the three HIs of the battery pack under the same operating 

condition, as shown in Figure 4.12(a), (b), (c). The dotted lines are the actual values of 

the HIs, and the solid lines are the predicted values of the HIs. The MAE and RMSE of 

the three HIs of the battery pack are 0.0132, 0.0097, 0.0215 and 0.256, 0.2604, 0.2823, 

respectively. The overall accuracy of MAE and RMSE of the fusion degradation model 

is better than the single HI EXP degradation model. However, the predicted value of IC 

peak is much lower than the single HI EXP degradation model. The MAE of the fusion 

degradation model is better than the LSTM degradation model. The RMSE is between 

the predicted values of the single EXP degradation model and the predicted values of 

the single LSTM degradation model. 

The decay curves of the three sets of HIs and the predicted decay curves based on 

the fusion model are shown in Figure 4.13(a), (b), (c), where the dotted lines are the 

actual values of the HIs and the solid lines are the predicted values of the HIs under the 

different operating conditions. The MAE and RMSE of the fusion degradation model 

for the three sets of HIs are 0.0068, 0.042, 0.0034 and 0.2682, 0.2707, 0.3126, 

respectively. The results show that the fusion degradation model under the different 

operating conditions has better accuracy and ability to capture the HIs than the single 

HI EXP degradation model and single LSTM degradation model. 
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Figure 4.12. Decay curves of HI fusion model after 10% pack correction (weight coefficient of 

LSTM degradation model is 0.2) (same operating condition). 

(a) stdQ; (b) stddQ; (c) IC peak. 

 

 

Figure 4.13. Decay curves of HI fusion model after 10% pack correction (different operating 

conditions). 

(a) stdQ; (b) stddQ; (c) IC peak. 

The prediction accuracies correspond to the single degradation model and the fused 

degradation model under the different operating conditions, as shown in Figure 4.14. 
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Figure 4.14(a) represents the mean absolute error (MAE) corresponding to the three 

HIs under different degradation models. By comparing the MAE under the three 

degradation models, the results show that the prediction accuracy of the fusion 

degradation model is higher than that of the exponential degradation model and the 

LSTM degradation model, in which the stdQ and stddQ accuracy of the single 

degradation models (EXP degradation model and LSTM degradation model) are 

substantially improved. Figure 4.14(b) represents the root mean square error (RMSE) 

corresponding to the three HIs under different degradation models. The RMSE 

corresponding to the three sets of HIs of the fusion degradation model has errors 

between the exponential degradation model and the LSTM degradation model. The 

results show that the fusion degradation model can capture the global aging trend of the 

HIs in the EXP degradation model and eliminate the shortcoming of excessive 

cumulative errors in the recursive process of the LSTM degradation model, and thus 

has satisfactory estimation accuracy. 

  

Figure 4.14. Error statistics of three different HI degradation models. 

(a) three HIs MAE statistic; (b) three HIs RMSE statistic. 
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4.5.2 Battery pack SOH prediction 

In this section, the prediction accuracy of the battery pack health prediction method 

is verified based on the predicted value of the HI fusion decay model under the same 

operating condition and the different operating conditions, combined with the battery 

pack capacity estimation model. Among them, the same operating condition means that 

both battery cells and the battery pack work at 35 °C _0.5C-0.5C; different operating 

conditions mean that battery cells work in six different environments (see Table 4.1 for 

details) and battery pack works at 35 °C _0.5C-0.5C. 

(1) Prediction results using the same operating condition 

Under the same operating condition, the battery pack cycle life early 10% HIs and 

capacity are used as the training set of the battery pack capacity estimation model. On 

the basis of the EXP degradation model, the LSTM degradation model, and the fusion 

degradation model, used to predict the future HIs of the battery pack, the predicted 

battery pack state of health is analyzed against the actual value to calculate the error. 

Figure 4.15 shows the corresponding battery pack state of health prediction results 

under the three groups of models: the HI exponential degradation model-GPR capacity 

prediction model (EXP-GPR), the HI exponential degradation model-HI LSTM 

degradation model-GPR capacity prediction model (EXP-LSTM-GPR), and the HI 

LSTM degradation model-GPR capacity prediction model (LSTM-GPR). Figure 

4.15(a1), (b1), (c1) shows the prediction error of the battery pack for each of the three 

cases. The solid red line indicates the battery state of the health cutoff threshold. The 

red dotted line is the actual value, the solid blue line is the estimated value, and the 

green shaded area is the 95% confidence interval used to describe the uncertainty of the 

prediction result. Figure 4.15(a2), (b2), (c2) shows the relative errors under the three 

groups of models EXP-GPR, EXP-LST M-GPR, and LSTM-GPR, respectively. 
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Among them, Figure 4.15(a2) shows that the relative error corresponding to the first 

406 cycles is negative, while the relative error from the 407th cycle to the 850th cycle 

is positive and exponentially increasing. Then, the error increases rapidly from the 

851st cycle to the 1742nd cycle, and the maximum relative error is only 1.7%. Figure 

4.15(b2) indicates that the relative errors of the fusion model are all negative when the 

weights of the single degradation model are 0.5. The relative error is less than −0.4% 

for the first 600 cycles, and the relative error shows exponential growth from the 601st 

cycle to the 1200th cycle. The error increases linearly and rapidly from the 1201st cycle, 

with the maximum relative error reaching −15%. Comparing Figure 4.15c with Figure 

4.15b, the result shows that the two relative errors have the same trend, but the 

maximum relative error of the latter is about twice as large as that of the former. 

 

 

 

Figure 4.15. Battery pack SOH prediction results and relative error (same operating condition). 

EXP-GPR prediction model: (a1) SOH prediction results; (a2) relative error. EXP-LSTM-GPR 

prediction model: (b1) SOH prediction results; (b2) relative error. LSTM-GPR prediction model: 

(c1) SOH prediction results; (c2) relative error. 
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Under the same operating condition, the EXP degradation model and LSTM 

degradation model are fused based on different weights, and the HI fusion degradation 

model thus predicts the future cycle HIs of the battery pack, which is combined with 

the battery pack capacity estimation model to achieve a state of health prediction. The 

errors under the different weights are shown in Figure 4.16, where the horizontal 

coordinates indicate the weight of the LSTM degradation model in the fusion model 

and the vertical coordinates indicate the corresponding errors under different weights. 

The results show that the fusion degradation model can track the capacity regeneration 

phenomenon with different degrees of accuracy due to its inability to cover the range 

of parameter variation within the battery pack. The prediction accuracy based on the 

battery pack health state prediction model needs to be optimized. 

 

Figure 4.16. Error statistics of fusion degradation model with different weights (same operating 

condition). 

(2) Prediction results using the different operating conditions 

Under the different operating conditions, using the HI degradation model to predict 

the future HIs, the prediction results will verify the prediction accuracy of the battery 

pack capacity estimation model and the corresponding prediction results and relative 

errors, as shown in Figure 4.17. Figure 4.17(a) shows the fusion degradation model 

under the different operating conditions and the LSTM degradation model with a 
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weight coefficient of zero predicted for the battery pack. The relative error of the early 

cycle is negative, the relative error of the mid-cycles is positive and shows an 

exponential growth trend, and the relative error of the later cycle increases rapidly, 

while the maximum relative error is only 1.7%. Figure 4.17c shows that the predicted 

value is consistently smaller than the actual value as the number of cycles increases. 

The relative error is less than −0.5% and remains stable for the first 600 cycles and 

increases linearly and rapidly from the 601st cycle to the 1742nd cycle, with the 

maximum relative error being less than -4%. Compared with Figures 4.17a and c, 

Figure 4.17(b) shows the prediction HIs of the fusion model when the weights of the 

single degradation model are 0.5, and the SOH prediction accuracy based on the fusion 

degradation model is higher than the others. The first 880 cycles are stable within 

−0.35%, and the error gradually increases after the 880th cycle, with a maximum 

relative error of 0.87%. 
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Figure 4.17. Battery pack SOH prediction results and relative error (different operating 

conditions).  

EXP-GPR prediction model: (a1) SOH prediction results; (a2) relative error. EXP-LSTM-GPR 

prediction model: (b1) SOH prediction results; (b2) relative error. LSTM-GPR prediction model: 

(c1) SOH prediction results; (c2) relative error. 

Under the different operating conditions, the EXP degradation model and the 

LSTM degradation model are constructed as fusion models with different weights to 

predict the future cycle HIs of the battery pack, and the battery pack capacity estimation 

model is validated based on the predicted HIs. The errors correspond to the different 

weights of the fusion degradation model, as shown in Figure 4.18, where the horizontal 

coordinates indicate the weights of the LSTM degradation model in the fusion 

degradation model, and the vertical coordinates indicate the errors corresponding to the 

different weights. With the increasing weight of the LSTM model, both MAE and 

RMSE show a ‘V’ shape, and both errors of MAE and RMSE reach the maximum when 

the LSTM degradation model is adopted separately. The highest prediction accuracy is 

obtained by fusing the EXP degradation model and the LSTM degradation model with 

0.7 and 0.3 weights under the different operating conditions, and the corresponding 

MAE and RMSE are 7.17% and 7.81%, respectively. The results show that the fused 

degradation model can achieve satisfactory prediction accuracy when combined with 

the battery pack capacity estimation model for SOH prediction. 
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Figure 4.18. Statistical errors corresponding to different weights of the fusion degradation model 

(different operating conditions). 

4.6 Chapter summary 

This chapter proposes a new method to predict the health of a battery pack based 

on its early cycling data and the complete aging data of battery cells. Firstly, three sets 

of HIs are extracted from the experimental data of battery cells and the battery pack. 

The correlations between the HIs and capacity are verified by the Pearson correlation 

analysis method. The results show that their correlation coefficients are greater than 

0.99, indicating the HIs are highly related to the battery capacity. To predict the future 

HIs of battery cells, an exponential degradation model is fitted to capture the global 

decay of HIs, while a LSTM degradation model is constructed to imitate the local 

variation of HIs. A fusion degradation model can be created by weighting the 

exponential-based model and LSTM-based model, which can inherit the advantages of 

these two models. Then, an early prognosis method for battery pack health is proposed. 

Based on the early cycling data of the battery pack and the fusion degradation model of 

HIs, the future HIs of the battery pack can be obtained. Taking the HIs as the inputs of 

the GPR algorithm, data-driven models can be constructed to predict the future health 

of the battery pack. Finally, three health prediction models based on the GPR algorithm 
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are constructed for comparison, including the exponential function-based (EXP-GPR) 

model, LSTM-based (LSTM-GPR) model, and their weighted fusion-based (EXP-

LSTM-GPR) model. A comparison of the errors of the three different models for two 

different operating conditions is shown in Table 4.2. The results show that the fused 

degradation model has better accuracy under the different operating conditions, and its 

MAE and RMSE are 7.17% and 7.81%, respectively. 

Table 4.2. Comparison of the errors of different models under different working conditions. 

Operating Conditions Accuracy 
Model 

EXP-GPR LSTM-GPR EXP-LSTM-GPR 

Same operating 

conditions 

MAE  0.3681 7.6437 2.1477 

RMSE  0.5517 12.0944 3.4502 

Different operating 

conditions 

MAE  0.3681 0.9951 0.0717 

RMSE  0.5517 1.2476 0.0781 

The method proposed in this paper is of excellent engineering utility for the rapid 

development of battery packs and for evaluating their performance indexes. It can save 

more than 50% of the aging experiment time and labor costs, make full use of the 

existing test data to predict the life of unknown battery cells and packs, and facilitate 

the development and selection cycle. The whole-lifecycle prediction is completed by 

using the data of a small number of cycles, which can improve the accuracy of the life 

prediction of battery cells and battery packs and broaden the application scope to solve 

the problem of life prediction under different temperatures, different currents, and 

different cell models. However, the proposed scheme in this paper only validates the 

same type of battery cells and battery packs. This method can be applied to different 

types of batteries and capacity diving problems within the scope of principle analysis, 

but further validation is needed, which is also our next problem to solve. 
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Chapter 5. Conclusion and Outlook 

5.1 Conclusion 

This dissertation takes lithium-ion battery as the research object, and firstly 

designs for lithium-ion battery aging test, and analyzes the lifetime influencing factors 

and aging characteristics of lithium-ion power battery singles through aging 

experimental data. Secondly, a battery health state estimation method is established 

based on the data-driven approach to achieve health state estimation for lithium-ion 

battery cells and pack. The specific research results are as follows.  

（1）Analysis and test of the aging characteristics of lithium-ion batteries. 

Given the influence of different environmental factors on battery aging, a battery aging 

test platform is built. A lithium-ion battery aging test procedure is designed, including 

aging tests at different ambient temperatures, different charging rates, and different 

depths of discharge. Based on the battery cycle aging test and the battery calendar aging 

test, statistical analysis and comparative research on the aging characteristics of 

lithium-ion batteries are carried out.  

（2）Estimation of the state of health (SOH) of lithium-ion battery cells based 

on the improved Gaussian Process Regression (GPR) model. The single kernel 

function based on the GPR model is not accurate in estimating the SOH of the lithium-

ion battery, and cannot accurately capture the phenomenon of overall capacity decay 

and local capacity recovery. A method for estimating the SOH of lithium-ion batteries 

based on modified GPR combined with charging and discharging features is proposed. 

First, the changes in battery voltage and temperature curves among different aging 

cycles are analyzed in detail, and health indicators (HIs) that can effectively represent 

the health status of the battery are proposed. Then, the Pearson correlation analysis 
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method is used to quantify the correlation between HIs and SOH, and three HIs with 

strong correlation are employed in this paper. Next, a novel compound kernel function 

is proposed for battery SOH estimation, and different pairs of mean function and kernel 

function chosen from four mean functions and sixteen kernel functions are used to 

construct GPR models, and their estimation accuracy is compared subsequently. Finally, 

four different batteries with various initial health conditions from the NASA battery 

dataset are used to verify the performance of the proposed method. Experiments show 

that its estimated mean-absolute-error (MAE) and root-mean-square-error (RMSE) are 

only 1.7%, and 2.41%, respectively. The results show that compared with a single 

kernel function, the GPR model based on a composite kernel function is more suitable 

for capturing the battery aging characteristics of various trends and can achieve an 

accurate estimation of the battery SOH.  

（3）Battery pack health estimation based on early data. For the estimation of 

the SOH of the battery pack, it takes a lot of time and economic cost to complete the 

full-life aging test of the battery pack. Aiming at the above problems, a method for 

predicting the future health of the battery pack is proposed, which uses the aging data 

of the battery cells over their entire life cycles and the early cycling data of the battery 

pack. Firstly, HIs are extracted from the experimental data, and high correlations 

between the extracted HIs and the capacity are verified by the Pearson correlation 

analysis method. To predict the future health of the battery pack based on the HIs, 

degradation models of HIs are constructed by using an exponential function, long short-

term memory network, and their weighted fusion. The future HIs of the battery pack 

are predicted according to the fusion degradation model. Then, based on the GPR 

algorithm and the battery pack data, a data-driven model is constructed to predict the 

health of the battery pack. Finally, the proposed method is validated with a series-



 137 

connected battery pack with fifteen 100 Ah lithium iron phosphate battery cells. The 

MAE and RMSE of the health prediction of the battery pack are 7.17% and 7.81%, 

respectively, indicating that the proposed method has satisfactory accuracy. The results 

show that compared with the single feature decay model, the fusion feature decay model 

can predict the future HIs of a battery pack with more accuracy, which contributes to 

the satisfactory prediction accuracy of battery pack health based on the GPR model. 

5.2 Outlook 

This dissertation addresses the deficiencies of existing research on lithium-ion 

battery health estimation. It focuses on the health state prediction of lithium-ion battery 

singles and lithium-ion battery packs, based on a data-driven approach, for different 

operating conditions. However, given the authors' current limited knowledge, there are 

still many issues to be further addressed in the research on lithium-ion battery health 

state prediction, and subsequent work will be carried out in the following aspects. 

(1) Enhancing data-driven interpretability. The mainstay of the data-driven 

approach is the training and prediction of the model with the help of machine learning 

methods. However, the machine learning method is a black-box model without 

sufficient knowledge about its internal optimization. Therefore, while obtaining 

satisfactory prediction results, more thinking about the reasons that produce excellent 

model results is needed. This method will help optimize and find a model with better 

generalization ability.  

(2) Integration of data-driven methods with electrochemical mechanism 

modeling methods. In building the health state prediction model of Lithium-ion 

batteries, the data-driven approach starts from the data characteristics without 

considering the specific model construction. In contrast, the mechanical model 
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approach completes the typical model building with the help of Lithium-ion battery 

parameters and then realizes the study of the battery aging phenomenon. 

(3) Creation of actual lithium-ion battery operating conditions data. In the 

actual operation of lithium-ion batteries, there are various operating conditions, but the 

current research mainly stays in laboratory conditions. To establish a lithium-ion battery 

health state prediction model with stronger generalization performance, it is necessary 

to consider a variety of operating conditions and collect richer experimental data and 

actual operating conditions data, such as electric vehicles and renewable energy smart 

grids. 

(4) Joint estimation of multiple states at different time scales. The existing 

research mainly focuses on single-state estimation or prediction, but the joint estimation 

and prediction of multiple states with a strong coupling of electric-thermal-mechanical-

aging inside the actual battery, such as the joint estimation of different time scales of 

SOC, SOE, SOH, SOP, SOT, SOS, etc., will be a crucial technology to be overcome in 

the next-generation intelligent battery system. 
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