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Initial-Boundary Value Problem
for Some Viscous Incompressible Flow
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Abstract. We prove the local existence of weak solutions to the initial-boundary
value problem with a nonnegative initial density for a nonhomogeneous viscous incom-

pressible fluid.

§1. Introduction. The motion of a nonhomogeneous viscous incompressible fluid is
described by the system of equations for the density p (¢ x), the velocity v (¢t x) = (2! (£ x),
v*(t x), v3(t x)), the pressure p (¢ x) and the absolute temperature 6 (¢ x) (cf. [1]):

ptt (V) p=0,
plop+ (veV)v]+Vp=uAv+pf,
Vev=0,

Leyp [0+ (V) 0] =xA6+2uD:D,

1.1

where f (¢t x) = (f'(¢t x), f2(¢ x), f3(t x)) is the outer force and D is the velocity
ovi  3vj

3
o T an)’ i, j=1, 2, 3 and D:D= 2:

L]

deformation tensor with the elements Dz‘j':%

1
DjjiDyj. We assume that u (the coefficient of viscosity), ¢y (the specific heat at constant
volume) and x (the coefficient of heat conduction) are positive constants.

Let Q be a bounded open set in R® with a smooth boundary 8. We consider the above

system under the following initial-boundary condition:

(p(0, x), v(0, x), 60, x))=(pgx), vg(x), p(x)), x€Q,

(1.2) _
vlaq=0, 8laq=26, t>0,

where 6 is a fixed positive constant and we always assume that the compatibility condi-
tions are satisfied. We note that the problem (1.1), (1.2) is rewritten to the problem (1.
1),
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(p(0, x), (0, x), 6(0, x)) = (pp(x), vo(x), 6p(x)—6),

1.
(1.3) (v, 6)|50=0, t>0,

by the change of variables (p, v, 8)—>(p, v, §+6). Let us term the problem (1.1), (1.3)
IBP.

We are much interested in the case of pg=0, because in the usual result, it seems that
the assumption that p(x) is strictly positive is essential.

In this paper we show the existence of a weak solution to IBP, in the sense of

Definition in §2, under suitable assumptions.

§2. Statement of Result. For s€R, H5(Q) denotes the usual Sobolev space. Let us
introduce C=(Q) ={ueC7 Q)% V.x«=0} and H3(Q) =closure of C3(Q) in H3(Q)®.

Next we give the definition of a weak solution to IBP.

Definition. The functions p (¢, x), v (¢ x) = (¢(t, x), v*(¢, x), v’(t x)) and 6(¢ x)
called a weak solution to IBP, if p (¢, x) €L=([0, T]1XQ), v{t x)€L*(0, T; HL(Q)) and 4
(t x)€L*(0, T; HY(Q)) and if the integral identities

T 3 .
2.1 fofﬂ(p¢t+j§1pvf¢xj)dxdt+fnpg(x)qo(O, x)dx=0,
T 3 i 3
(2.2) jofﬂ(pL'~®t+j§1pv v-@xj—pjélvxj-d)xj-i-pf-@)dxdt
+fﬂp0(x) vy (x)=@(0, x)dx=0

and

3 . 3
@3) [T (cvpbortey 2 pribpr—x 3 bypyi—2uD:De)dxdt
i=1 / j=1 777

+JQCV/)0(X) (69(x) —6) @ (0, x)dx=0

hold for any ¢ €C'(0, T; H'(Q)) and ®=C'(0, T; HL(Q)) such that ¢ (T, x) =0 and
@ (T, x) =0.

Now we can state our result.

Theorem. Suppose that 0=p((x) =M, vg(x) €EHL(Q), 6y (x) — 6 EL*(Q) and f(t, x) €
L*(0, T; L*(Q)®%). Then there exists a weak solution for some T' (0, T such that p(t, x)
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eL™ ([0, T']xXQ), v(t x)EL"(0, T); HL(Q)) NL*(0, T; H*(Q)) and 6(¢ x)€L*(0, T;
Hi(Q)).

The proof is given in §§3-7.

§3. Proof of Theorem (first step).

Let P be the projection of L*(Q)* onto H%(Q) and
let us consider the eigenvalue problem:

uPAYR+ARYE=0 in Q,
(3.1)
vklaq=0.

With respect to the properties of the operator uPA, we refer to [2]. For example,

Lemma 3.1. uPA is a self-adjoint operator in HU(Q) and ifs inverse is compact.

Therefore we find that

(3.2)

0<A = A,= S Ap—00 as k0

and

(3.3) {¥r};=, is a orthonormal system in HJ(Q).

Let {p(mm (x)}5-1 be a sequence of functions such that p(,, (x) € C'(Q),

Lo
=

pOm (X) M5, and poy, (x) —~pg(x) in L(Q) and let 9y, (4, ) = 2 Iy (1) ¥ (x), where
k=1
amk (e C ([0, T, k=1, -, m.

Now we consider the following Cauchy problem:

3
pmtt 2 UmPmx; =0
J=1 7

Pm (0, X) =pQp (x).

Then we have

Lemma 3.2. There exists a number T, (0, T] such that (3.4) has a unique solution
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pm (4 x)ECH[0, T,] XQ) satisfving %épm (¢ x) §M+n%.

Proof. For any (t, x)€[0, T]XQ, we consider a system of ordinary differential

equations:

(‘%f(r; tox) =0y (1, x(7; 1)),

x(t; 1t x)=x, 0=zt

(3.5)

Then there exists a number T, € (0, T] such that (3.5) has a unique solution curve (z; ¢,

x)eC([o, T,]); C(Q)* passing (4, x). If we put xo(t, x) =%(0; ¢, x), then
(3.6) P (%) =pom (xo (L, x))

is a desired solution. Q.E.D.

§4. Proof of Theorem (second step). Let {f; (% x)},.—; be a sequence of functions
such that f, (¢, x) €C'([0, T,1; L*(Q)*) and f,, (t, x)—>f (¢, x) in L*(0, T;; L*(Q)%) and let

us consider the Cauchy problem for a system of ordinary differential equations:

m

kg a»l( )ddf amk(t)+ 2 ﬁjk](l‘)amk( )dml([)'f'/l]am](t)

(4.1) :yf?(t), Jj=1 - m,
amk (0) = [ 0000 -y (W) dx, k=1, = m
where
(4.2) 5 (0= [ o (1 )90 P (1) d,
43 BO=] w6 DB ) Yr (D) ey (D) d,

(4.4) V1= [ o (600 (1, )+ ) d

and pyy, (4 x) is a solution of (3.4).

The follwing lemma is easily obtained.
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There exists a number T, <(0, T,] such that (4.1) has a unique solution
(dml(t) » s A (1)) EC]([O, Tg])m.

Lemma 4.1.

If we set vy, (4, x) = Z ayk () Yp(x), then we have
k=1

Lemma 4.2.

There exist a number T' € (0, Ty] and constant ¢ >0 which are indepen-
dent of m such that

(4.5) I omome 120, T; L2(Q)%) + lom IL=(0, T”; HL(Q))

+lom IL2(0, T H2(Q)®) =c.

Proof. If we muitiply (4.1) by %am]‘(t) and sum over j=1, ---, m, then we get that

(4.6) fﬂpm|11mt|2dx+f0pm{(vm~V)vm}-vm[dx

1 d

+7WJOIV vy |Pdx = J‘O/’mfm *vyppdx.

Next multiplying (4.1) by Ajay,;(#) and summing over j=1, ---, m, then we obtain that

4.7) fﬂlPAum

“dx= fnﬁmb'mt'PAvmdx
+ fﬂpm{ (Z)m 'V) Z);n } 'PAUmdx—vrnpmfm 'PAUmdx.

By the way, let ¥ €H}(Q) NH*(Q), then for any & with 0= ¢ =<1 there exists a constant
¢;>>0 dependent only on ¢ and Q such that

(4.8) Ll gi-o() < e IVulizg | Aullzg

holds. Hence we find that

. 2 2
(4.9) fﬂ\ O |21V 0 1202 < 3| 0 | 2023000 19 0 200

873
;1 Vo iz 1A

1/3
m I L@

8 2
Sc Vel 2 terlPAvy 12,

where ¢,, ¢; and ¢, are independent of # and &, will be determined later on. Then we have
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1 d — 2
(4.10) 5 ar 1 Vom iz + | Vomomi | iz
1, - 2
é?” \/pmvmt ” L2(Q) + &1 H PAUm ” ?‘2(0) + Cs H va H iZ(Q) + Cs ”fm ” i?(ﬂ)
and
2 3 2 —— 2
(4. 11) I PAlx‘m [ L2(q) = (I"‘ 51) [ PAUm [ L2t Cs [ VPmUmt ” L)

] 2
+ 51V oy iz +c5l fm iz,

where ¢; is independent of .

Let e=1/4c¢5 and e,=¢/8(e+1), then (4.10) +¢(4.11) implies that

1 d 2
(4.12) TR”VUWZ Iz + H vPmVmt I 2q) T HPAl’m (S

} 2
=cs(IVoy, Hi?(m‘f“ I 50 12000

where ¢¢ is independent of m.
Therefore we find that there exist a number T'€ (O, T,] and ¢’ >0 which are indepen-

dent of m such that

(4.13) 1V oy, 52 < ¢’ for all te€[0, T].
QED.

§5. Proof of Theorem (third step). In this section we examine the consequences
obtained in §§3 and 4.

Let BR be a closed ball in C* ([0, T'])™ with radius R< (¢’/1,)"* and let (@, (¢),
T (1)) €BR.

On the other hand, by (3.3), (4.13) and Poincaré’s lemma, we find that

1 2
(5.1) 2 amk(l‘)ﬁva HL(m “VUmHLm </11§R“

and consequently

(52) (dml(t), * am;n(t))EBRncl([O, T,])m
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Therefore we can conclude the map (@y,1(8), =, @ (1)) = (@1 (8, -, @ (1)) is
compact from BR into itself and it has a fixed point. Namely this fixed point and p, (¢,
x) defined by (3.6) solve (3.4) and (4.1)and satisfy the estimates obtained in §§3 and 4.
Moreover it follows from these estimates that we can extract subsequences, still denoted

by py and vy, such that

(5.3) pm—p weak* in L ([0, T'I X Q)
and

(5.4) vy—v weak* in L=(0, T'; HL(Q)) and weakly in L*(0, T' ; H*(Q))
and that

(5.5) lomt IL=(0, T; HY(Q)) =7

where ¢:>0 is independent of .

§6. Proof of Theorem (fourth step). Let ¥, (4 x) and 6(;;, (x) be the regularization

[

3 7 23 . . . - .
of S (v, + vf/.)’ and fp(x) — 6 respectively, where v is in (5.4), and consider the

2 k=1

following initial-boundary value problem:

3
cypm (Bt + _210'7»« mej) =xDbpyt ¥y,
=

Then this has a unique classical solution 8, ({, x) clearly. Moreover we have
Lemma 6.1. There exists a constant ¢>0 independent of m such that
6.2) I ¥ombm 117 (0, T'; L2(@)) + 1 6m 1120, T'; H(Q)) =C.

Proof. We can easily obtain the equality:

6.3) %anpma%,,dxﬂ f (’Jﬂivem ’dxdt
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:%fnpomﬁémdx+‘fojnwm9mdxdt

It follows from Hélder’s inequality, Sobolev’s imbedding theorem and the properties of

mollifier that

(6.4) [right hand side of (6.3)|
=cglvd ZL“”'(o, T HL @) Lol ;_3(0, T HAQ)

evMA1)

x 2 c -
Jfj”‘-/'@mHL3<0.T’;L3<9))+ Y 5 160— 6112,

where ¢¢>0 is independent of .

Therefore the desired estimate is accomplished. Q.E.D.

§7. Proof of Theorem (final step). In this section we shall consider the convergence
of nonlinear terms as m—co. For that purpose we rely on Lions[3].

The consequence that p,;, is bounded in L*([0, T'] XQ), vy, is bounded in L* (0, T'; H,
(Q)) and p,y is bounded in L*(0, T'; H'(Q)) and the compensated compactness imply that
PmVm—pv and p;,8,—p0 in the sense of distributions.

Next it follows from estimates obtained in §§3, 4 and 5 that p,,v’, is bounded in L*(0,
T; L°(Q)) and (py,27,) ¢ is bounded in L?(0, T"; H'(Q)), j=1, 2, 3. Thus we can extract a
subsequence, still denoted by p,,vl,, such that py,vl,—& weakly in L*(0, T'; L°(Q)).
Therefore the compensated compactness implies that p,,v), v, — &v and PV O — &6, j=

1, 2, 3, in the sense of distributions. But we have already shown that &= pu/. So we find
that the limit functions p (¢, x), v (¢, x) and 4(¢, x) satisfy the conditions in Definition.

This completes the proof of Theorem.
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