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Uniqueness in the Cauchy Problem
for Some System of Nonlinear Equations

Shigeharu ITOH
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Abstract. \Ve give a sufficient condition on the uniqueness in the Cauchy problem for

a system of nonlinear equations related to one dimensional motion of viscous isentropic

gas.

§1. Introduction and Result

The purpose of the present paper is to show the uniqueness in the Cauchy problem for

the system

(1.1)

under suitable assumptions.

We can easily find that (1.1) is formally rewritten to the system

(1.2)

This is the system of the Navier-Stokes equations of compressible, isentropic flow in

Lagrangean coordinates. Here v, U and p are the specific volume, velocity and pressure in

the fluid, and one usually takesp(v)=v-Y(y>1) and k'(v)=v- 1 in gas dynamics.

By the way, in [1] Hoff succeeded to prove the existence of global weak solutions for

the system (1. 2) with discontinuous initial data (vo, uo) (x) satisfying c-1;;;:; Vo (x) ;;;:; c for

some positve constant c, vo-v'EL2 nBV for some fixed v'>O and uoEL2
; however, he did

not prove the uniqueness of solutions.

Generally speaking, in nonlinear problem uniqueness theorems cannot compare with

existence theorems for number. This is more striking in the case of nonsmooth initial data.

Now let us define a weak solution of the Cauchy problem for the system (1.1).
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Definition. We say that (v, u) (t, x) is a weak solution of the Cauchy problem for the

system 0.1) if for any CD-functions qJ and f with compact support in x such that qJ(T,

x) =f(T, x) =0,

and

0.4) S:SR (uft+ p (v) fx+ k (v) ftx)dtdx

+ SR(uo(X)f(O, x) -k(vo)fx(O, x))dx=O.

hold.

Next we explain the basic idea in [IJ. A result of Hoff-Smoller [2J shows that, due

to the parabolicity in the second equation in (1. 2), discontinuities in Uo (x) must be

smoothed out t>O, but that discontinuities in vo(x) persist for all t. Then Rankine

Hugoniot condition s[vJ = - [uJ ([vJ (resp. [uJ) denotes the jump in v (resp. u) across the

discontinuity and s the speed of the discontinuity) implies that s = 0. That is, we expect

that discontinuities in v propagates along the particle path x = constant and that u is

continuous in t >0. Though we cannot go into details here, a solution obtained in [IJ has

the properties that [-1 ~ v (t, x) ~ [ for some positive constant [ and v (t, x) is piecewise

Holder continuous, where we use Chapter 2 Lemma 3.1 in [3J to get this.

Under the above observation, we have

Theorem. Suppose that

0.5) p(v), k(V)EC 2(V>0)

and

0.6) there exists a constant 0' >°such that k' (v) ~ 0'.

If weak solutions of the Cauchy problem for (1.1) satisfy the conditions that v (t, x) 1S

piecewise HiJ"lder continuous and u (t, x) is continuous, then the uniqueness holds almost

everywhere in t>°.
§2. Proof of Theorem

Let (VI, Ul) and (V2' u2) be two solutions with the same initial data and set
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and

Then by (1. 3) and (1. 4) we find that

Now we assume that VI] is discontinuous at X=Xl, ... , Xm,
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For j=O,···, m, we set 0j=(Xj, Xj+l) and QT,j=(O, T]XOj, where xo=-oo and

xm+l =00.

For any f,gEC~'([O, T] xR), we set

f} (I, x) = {~
in QT,j

otherwise, j=O,···, m

and

gj(l, x) = {~
in QT,j

otherwise, j=O, m

and consider the following boundary value problem.

(2.4)

1/I'jt - CfJjx =Ij

CfJjt +a1/l'jx + b1/l'jtx = gj

CfJj(T, x) = 1/I'j(T, x) =0

in QT,j

on OJ

Lemma 2.1. For every j zvith j =0, ... , m, the system (2.4) possesses solutions CfJj and

1/I'j such that CfJj, CfJjt, CfJjx 1/I'j, 1/I'jt, 1/I'jx and 1/I'jtx are bounded and continuous in QT,i

Proof Using the first equation in (2.4), we can rewrite the second equation in (2.4)

to

CfJjt +a1/l'jx + bCfJjxx = gj - bfjx·

We prove this lemma by the method of successive approximation and consider the follow

ing scheme.
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1/r~t= fj

(2.5)~

cp~(T, x)=1/r~(T, x)=O

and for i~l,

(2.5);
cp;(T, x) =1/r5(T, x) =0

cp;:1 anj=O.

We note that a and b are Holder continuous in QT,j with the exponent aj, where aj is

Holder exponent of v in QT,j, and 0.6).

Then, inductively we find that for j =0, "', m, r =0,1 and s =0,1,2,

and since f, g E C~: ( [0, T] x R), for j =0, m, r =0,1 and s =0,1,2

as Ixl-+oo , where c is a positive constant. Let

ex:: co

1/rj= ~ 1/rf and cp)= ~ cp;,
i=O . i=O·

then we have the assertion of this lemma. Q.E.D.

Lemma 2.2.. There exists a positive constant M such that ICPol ~Mex in QT,O

and ICPm I~ Me - x in QT, m

Proof
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We set

w~=Mjexp (-x+ A (T- t)) ±cpm,

where M1 and A are sufficiently large constants. Then

Lw ~ = M 1 ( - A + b) exp ( - x +A (T - t) ) ± Gm ;£ 0,

if we refer to the estimate in the proof of Lemma 2.1. Moreover

and

Hence by the comparison theorem, we find that w ez ~ o. Therefore

ICPm 1;£ M lexp (-x+ A (T- t));£ Me-x.

The estimate for CPo is similar.

Lemma 2.3. CPox and CPmx are in L 2 with respect to x.

Proof If we apply Lemma 2.1 and Lemma 2.2 to

then the assertion is easily seen by the direct calculation.
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Q.E.D.

Q.E.D.

Remark. From the first equation in (2.4) and Lemma 2.3, we have that fo, fot, fm

and fmt are in L2 with respect to x.

Now we put

in QT,j

otherwise
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and

m
cp= ~ cp'.

j=O 'J

;j; is defined by the same method.

Proof of Theorem. Let X N (x) be a C:C-function satisfying the following property:

(2.7)
for Ixl ~N

for Ixl ~N +1

and let ;ph (resp. fh) be the regularization of ;p (resp. f).

Substituting X N cph and X N;j;h for 0.3) and 0.4) respectively, then we have

0= S: S R[ (UI- U2) { (X N;j;h) t- (X Ncph) x}

+ (VI - V2){ (X N cph) t + a (X N ;j;h) X + b (X N ;j;h) tx}] dtdx

= S: S R [(UI- uz)XN (;j;t- CPx) + (v I- V2) XN (cpt +a;j;x+ b;j;tx)] dtdx

+ S:SR[(UI-U2)XN{(;j;7-;j;t)-(CP~-CPx)}

+ (VI-V2)XN{ (cp7-CPt) +a(;j;~-fx) +b(;j;7x-;j;LJ }]dtdx

STS -h -h -h+ () RXNx{ (UI-U2) (-q;) + (V I-V2) (af +bft) }dtdx

From Lemma 2.1 and the definition of ;p and f, we get that for sufficiently large N,

I I = S: SR{ (U I - U 2) X N f + (V 1 - V 2) X N g }d tdx

= S:S R{ (u 1-u2)f+ (vl-v2)g}dtdx.

Next for any E>0 and a fixed N, 11'21 <E/2 as h~O.

Moreover we note that X Nx=O for Ixl ~N and Ixl ~N +1. From Lemma 2.2, Lemma 2.3
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and Remark, we obtain that for any E >0 and a sufficiently large N, IJ 31 < E /2.

Therefore we find that for any E >0,

Hence we have the conclusion by the arbitrariness of f and g.

This completes the proof.
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