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On the Euler Equations of a Nonhomogeneous
Ideal Incompressible Fluid
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Abstract.
It is shown here that the Cauchy problem for the Euler equations of a nonhomogeneous
ideal incompressible fluid has a unique solution for a small time interval. The existence

of a solution is established by applying the method of the semi Galerkin approximations.

§1. Introduction.

Consider the system of equations

ptveVp=0
plo,+ (W) v]+Vp=pf (1.1)
divv=0

in QT:]RBX [0,T], subject to the initial conditions

{plt=o=p0(x) 0.2

vl ==y (x).

Here f (x,t), p,(x) and v (x) are given, while the density p (x,¢), the velocity vector v (x,

=" (xt), v2(xt), v*(xt)) and the pressure p(x,¢) are unknowns. The system (1.1)
describes the motion of a nonhomogeneous ideal incompressible fluid.

Our theorem is the following.

Theorem. Assume that

po(X)—p CH*(R®) for some positive constant p, (1.3)

inf p,(x) =m>0 and supp,(x) =M< oo, (1.4)
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vo(x)EHs(IRa) and div vy=0 (1.5)
and

flx, HELY0, T: HY(RY). (1.6)

Then there exists T*& (0, T] such that the problem (1.1) and (1.2) has a unique solution
(p, v, p) which satisfies

(p—p, v, Vp)ELT(0,T*: H*(R*) xL7(0,T*: H3(R®) xL*(0,T*: H*(R?)).
(1.7)

§2. Preliminaries.
In this section we shall obtain an a priori estimate for solutions of (1.1) and (1.2). Let
(p,v,p) be a sufficiently regular solution. We assume, for simplicity, f =0. The general

case can be treated in the same way.

Lemma 2.1. I_f we put p—p P, then
dt 3 3 3

where ¢, is a positive constant depending only on imbedding theorems

and | ¢ | [ =]

'HE(RY)
Proof. 1t follows (1.1), and (1.2), that p satisfies the equation

k=

P+ 0v-Vp=0
{ ! (2.2)

Plio=pyx).

Applying the operator D (=(8/ox,) “1(3/ox,) “2(8/ax,) %) to (2.2),, multiplying the
result by D “p, integrating over R® and adding in @ with |e| (= a,ta,+a,;) <3, then we

have
d . 2_ . 2 )
Ellp(t) ||3:c2||v(l‘) H3 I3 (t) Hg. (2.3

Hence it is easy to see that (2.1) holds.
Q.E.D.
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Lemma 2.2. Put

3
()=, IVp(t) DD, (2.4)
70 [alj
Then we have
-(%@(t)éc3[l+liﬁ(t) I, +@ )7, (2.5)

where c, is a positive constant depending only on m, M and imbedding theorems.

Proof. We first note that

m<p(xt) <M, (2.6)
since we have the representation

p(x8)=py (3 (zxt) | ), @.7)

where y(z,x,t) is the solution of the Cauchy problem

%:v(y,r)
T (2.8)
¥l =
Therefore we find that
Jm vl éq)(t)éx/ﬁ\\v\la. (2.9)

(i) We multiply (1.1), by v and integrate over R®. Taking account of (1.1), and
(1.1),, we get

d _
Wllﬁulo =0. (2.10)

Multiplying by v, and integrating over ]R3, then
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2
-
rr1||v,||0=1\/1||v||1 ||Dv||1 ||v,\|0 , (2.11)
where we use the notation D *u= ; D“u. Thus
la|=k

o, <c,llol . (2.12)

(ii) Apply the operator D“ with |a|=1 on each side of (1.1),, multiply the result by

D“v and integrate over R®. Noting (2.9) and (2.12), then, similarly to (i), we get
1d
2 dt

2 2 2 2
=c;(1Dpl, 10l Iy o Dol +1Dvl, I p Dol +1Dpl, vl 4 p Dol ).

2 2 2
IV o Dol 1Dpl Io,l 1ol +1Del, 1Y o Dol +IDpl, lol, I Dol

(2.13)
Hence we have
d . 3
Fll«/pMlloécs(lﬂleIIQ+||1JH3) . (2.14)
If we multiply by D “v, and integrate over R3, then we obtain
2 2
mIIDv,IIO§C7(IID/JII2 ||v,||0 IIthIIO +HvH2 D vll0 IIDU,IIO
2
+IIDUHIHD1},H0 +||D/JH2 ||v||2 HDvII0 HDv,H0 ). (2.15)
Therefore
2
IIthII0 §68(1+||Dp\|2)\|v||2. (2.16)

(iii) Making use of the operator D“ with |a&|=2 in place of the operator D with

|@| =1 and repeating the argument in (ii), we have
d 2 4
Ellv/JDvIlO §69(1+||Dp”2+\|v|\3) | (2.17)

and
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2
ID%0,ll ¢\, (1+1Dpl,) N0l (2.18)

(iv) Apply the operator D with |a|=3 to (1.1),, multiply by D “v and integrate over

R® Then, we get
d
47 1V p Dol Sey A+1Dpl, +lvl )", (2.19)

Consequently, it follows from (2.10), (2.14),(2.17) and (2.19) that (2.5) holds.
Q.E.D.

Proposition 2.3. There exists T*< (0,T] such that

15(2) "3 +lo(t) H3 <c¢  for t<T%, (2.20)

where ¢ is a positve constant depending only om m, M, Il 5 I ”0”3 and imbedding

theorems.

Proof. If we set
Y(@) =1+l 1, + (), (2.21)

then, from Lemma 2.1 and Lemma 2.2, we have a differential inequality

%«y t) <ew (1) (2.22)

where &=c,;+c¢,;. Thus we conclude that

V()W) 148w (0 as long as t< (4e¥(0)") L. (2.23)
QE.D.

§3. Proof of Theorem.
We solve the problem (1.1) and (1.2) by applying the semi Galerkin method with the

basis {@,(x)} in H*(R® ~J, where J:{uE{C;O(]RB) % div u=0}. Let us look for pnlxt)

and
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v, (5t) = Da, () @ (x) (3.1)
j=1
satisfying

pnt+ Un.vpn:o

((p, [0, * (0,"V)v,], @) =0, k=1,m

(3.2)
Pyl i=g=py(x)
Un|!=0:20j ?;(x), af':f 3ot @ A,
p=i R
where ((+ , *)) stands for the scalar product in H*(R®).
If we multiply (3.2), by a,,(¢) and add in %, then we obtain
((p,lv,+ (v,*V)v,], v,))=0. (3.3)
Therefore, similar to §2, a priori estimates
m=p (x¢) <M (3.4)
and
I3, ||3 +lw, () 3§c for t=<T* (3.5)

hold. These estimates guarantee the unique solvability of the problem (3.2), and, further-
more, permit to pass to the limit using the standard compactness arguments (cf. [1], [2],
[3]).
Hence we can verify the existence of a unique solution of the problem (1.1) and (1.2)
as well as the applicability of the inequalities (2.6) and (2.20).
This completes the proof.
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