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ON THE VANISHING VISCOSITY IN THE CAUCHY PROBLEM
FOR EQUATIONS OF A NONHOMOGENEOQOUS
INCOMPRESSIBLE FLUID 1I
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ABSTRACT We investigate the Cauchy problem for Euler and Navier-Stokes equations
of a nonhomogeneous incompressible fluid in R®. The unique solvability on a small time
interval independent of viscosity is proved, and moreover, it is shown that the solution of
Navier-Stokes equations converges in some Hilbert space to the one of Euler equations as

viscosity tends to zero.

Key words : Incompressible fluid, Navier-Stokes equations, Euler equations, Vanishing

viscosity

1. INTRODUCTION

We consider the system of equations

p;Tve-Vp=0,
(1.1) plo,+ (v V)o]+Vp=ptv+pf,
diveo =0,

in Q. =R*x[0,7],T>0, subject to the initial conditions

pli—g=py(x),
(1.2) { e

v|,—g=v,(x).

Here f (x,t) is a given vector field of external forces, while the density p (x,¢), the velocity

vector v (x,t) and the pressure p(x,¢) are the unknowns. The viscosity coefficient y is
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assumed to be a nonnegative constant.
In these equations, p (x,¢) is automatically determined (up to a function of ¢) by

p(x,t) and v(x,t), namely, by solving the equation
(1.3) div(p 'vp) =div(f — (v V) v+up *AD).

Thus we mention (p,v) when we talk about the solution of problem (1.1), (1.2).
Compared with the previous paper [2], in which the similar results were proved, we
discuss the problem under the weaker assumptions to given data.

The purpose of this paper is to prove

Theorem. Let 0< 4 <1, and assume that

(1.4) po () ECURY), Vp,(x) cH (RY), 0<m<p (x) <M <co,
(1.5) v, () EHX(RY), div v,=0,
(1.6) fa el (0, T:H*(RY).

Then there exists Ty=(0,T | independent of u such that problem (1.1), (1.2) has a unique

solution (p,v) (x,t) which satisfies

.7
pEHECU R ) [0,T,1), Volxt)EC([0,T,]; H*(RY)) 0<m<p(xt) <M<oo,

(1.8) v(xHEC([0,T,]; H (RY).

Furthrmore, let (p°, v°) be the solution of problem (1.1), (1.2) with 4 =0 and (p*, v*) the

one with u>0, then we have

0_ u 0_ u — —
(1.9) Ossugn[" (o' —p*) (D) I, + 1 (0" —0*) () 1,10 as u—0,
where| |, =+l gugs-

2. PRELIMINARIES

In this section we establish several a priori estimates for solutions of problem (1.1),
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(1.2). Let (p,v) (x,t) be a sufficiently regular solution. Hereafter C stands for the generic

constant independent of 4.

Lemma 2.1. Let
2.1 qr(t)=f0'£1+||w<s>n§+uv(s>nﬁ]zds,

then the estimates

(2.2) m<p(xt) <M

and

(2.3) 170 () 1219 g2+ Cw (8)
hold.

Proof. It is well-known that, according to the classical method of characteristics, the

solution of problem (1.1),, (1.2), is given by

(2.4) pxt)=p,(y(zxt)] ),
where y(7,x,¢) is the solution of the Cauchy problem

ay
——=v{y1),
2.5) dr

y,==x

From this, the estimate (2.2) results.
Next let us establish (2.3). Apply the operator D on each side of (1.1),. Multiplying

the result by D?p, integrating over IR® and summing over|a|=1, 2, 3, we have the equality

d 2 « \pe
L1vpwii=-3 [ - v Dpas

la|=1

(2.6)

0O | =

3
-3 3 (z)‘/];g(va°VD:_ﬂp)D:pdx.

la|=10<g<a
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The first term of the right hand side is zero, by integration by parts, since div v =0. The

second term can be estimated as follows:

3
s 3 (g){fw<pfv.vag—ﬂp>pgpdx <CIVo®OIIVp D12

lel=1 0<g<a

Hence we get
d 2 2
2.7 Ellvp(t) SCIVo @) LIV p ()15,

and thus (2.3) is obtained. [l

Lemma 2.2. If we put

2 2 r 2
(2.8) A=1+1Vpyly+ v l5+ ) If (8) I3dt,
then we have the inequality

2.9) i+ [ oo it +u [ 17 o i< crarem?

Proof. By applying the operator D} on both sides of (1.1),, we obtain the equation

(2.10) plDv,+ (v V)D;v]+VD;p

=usDiv— 23, (§) DD’

0<f<a

-5 (3) S (§) prewt e ins e
0<y<p

0<g<a

+ 3 (g) DPpD%Ff

0<p<a

Step 1. Multiplying (2.10) by D7 v and integrating over R®, then by making use of
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(1.1)1,3, (2.2), we have the inequalities

(2.110) L Joo e+l Vo2 CIf ol

DO | =

and for £=1,2,3,

(2.11;k)

VB ol ul

DN | =
Q.‘Q‘

SCUVpl v, lol;+ A+1vply) A+ Hng) lol,]
<C[|\Vp\| lo |2 s A+l U+l )||v||3]+ v, ||
Step 2. If we multiply (2.10) by D{v, and integrate over R®, then we obtain

(2.12;0) mlv,|? +’2‘ jtnwu C[||v||§+||f||§]+’§nv,u§

and for k=1, 2,

d

(2.12:k) ml V¥ ||+2 o

k+1 2
Loy

<CUVplle i+ A+1Vpl) 15+ uv||§)]+’§||vkvtn§,
which mean
) 2, d 2o 4 2
(2.13;0) m|Iv,\lﬁ,u;;llVUIIO_C[IIUIIZ+ 17151

and for k=1, 2,

k+1 H2

(2.13k) mlv*, |2 +”EHV 0

37
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SCUTplilv, -+ A+1pl) U1+ 1013,

Step 3. Adding (2.11;1) to (2.13;0), we get
da 2 2,12 2,4 d 2
(2.14) dt” Ve Volg+2ull vl!0+mHvt||0+2,udtHVvH0
< 2 2\ 2 2
SCLA+IVplz+ )"+ 1151,
and noting that 0< <1,
t t

(2.15) ||Vv||§+j; Hv,ll(z)ds-wz/; IV°0ids<CLA+¥(1)].
Step 4. If we add (2.11;2) to (2.13;1), then we obtain

2.16) L) BTl 2 02+ m |0 1P+ 20 L1920 |2
. a1 VP Vvl 2u vlgtmiVoll+2u—; vl

<CLA+IVpli+Iv]3)? X Ak
> Pl 1o+ A+1vply) (o, I5+ 11571,

Hence, due to (2.3) and (2.15),

(2.17) 19212 d 2 flod 12 o< 2
. v+ . 170, llgds + . IV°vll; ds<SCLA+® ()],
Step 5. Add (2.11;3) to (2.13;2). Similarly to the above, we have

d 312 4 2 2 2 d,3 2

(2.18) a’t“ Ve Vulg+2ul oli+ml~v v,\|0+2,udt||v vl

SCLa+1vpli+1015) %+ A+19pl3) (v I3 +1£191,
and thus,
3 .2 tio2 2 fod 2 3

(2.19) v v||0+‘/; v U,’|6d8+/t./(: IV vl dsSCLA+¥(#)]°.

Consequently, from (2.11;0), (2.15), (2.17), (2.19) , we find that (2.9) is deduced.
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Lemma 2.3. There exists T, < (0, T] independent of u such that

(2.20) V(1) <A for t<T,.

Proof. 1If we set Y (t)=w¥(t)+ A, then from Lemma 2.1, 2.2, we have a differential
inequality

d

3
EY(!)SCY (1.

(2.21)

Therefore we find that

(2.22) Y (< — A provided 1< (2CA%) 7Y,
J1—-2CA%*
and thus
3
. < < -2
(2.23) V() <A for ST =g O]

3. PROOF OF THEOREM
First, we note that from Lemma 2.1, 2.2, 2.3, the estimate

(3.1)

2 2 T 2 L 2 <
s (Ve O+ 1w+ [ Tlo Ol +u [ 1900 Bdr<c

is valid.

The unique solvability of problem (1.1), (1.2) is proved with semi Galerkin method based
on (3.1). As this process is parallel with that of [1, Chapter 3] , we omit it here and
restrict ourselves to establish (1.9).

Subtracting (1.1) with x>0 from (1.1) with =0, we get the following linear system of

equations for o=p"—p*, w=0"—v* and g=p"—p* :
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o, tv"«Vo=—w - Vpo,
p“lw,+ (" - VIwl+Vg=—p"(w + V) "+ (V%0 e —prv*,
(3.2 div w=0,

6|t=0:0’

wl,_,=0.

In the same way for getting a priori estimates, we have from (3.1),

(3.3) lo(t) ||§sc‘/;’ lw (s) I5ds
and
2 t 2 2
(3.4) ||w<t>u2scf0 (I (s) 12+ 10 () 12) ds + uCTy,

Hence, by Gronwall’s inequality, we find that
(3.5) lo (O 15+ lw(t) 15<uCT exp(CT,).

This completes the proof of Theorem.
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