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ON THE EULER EQUATIONS OF NONHOMOGENEOUS
INCOMPRESSIBLE PERFECT FLUIDS
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ABSTRACT. We consider the unique solvability of the initial-boundary value problem

to the Euler equations for a nonhomogeneous incompressible fluid in a bounded or un-

bounded domain in IR3
.

§1. Introduction

Let 0 be a bounded or unbounded domain in IR3 with a smooth boundary S. We consider

the system of equations

0.1)

!

Pt+V. vp=O,

p[vt+(v· V) v] +vP=P.{,

div v=O,

in QT=OX [O,T], T>O, wheref(x,t) is a given vector field of external forces, while the

density P (x,t), the velocity vector v (x,t) and the pressure p (x,t) are the unknowns.

In this paper, we solve 0.1) under the following initial-boundary conditions:

0.2) !
v • n Is =0,

T

plt=o=Po(x),

vlt=o=vo(x),

where n is the unit outward normal to 5, and 5 T = 5 x [0, T] .

In the previous paper [2], [3], we discuss the problem in the case O=IR3.

Our theorem is the following.
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Theorem. Assume that

(1. 3)

(1.4)

(1. 5)

Then there exists ToE (0, T] such that problem (1.1), (1.2) has a unique solution (p, v,p) (x,

t) which satisfies

§2. Auxiliary Problems

We assume that v (x, t) ECo ([0, T]; H 3 (0)) is a given vector field such that div v =0 and

v • nl s =0. Hereafter c/s are the positive constants depending only on the imbedding
T

theorems.

Lemma 2.1. Under the assumption (1.3), problem

(2.1)
{

Pt+v. vp=O,

plt=o=po(x),

has a unique solution p(x,t)ECo(QT) with vp(x,t)ECo([O,T]; H 2(0)), which satisfies

the estimates

(2.2)

and

m~p(x,t)~M



(2.3)

EULER EQUATIONS

d
&11 v p (t) "2 :::; c1 11 Vv (t) 11 2 11 V p (t) 11 2,

37

where II • II k = II • II H k (0) •

Moreover, if we put ~ (x, t) = p (x, t) -1, then the estimates

(2.4)

and

(2.5)

are valid.

Proof The way to derive (2.2) and (2.3) is just like that of Lemma 2.1 in [3J. If we note

that ~ (x, t) satisfies the equation

{
~t+v.v~=O'

~lt=o=Po(X) -1 == ~o(x),

the estimates (2.4) and (2.5) directly follow from (2.2) and (2.3).

Lemma 2.2. Let p (x,t) be the unique solution of (2.1) guaranteed in Lemma 2.1 and

f (x, t) ECo ([0, TJ,. H 3 (0)). Then problem

o

(2.6)

has a unique solution p(x,t) with vP(x,t)ECo([O,TJ; H 3 (O)), satisfying

(2.7) II v p (t) 11 3 :::; K 1 ( II v ~ (t) 11 2) (Ilf (t) 11 3+ II v (t) II ~) ,

where K 1 is a nondecreasing function of II v ~(t) "2, depending on m and M. Hereafter,

K j'S are functions, having the same properties as K 1.



38

Proof We first note that (2.6) 1 comes from applying the divergence operator on both sides

of (1.1) 2 and (2.6) 2 from taking the scalar product of each side of (1.1) 2 with n (d.

Temam [5J). It is well-known from Agmon-Douglis-irenberg [1] that problem (2.6) is

solvable in H 3 (0) and the estimate

is valid. Hence we can immediately get (2.7). D

Lemma 2.3. Let p (x, t) and f (x, t) be the same as in Lemma 2.2 and p (x, t) the unique

solution of (2.6). Then problem

(2.8)
{

Ut+(~' 'V)u=-~'Vp+j,

ul t=o- vo(x),

has a unique solution u(x,t)ECo([O,TJ; H 3 (0)). Moreover, u(x,t) satisfies

Proof Referring to Lemma 2.1, we should only estimate the term

3

~ rD: (f - ~\7p) • D: udx.
lal=O Jn

Since

±.DD; (~'Vp) II D;u Idx:':: m -III 'VP 11,11 ull,+ II 'V ~II,II 'Vp 11,11 'V u II,
lal=O n

~K 3 ( II \7 ~ 11 2) (Ilf 11 3+ II v II ~) II U 11 3,

the desired estimate is obtained.

§3. Successive Approximations

D

In order to prove Theorem, we use the method of successive approximations in the

following form:
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(3.1)

and for k = 1,2,3,···, p (k), P(k) and u (k) are, respectively, the solutions of problems

(3.2)

(3.3)

and

(3.4)

Finally, let

(3.5)

3

1

div(~(k)\7p(k)) =div I - ~ v(k-ll,i V (k-1),j,
~ XJ Xl

i,j=1

(k) 3
~(k)~ls=l. n+ ~ v(k-ll,i v (k-ll,j4Jij, ~(k)= (p(k)) -1,

an i,j=1

{

u;k)+ (v(k-ll • \7)u(k)=_~(k)\7p(k)+f,

u(k) It=o= vo(x).

v (k) = U (k) - \71/1' (k),

where 1/1' (k) is the solution of problem

(3.6)

Lemma 3.1. The sequence {v (k)} k is bounded in CO ([0, T oJ ;H3 CO)) lor a sufficiently small

ToE (0, TJ.

Proof From the consequences in section 2, we obtain
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since

Let us choose

and define

Then we find that

Therefore, by induction, we have the assertion of the lemma.

By the direct calculation, we get

Lemma 3.2. For k = 1,2,3,· •• , the estimates

and

hold.

D
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and w(k)=v(k)_v(k-1),

(4,1)

(4,2)

(4,3)

Then we have

{

~(k) + (k-1) '7 ~(k) (k-1) '7 (k-1)
Vt v ·vv =-w ·vp ,

(k) I
f5 t=o=O,

(k) + (k-1) '7 (k) (k-1) '7 t:(k-1)
17t v ·v17 =-w ·v~ ,

(k) I
17 t=o=O,

3

!d
' (t:(k)'7 (k))=-d' ( (k)vp(k-1))_~ ( (k.-1),i (k.-1)J+ (k-Z),i (k.-1),j)
IV ~ v q IV 17 ~ wX

J
V x, V Xj W x, '

i,j=l

(k) 3 (k-1)
t:(k)aq I =~ ( (k-1),i (k-1)J+ (k-Z),i (k-1),j),/..ij _ (k)ap I
~ -- s ~ w v v W 'f' 17 -- s,

an 0=1 an

and

(4,4)

h;k)+(V(k-1). v)h(k)+~(k)vq(k)=_(w(k-1).v)u(k-1)-17(k)vp(k-ll,

(k) Ih t=o=O,

Let L be the generic constant depending on m, M, II v p 0 liz, II Vo11 3, II! II CO ([0, T] ;H3 (0)) and T,

then, in the same way used for getting the estimates of p, p and u, we get

and
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From these inequalities, since

it follows that

Consequently, we have

Therefore we find that
00

~ II W (k) II eD([o, ToJ;H'(!1)) <00.

k=l

This implies that (p (k), p(k), u(k), v(k) (x,t)-(p,p,u,v) (x,t) as k-oo , which satisfies the

equations

(4.5)

Pt+v· vp=O,

div((v • v) v+p -lvP-f) =0,

u t + (v. v)u+p-1vp=j,

D,. Vr =div u,

v=u-vVr,

((v· v)v+p-1vP-f) • nl s =0,
T,

(u-vVr) • nl s =0,
T,

p!t=o=Po(x),

ult=o=vo(x).

Now let us show that u = v. Applying the divergence operator on both sides of (4.5) 3 and

taking into account (4.5) 2,4,5' we get



(4.6)
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(div U) t +V • v (div U) = - ~ V:jVr XiX/

i,j= 1
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If we take the scalar product of each side of (4.5) 3 with n, we obtain

(4.7)
3

(u • n) t + V • V (u • n) = ~ vi Vrx/I> ij.
i,j=l

Nothing that div V =0, V • nl s =0 and
To

we have the inequality

(4.8)

which means div u=o and u • n I 5 = O.
To

This completes the proof of Theorem.
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