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Holomorphic Distributions on a Generic Submanifold
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Abstract

An integral formula for the Ricci tensor of a generic submanifold immersed in a complex
projective space is given. As an application, the relation of the integrability condition of the
holomorphic distribution and the Ricci curvature of a compact generic submanifold immersed in a

complex projective space is studied.
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Introduction.

The purpose of the present paper is to study the relation of the holomorphic distribution and the
Ricci curvature on a generic submanifold of a complex projective space.

Let M be an n-dimensional generic submanifold of a a complex m-dimensional projective
space CP™ with almost complex structure J and Hermitian metric g. Then JT,(M)* C T,(M),
where T,(M) and T, (M )* denote the tangent space and the normal space of M, redpectively.
Any real hypersurface is obviousely a generic submanifold. The holomorphic distribution A on
Mis defined tobe H, ={X|X € T,(M), g (X,JV)=0, VET,(M)*} for zEM.

In [1], Bejancu-Deshmukh proved that if the Ricci tensor S of a compact real hypersurface M
of CP™ satisfies S( &, &) > 0, then H is not integrable, where & denotes the structure vector of M.
We improved this result to the case that the ambient manifold is a Nearly Kaehler manifold (see
[2]).

In this paper, we study the integrability condition of /7 on a generic submanifold and give an
integral formula for the Ricci tensor and the second fundamental form of a generic submanifold
M of CP™. Our result give a generalization of the one in Bejancu-Deshmukh [1] of a real

hypersurface of a complex projective space.
1. Generic submanifolds.

Let CP™ denote the complex projective space of complex dimension m (real dimension 2m)

with constant holomorphic sectional curvature four. We denote by J the almost complex structure
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of CP™. The Hermitian metric of CP™ is denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed in CP™. We
denote by g the Riemannian metric induced on M from G.

We denote by T,,(M) and T, (M)* the tangent space and the normal space of M respectively.
If JT,,(M)* C T, (M) for any point x of M, then we call M a generic submanifold of CP™. Any
real hypersurface of CP™ is obviousely a generic submanifold of CP™.

We denote by V the operator of covariant differentiation in CP", and by V the one in
M determined by the induced metric. Then the Gauss and Weingarten formulas are given

respectively by
VyY=VyY+B(X,Y), VyV=—AyX+DyV

for any vector fields X and Y tangent to M and any vector field V' normal to M, where D denotes
the operator of covarinat differentiation with respect to the linear connection induced in the
normal bundle T ( M )* of M. We call both 4 and B the second fundamental form of M and are
related by G(B( X, Y ),V )=g(4,X,Y ). The second fundamental form 4 and B are symmetric.
Ay can be considered as a (n, n) -matrix.

The covariant derivative (VyA4) ;Y of 4 is defined to be

If (VyA),Y=0 for any vector fields X and Y tangent to M, then the second fundamental form 4
of M is said to be parallel in the direction of the normal vector V. 1f the second fundamental form
is parallel in any direction, it is said to be parallel. 1f TrA,= 0 for any vector V' normal to M, then
M is said to be minimal, where Tr denotes the trace of the operator. A vector field V normal to M
is said to be parallel if Dy} = 0 for any vector field X tangent to M.

In the sequel, we assume that M is a generic submanifold of CP™. The tangent space 7, (M) of
M is decomposed as T, (M) = H,(M)+ JT,(M)" at each point z of M, where H,, (M) denotes
the orthogonal complement of JT,,(M)* in T,,(M). Then we see that H, (M) is a holomorphic
subspace of 7, (M) .

For any vector field X tangent to M, we put

JX =PX+FX,

where PX is the tangential part of JX and FX the normal part of JX. Then P is an endomorphism
on the tangent bundle 7 (M) and F is a normal bundle valued 1-form on the tangent bundle 7' (M) .

We put JV = tV for a vector field V normal to M. Then w have P?= —I1—tF and FP =0. We
define the covariant derivatives of P and F by (VyP) Y=V (PY) —PVyYand (VyF)Y =Dy (FY)
—F'VyY, respectively. We then have

(VXP)Y:AFYX+tB()(,Y), (VXF>Y:_B()(,PY),
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VitV =—PdyX +DyV, B(X,1V)=—FAyX.

For any vector fields X and Y in JT (M )" we obtain
ApxY =Apy X.
We also have
AptU=AytV
for any vector fields U and V' normal to M.
We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is

given by
RX,Y)Z=g(Y.Z)X-g(X,Z)Y+g (PY,Z)PX — g(PX,Z) PY

for any X, Y and Z tangent to M.
The equation of Codazzi of M is given by

g ((Vyd) Y, Z) — g((VyA) v X, Z)
=gPX,Z)g(Y,tV)—g(PY,Z)g(X,tV)—2g (X, PY)g(Z,tV).
We denote by S the Ricci tensor field of M . Then
SX,Y) = (n—1)gWX,Y)+3g(PX,PY)
+ 2 Trdag (4, X, Y) = 2g (47X, Y),

where 4, is the second fundamental form in the direction of v, {v, -, vp} being an orthonormal

frame for 7, (M ). From this the scalar curvature r of M is given by
r=n—1)n+3n—-p+ > (Trd,)*— DTrd2,

where p is the codimension of M, that is, p =2m — n.

We define the curvature tensor R* of the normal bundle of M by
R (X, Y) V=DyDyV = DyDyV = Dy yV.
Then we have

gR*X, Y)V,U) +g([4y, 41X, Y)
=gY,tV)gX,tU)—gX,tV)g(Y,tU).

If R* vanishes identically, the normal connection of M is said to be flat. We can see that the
normal connection of M is flat if and only if there exist locally p mutually orthogonal unit normal
vector fields v, such that each of the v, is parallel.

Generally, we have the following formula (see [4])
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div (V y X ) — div ((divX ) X)

=S (X, X)+ 5L (X) gP— | VX[ (divX)?.
If U is a parallel section in the normal bundle of a generic submanifold M, then

Hence we have
div (tU )= — TrPA;= 0.
This implies

div(V ,;tU)=StU,tU) + % |L(tU)gP— |V U
We notice here that the following equations hold.
SU,tU) = (n—1)g (tU, tU)
+ D Trd, g (4,tU, tU) — X, g (42U, tU ),
|V tU=Trd] — ;g (A2tU,tU),

(LtU)g) (X, Y) = g (VytUY) +g(VytU X)
—g((PAy — AyP)X,Y).

2. Holomorphic distribution.

Let M be a real n-dimensional Riemannian manifold isometrically immersed in CP™. We

consider the holomorphic distribution / defined by
H:a — Hy=T,(M)NJT,(M).

We see that dimH, = n — p, where p is the codimension of M. In the following, we take an
orthonormal basis {ey,....e,—,, €n—pi1= tvy, ..., €, = tv,}, where {v,} is an orthonormal basis of
T, (M) . We use the convention that the ranges of indices are respectively:

kl,s=1,..,n—p; a,b,c=1,..,p.
Let X, Y € H. For any vector field /' normal to M, we have

g(IX,Y1,7) =g (Y, P4,) — g (X, P4,Y).

Consequently, H is integrable if and only if g ((P4,+ A, P) X, Y)=0.
We suppose that / is integrable. Let U be a parallel secion in the normal bundle of M. Then

div(— PAytU) =S(U, tU) + S|P, 4y 1P~ |ViUP,

3 |tP. 4y 1P = kZ<g (dyep, Aye) + g (PAye, PAyey) ),

where {e;} is an orthonormal basis for /.
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Thus we have
div(= P4,tU) =S(tU,tU) + ;g<PAUek, PAye),
where we have used
|V UP=Ted{ - ;g(AﬁtU, tU)= ;g Ay e, Ayey) .

Proposition 1. Let M be a compact generic submanifold of CP™ with parallel section U in the

normal bundle. If the holomorphic distribution H is integrable, then
[y IsGU, 0) + X g (PAye, PAye,)1=0.

Moreover, if S (tU, tU ) > 0, then S (tU, tU ) =0 and PAy e, =0 forall ¢, € H,, .

Lemma 1. Let M be a generic submanifold of CP™. If the holomorphic distribution H is

integrable, then

;g (Ay e, e) =0.
Proof. Forany X,Y € H,,g (PAyX,Y) +g (4, PX,Y) =0. Hence we have
;g (Ayey, ep) + ;g (4, Pey, Pey) =2;g (Ay e ep) =0.
From Lemma 1 we have

SU,tU)= (n—1)g (U, tU) + X, g(4,tv,, tvy) g (4,tU, tU)
b

a,

- 2 gU2tU,tU).

Lemma 2. Let M be a generic submanifold of CP™ and U, V be unit normal vector fields. If
DV =0, then
g4y, AylX,Y) =g (Y, tU)g(X,tV) —g (X, tU) g (Y, tV),

294y, A,)e, 4y, Ae))=2(p = 1).

Proof. Since R =0, we see
g4y, AylX,Y) =g(Y,tU)gX,tV) —g WX, tU) g (Y, tV),
from which
[Ay, A X =g (X, tV)tU — g (X, tU)tV.

From this we have the second equation.

Lemma 3. Let M be a generic submanifold of CP™. If U is a parallel unit normal vector field,

then
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D lgUyto, Ayltw,) — g (A,tU, Aytv,) 1=p—1.

a,

Proof. In the proof of Lemma 2, we see
TV, U,X)=[A4y, Ag)X —g X, tV)tU+ g (X, tU)tV=0.

Hence, we get

0 = 29(Tw,Ue), T, Ue))
- Zg([AU’ Aa] € [AUaAa] ei> +2<p - 1>
+ 42 ( Aat‘l}a,AUU> - g(AUtUa,AUan> ) .

From this and Lemma 2 we have our equation.

Lemma 4. Let M be a generic submanifold of CP™ with flat normal connection. If the
holomorphic distribution H is integrable and S (tU, tU ) > 0 for a parallel unit normal vector field U,
then

%g (Ap top, ) g (e, AytU) =n—p.

Proof. Since S (tU, tU) =0, we have, by Lemmas 1 and 3,

(n—1) = 2 g(4,tU, 4,tU) — Zbg (A, tvy, toy) g (4,tU, tU)

= D g,ytU A,tv,) + (p—1) — Zbg(Aatvb, tv,) g (4,tU, tU) .
Hence we have

D gU,tU A,tw,) — D g (A, toy, toy) g (4,tU, tU) =n — p.

a ab

On the other hand, we see

29, tvy, tw) g (AU, tU) = X g4y toy, tv,) g (A tU, tv,)
a,b a!b

= ;g(Ab tvb,AUtU %g Ab tvb, € g(ek,AUtU) .

Thus we have our assertion.

Lemma 5. Let M be a generic submanifold of CP™ with flat normal connection. Then
g(Aa va,Aatvb) :g(AatUa,AbtUb> + 1, aF b
Proof. From Lemma 2, we see

g ([4y, Ayltoy, tv,) =g (tv,, tU) g (tv,, tV) — g (tv,, tU) g (tv,, tV),
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which proves our equation.

Lemma 6. Let M be a generic submanifold of CP™ with flat normal connection. If the

holomorphic distribution H is integrable and S (tU, tU) > 0, then
§9<Abwba e)gle, AytV) =0,  where g(U, V) =0,

U, V being unit normal vectors.
Proof. We use Lemma 4. Since DU = DV = 0, we see that U + V is also parallel in the normal
bundle. Then

29 ytoy, e gleg, Ay a(U+V)2) =n = p.

ab

From
Ay 3 U+ N2 =% (AytU+ 245V + AptV),

we have our equation.

Remark. Lemmas 2,3 and 5 follow from the quite similar method of Lemma 2.3 in [3].
3. Theorems.

First of all, we give an equation which improve the result of [1].

Theorem 1. Let M be a compact generic submanifold of CP™ with flat normal connection. If
the holomorphic distribution H is integrable and if S (¢U, tU ) > 0 for any unit vector field U
normal to M, then
§g<Ages, PA, ty,) — ;g(PA tv, e) =0
forany e, € H,, .
Proof. We take the covariant differentiation of
;kg (dy 1oy, €) g (ey, A, tv,) = (n = p)p,

by e, € H,, , we have

0= kg((VeSAb) toy, ) g (g, A, tv,) + ;kg(Ab(_PAb ey, er) g ey, A, tv,)

2

+ kg(Aa tl)b, Ves ek)g(ek, Aa t‘Ua)

)
N

= &9 ((Viy,4p) €5, €p) g (e, A, tv,) + ;ky(fvb, tvy) g (Pey, ep) g (ey, A, tv,)

2

+ =9 (p tvy, €) g (e, V, e) g ey, A 1v,)
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c;k g VtvbAb €5, ek) g (eka Aa ll) pZ g PA alqs es

On the other hand, we see, using Lemma 6,

Z g Vti}b S0 ek> g (eka Aa tva)

g ( th),,Ab e, €k) g (ek, Aatva) g (Ab Vwb e, ek) g (ek, Aa Zl)a)

a,b a,bk

- g (Ab s, Vtv,, ek> g <ek9 Aa w ;k g Ab Vtv,, s, ek) g (eks Aa wa)

Il
M T

S}
i~
=

- g (Ab €5 wc) g (tvc» Viv, er g (e, 4, tva)

a,b,c
~ 9 (Ap NV, €) g (v, Vy, €) g (e, A, tv,)
= a,bZ,c,kg (Ape,, tv,) g (— PA.tvy, e) g (e, A, tv,)
+a,ch,kg (A, tv,, e) g (— PA.tvy, e) g (e, A, tv,)
= aﬁEﬂg (Ape,, tv,) g (— PAyto,, e;) g (e, A, tv,)

+ Z g Ab tvca ek) g (_ PAC tvb’ es) g (eka Aa tva)

a,b=ck

azbg (4je,, PA,tv,) — (n — p) ; g (PA, tvy, e,)
From these equations we have our result.

In the following, we put & = %‘,PAa tv,. The vector field £ is in H,,. Since P4, e, = 0 for all £, if
M is a real hypersurface, then A4 = 0.

Theorem 2. Let M be an n-dimensional compact generic submanifold of CP™ (n#p) with flat
normal connection. If the Ricci tensor S of M satisfies S (tU, tU) > 0 for any vector field U normal

to M and A, h = 0 for all a, then the holomorphic distribution # is not integrable.

Proof. From the assumption n#p, by Lemma 4, we see that / is not vanish. Therefore, if H is

integrable, Theorem 1 implies a contradiction.
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