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Einstein hypersurfaces in an odd-dimensional sphere
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Abstract
We study a hypersurface immersed in an odd-dimensional sphere with the induced structure from
the contact metric structure. We prove that if a hypersurface of an odd-dimensional sphere admits
a Ricci soliton with the potential vector field constructed by the unit normal vector field, then M

is an Einstein hypersurface.
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1. Introduction

In [1], Cho and Kimura studied on Ricci solitons of real hypersurfaces in a non-flat complex
space form. They proved that a real hypersurface M in a non-flat complex space form M" (¢) with
¢ # 0 does not admit a Ricci soliton whose soliton vector field is the structure vector field & In

this context, they define so called n-Ricci soliton (n, g), which satisfies

1

2L§g+S—kg—,un®n=O

for constants k, u, and classified n-Ricci soliton real hypersurfaces in a non-flat complex space
form.
In this paper, we study a hypersurface M immersed in a unit sphere S**' with contact metric

structure (¢, & 1, g) and the Ricci soliton on M

SLyg+S— kg =0
where U is a vector field defined by U = ¢C, C being the unit normal of M in $*"*

We prove that if a hypersurface M of an odd-dimensional sphere S*"*' admits a Ricci soliton
with the potential vector fined U constructed by the unit normal vector field C, then M is an

Einstein hypersurface.
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2. Preliminaries

Let S*"' be a (2n+1) -dimensional unit sphere of constant curvature 1. It is well known that $***'
admits the standard Sasakian structure (normal contact metric structure) ( ¢, &, 1, g) . Then they
satisfy (cf. [4])

»’X=-X+n(X)E HE=0, n(¢pX) =0, n(&)=1,
g(oX,0Y)=g(X,Y)—n(X)n(), nX)=g(X, &)

for any vector fields X and Y on $*"*.

We denote by V the operator of covariant differentiation with respect to g. Then

Vxé=0¢X, (Vxd)Y=n¥)X- g(X,Y)E.

Let M be a 2n-dimensional hypersurface immersed in S***'. We denote by the same g the
induced metric tensor field of M. Let C be a unit normal of M in S***'. For any vector field X
tangent to M we put

dX=fX+u(X)C, E=V+AC, ¢C=-U,
v(X)=n(X), A=n(0)=g(EC),

where fis a tensor field of type (1,1), %, v 1-forms, U, V vector fields and A a scalar function on M.
Then (cf.[5])

fX=-X+uX)U+0v(X)V, u(fX)=2v(X), v(fX)=— Au(X),
fU=— AV, fV =AU, u(V)=0, v(U)=0,
u(lU)=1- X, v(V)=1- X

Moreover, we have
g (U X)=u(X), gV, X)=v(X), g(fXY)=-gX fY),
g fX fY)=gXY)—u(X)u(Y)—v(X)v(Y).

For any vector fields X and Y tangent to M, we have the Gauss and Weingarten formulas
VyY =VyY + g(AX,Y)C, VxC = —AX

b

where V denotes the operator of covariant differentiation in M and A the shape operator of M.

Then we have
VxV=fX+ AAX, VU= = AX+ fAX,
XA=u(X)—g(AX, V).

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given

by
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RXY)Z=9g(Y,2)X-gX,Z2) Y+ g(AY,Z)AX — g(4AX,Z) AY,
and the equation of Codazzi is given by
(VyA)Y — (VyA)X=0.
We denote by S the Ricci tensor of M. Then
SX,Y)=02n—1g(X,Y)+ TrAg (AX,Y) — g (A°X,Y).
We prepare the basic properties for A.
Lemma 1. We have \> # 1 almost everywhere on M.

Proof. If X> = 1, then the structure vector field £ is normal to M. Then Vy& = —AX = ¢X.

Since A is symmetric and ¢ is skew-symmetric, we see ¢pX = 0. This is a contradiction.
Lemma 2. IfAf = fA and A is constant, then A = 0.
Proof. 1f A is constant, then # (X) = g (AX, V) and hence AV = U. Then we have
0=g (AU, U) - g(AfU, U) = 2Ag (AV, U) = 2Au (U) = 24 (1-1%)..

Using Lemma 1, we have A = 0.

3. Ricci solitons on hypersurfaces

We denote by Ly the Lie differentiation with respect to a vector field W on a Riemannian

manifold (M, g) . A Ricci soliton is defined on (M, g) by
3 Lyg) (X V) +S(X.Y) - kg (X, V) =0,
where W is a vector field (the potential vector field) and k a constant on M.

Lemma 3. Let M be a hypersurface of S™"'. If M admits a Ricci soliton with the potential
vector field U, then we have A f = fA.

Proof. Let {el,"',ezn} be an orthonormal basis of M. Since
(Lyg) X, Y)=g(VxU,Y)+ g(VyU X),
we have

Z (% (LUg) (e,-,Afe,-) - S(e,-,Afel-) - kg (e,-,Afe,-))

=%Z(g(Ve:~U,Afe,-) + g(VAfel. Ue;))
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—2n—1gle,Afe) + TrA2 g (A e;, Afe)

— 229 Ae;, Afe) — k2.g e, Afe))
=5 Xg(~hei + fAci Afe) + L Xg(-rAfe; + fAYeie)
=329 (fAe, Afe) — glAfe, Afe))
=-ljirar=o.

This means Af = fA.

Theorem 1. Let M be a hypersurfaces of S, n>1. If M admits a Ricci soliton with the

potential vector field U, then M is an Einstein hypersurface and locally congruent to

2n—2 wp( 2m—2
1) xS g2,

7
where p (1< p < 2n—1) is an odd number and S* (r)denotes a p-dimensional sphere of

constant curvature r.
Proof. Form Lemma 3.1, we have A f = fA. Hence we have

(Lyg) (X,Y)

=g(VxU,Y)+ g(VyU,X)

=g(fAX,Y)—Ag(X,Y) + g(fAY, X)
-Ag (Y, X)

=g((fFA-ANHXY) —21g(X,Y)

= -29(X,Y).

By the assumption,

(Lyg) (X,Y) +S(X, ¥) —kg(X,Y)
=S(X,Y)-(A+k) g(X,Y)=0.

DO —

Therefore M is an Einstein hypersurface. If dim M > 3, then A + & is constant. Since & is constant,

A is also a constant. Then, by Lemma 2, A = 0. Hence the structure vector field & is tangent to M.

Moreover, we have

fu=o0, V=0, u(U)=1, v(V)=1,
VxV =fX, VxU = fAX, AV=U.
Since fU = 0, we obtain fAU = AfU = 0 and hence
AU=aU + 7V, a=u(AU).

By the equation of Codazzi,
g((VxA)Y,U) - g((VyA) X, U)
=g(Y,(VxA)U) — g(X,(VyA)U)
=g (Y,VxAU) — g(Y,AVxU) — g (X, VyAU) + g (X, AVyU)



Einstein hypersurfaces in an odd-dimensional sphere 47

=ag(Y, FAX)+ g(Y, fX)—g(Y, AfAX)

—ag (X, fAY) — g (X, fY) + g(X, AfAY)
=ag((FA+Af)XY) +29(fX,Y) —2g(AfAX,Y)
=2ag(fAX,Y)+29(fX,Y) —2g(AfAX,Y)=0

for any X, Y orthogonal to U and V. Consequently, we have
0=ag(fFAX,fX) +g(fX,fX)—g(fAX AfX).
From fA = Af,if AX = aX, then AfX = fAX = afX. LetX satisfies AX = aX and g (X, U)
=g (X, V) = 0. Then we have
@ —aa—1=0.
Therefore we can take an orthonormal basis of M such that the shape operator A can be

represented as

= o
Q =

where ab = — 1 and @ + b = a. The eigenvalue z of the matrix
0 1
1 «a

22— az—1=0.

satisfies

Therefore A has two eigenvalues @ and b. We put
TrA = pa + qb, p+q=2n,

where p is odd. If AX = aX and AY = bY, then we have

SX,X)=0Qun—1)+ TrA-a — a’,

S(Y,Y)=Qn— 1)+ TrA-b - b".
Since M is Einstein, we have

(TrA—a—1b) (a—b)=0.

By ab = — 1, we have a # b. Hence

0=p-lNa+@-—Db=@p—-1Da+@-1 (-).

Thus we obtain
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Therefore @ and b are constant. We consider the distributions defined by

T, (z) = {X|AX = aX}, T, (@) ={Y|AX = bY?}.
Then T, and T are parallel distribution and maximal integral manifolds are totally umbilical
submanifolds with constant curvatures (see [3]). That is, the maximal integral manifold M, of

T, is of constant curvatures

| + 2n—p—1_2n—-2
—1 p—1

and is totally umbilical in S***!, and the maximal integral manifold M, of Ty is totally umbilical

. o2t .
in S and is of constant curvature

p—1 _ 2n—2

I+ 2%— -1 2n—p—1°

Therefore, M is locally isometric to the product of spheres

sp(é" ) Szn_p(znzﬁgjzw

where p is an odd number such that 1 <p <2n — 1.

Next we consider the condition that
1 _
9Lyg +S — kg =10
under the assumption that & is a function. First, we prepare the following lemma.
Lemmad4. If fA=Af, thenA=00r Ur=1— )"

Proof. Since we have fU= —AV, fV=AUand u (U) = v (V) =1 —)?, we have
FAU=AfU=— AAV.
Thus we obtain
g(fAU U)= —g (AU fU)=Ag (AU, V).
On the other hand, we have
g(fAU, U)=g(AfUU)= —Ag(AV,U).
From these equation, we see that Ag (AU, V) = 0. Since XA = u (X) — g (AX, V), we have
Ur=uU)—g(AU,V)=(1 -2 —g(AU,V).
Thus we obtain
AMUN)=A(1=-X)=0

This proves our assertion.

Theorem 2. Let M be a hypersurface of S, n > 1. If M satisfies
SLyg+S—kg=0,

where k is a function on M, then M is locally isometric to

] )>< S ( 2;%;% i

s”(fp”
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wherep (1 < p <2n — 1) is an odd number, or S (1 + a*),a =v(Av) /(1 — 1?).
Proof. From Lemma 4, we have A = 0 or UA =1 — A>. When A = 0, then the proof of
Theorem 1 implies that M is congruent to
o (37) x5l 521
where p is an odd number.
Next we consider the case that UX = 1 — A%, We notice | — A\* # 0. Then A is not constant, and
hence A # 0. Then we have g (AU, V) =0. Since fA = A f, we see, by fV = AU.
fAV — AAU = 0,
so that
0=FfAV—AfAU
=—AV+u(AV)U+ v(AV)V + XAV
= — AV + 0 (AV)V +)XAV.

Then we have

v(AV)
1= X
On the other hand, from fAU + A fU = 0, we see fAU = — AAV. This implies

g(fAU V)= —g(AU, fV)= —Ag(AU,U)= — Ag(AV, V).
Hence we have # (AU) = v (AV) . From this, we have also AU = aU.

Moreover, we have
(VxA)V =VxAV — AVxV
=Xa)V+a (fX+2AAX) - AFX +21AX).

AV = aV, a=

So we obtain
g((VxA)V,Y)=(Xa)v(Y) +ag(fX,Y)+ arg(AX,Y)
-g(AfXY) —Ag(AX,)Y),
g ((VyAN V. X)=(Ya)v(X)+ ag (fY,X) + arg (AY, X)
- g(AfY,X)— Ag(A%Y, X).
By the equation of Codazzi, we have
0=g((VxA)V,Y)—g((VyA)V,X)
=(Xa)v(Y)—(Ya)v(X)+2ag(fX,Y)—2g(fAX,Y).
Putting Y = V, we get
0=(Xa) (1 =X) = (Va)v(X) = 2aru(X)+ 2 u(AX).
Since we have # (AX) = g(UAX)=a (X)),
=(Xa) (1 =X) = (Va)v(X),
=(Ya) (1 =2*) = (Va)v(Y).

So we have

Va)v(X)

Xa 1_)\2 )
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Substituting these into the equation above, we have
fAX = afX
for X orthogonal to U and V. Thus we have AX = aX. Then M is totally umbilical and is of

constant curvature 1 + a’.
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