Einstein hypersurfaces in an odd-dimensional sphere

奇数次元球面のアインシュタイン超曲面

Mayuko KON * and Masahiro KON * * 昆 万佑子 * · 昆 正博 **

Abstract

We study a hypersurface immersed in an odd-dimensional sphere with the induced structure from the contact metric structure. We prove that if a hypersurface of an odd-dimensional sphere admits a Ricci soliton with the potential vector field constructed by the unit normal vector field, then M is an Einstein hypersurface.

Key words: Ricci soliton, hypersurface, contact metric structure

1. Introduction

In [1], Cho and Kimura studied on Ricci solitons of real hypersurfaces in a non-flat complex space form. They proved that a real hypersurface M in a non-flat complex space form $\bar{M}^n(c)$ with $c \neq 0$ does not admit a Ricci soliton whose soliton vector field is the structure vector field ξ . In this context, they define so called η -Ricci soliton (η, g) , which satisfies

$$\frac{1}{2}L_{\xi}g+S-kg-\mu\eta\otimes\eta=0$$

for constants k, μ , and classified η -Ricci soliton real hypersurfaces in a non-flat complex space form.

In this paper, we study a hypersurface M immersed in a unit sphere S^{2n+1} with contact metric structure (ϕ, ξ, η, g) and the Ricci soliton on M

$$\frac{1}{2}L_{Ug}+S-kg=0$$

where U is a vector field defined by $U = \phi C$, C being the unit normal of M in S^{2n+1} .

We prove that if a hypersurface M of an odd-dimensional sphere S^{2n+1} admits a Ricci soliton with the potential vector fined U constructed by the unit normal vector field C, then M is an Einstein hypersurface.

^{*} 信州大学教育学部理数科学教育専攻 Science and Mathematics Education, Faculty of Education, Shinshu University

^{**}弘前大学教育学部数学教育講座
Department of Mathematics, Facalty of Education, Hirosaki University

2. Preliminaries

Let S^{2n+1} be a (2n+1) -dimensional unit sphere of constant curvature 1. It is well known that S^{2n+1} admits the standard Sasakian structure (normal contact metric structure) (ϕ , ξ , η , g). Then they satisfy (cf. [4])

$$\phi^{2}X = -X + \eta(X)\xi, \qquad \phi\xi = 0, \qquad \eta(\phi X) = 0, \qquad \eta(\xi) = 1,$$
$$q(\phi X, \phi Y) = q(X, Y) - \eta(X)\eta(Y), \qquad \eta(X) = q(X, \xi)$$

for any vector fields X and Y on S^{2n+1} .

We denote by $\bar{\nabla}$ the operator of covariant differentiation with respect to g. Then

$$\bar{\nabla}_{X}\xi = \phi X,$$
 $(\bar{\nabla}_{X}\phi) Y = \eta(Y)X - g(X,Y)\xi.$

Let M be a 2n-dimensional hypersurface immersed in S^{2n+1} . We denote by the same g the induced metric tensor field of M. Let C be a unit normal of M in S^{2n+1} . For any vector field X tangent to M we put

$$\phi X = fX + u(X) C, \qquad \xi = V + \lambda C, \qquad \phi C = -U,$$
$$v(X) = \eta(X), \qquad \lambda = \eta(C) = g(\xi, C),$$

where f is a tensor field of type (1,1), u, v 1-forms, U, V vector fields and λ a scalar function on M. Then (cf. [5])

$$f^{2}X = -X + u(X)U + v(X)V, \qquad u(fX) = \lambda v(X), \qquad v(fX) = -\lambda u(X),$$

$$fU = -\lambda V, \qquad fV = \lambda U, \qquad u(V) = 0, \qquad v(U) = 0,$$

$$u(U) = 1 - \lambda^{2}, \qquad v(V) = 1 - \lambda^{2}.$$

Moreover, we have

$$\begin{split} g\left(U,X\right) &= u\left(X\right), & g\left(V,X\right) = v\left(X\right), & g\left(fX,Y\right) = -g\left(X,fY\right), \\ g\left(fX,fY\right) &= g\left(X,Y\right) - u\left(X\right)u\left(Y\right) - v\left(X\right)v\left(Y\right). \end{split}$$

For any vector fields X and Y tangent to M, we have the Gauss and Weingarten formulas

$$\bar{\nabla}_X Y = \nabla_X Y + g(AX, Y) C, \qquad \bar{\nabla}_X C = -AX,$$

where ∇ denotes the operator of covariant differentiation in M and A the shape operator of M. Then we have

$$\nabla_X V = fX + \lambda AX,$$
 $\nabla_X U = -\lambda X + fAX,$ $X\lambda = u(X) - a(AX, V).$

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(AY,Z)AX - g(AX,Z)AY,$$

and the equation of Codazzi is given by

$$(\nabla_X A) Y - (\nabla_Y A) X = 0.$$

We denote by S the Ricci tensor of M. Then

$$S(X, Y) = (2n-1)g(X, Y) + \text{Tr}Ag(AX, Y) - g(A^2X, Y)$$
.

We prepare the basic properties for λ .

Lemma 1. We have $\lambda^2 \neq 1$ almost everywhere on M.

Proof. If $\lambda^2 = 1$, then the structure vector field ξ is normal to M. Then $\bar{\nabla}_X \xi = -AX = \phi X$. Since A is symmetric and ϕ is skew-symmetric, we see $\phi X = 0$. This is a contradiction.

Lemma 2. If Af = fA and λ is constant, then $\lambda = 0$.

Proof. If λ is constant, then u(X) = g(AX, V) and hence AV = U. Then we have

$$0 = g(fAU, U) - g(AfU, U) = 2\lambda g(AV, U) = 2\lambda u(U) = 2\lambda (1 - \lambda^2).$$

Using Lemma 1, we have $\lambda = 0$.

3. Ricci solitons on hypersurfaces

We denote by L_W the Lie differentiation with respect to a vector field W on a Riemannian manifold (M, g). A Ricci soliton is defined on (M, g) by

$$\frac{1}{2}\left(L_{W}g\right)\left(X,\,Y\right)+\,S\left(X,\,Y\right)-\,kg\left(X,\,Y\right)=\,0,$$

where W is a vector field (the potential vector field) and k a constant on M.

Lemma 3. Let M be a hypersurface of S^{2n+1} . If M admits a Ricci soliton with the potential vector field U, then we have A f = fA.

Proof. Let $\{e_1, \dots, e_{2n}\}$ be an orthonormal basis of M. Since

$$(L_{U}g) (X, Y) = g (\nabla_{X}U, Y) + g (\nabla_{Y}U, X),$$

we have

$$\begin{split} &\sum \left(\frac{1}{2}(L_{U}g)\left(e_{i},Afe_{i}\right)-S\left(e_{i},Afe_{i}\right)-kg\left(e_{i},Afe_{i}\right)\right)\\ &=\frac{1}{2}\sum \left(g\left(\nabla_{e_{i}}U,Afe_{i}\right)+g\left(\nabla_{Afe_{i}}U,e_{i}\right)\right) \end{split}$$

$$\begin{split} &-\sum \left(2n-1\right)g\left(e_{i},Afe_{i}\right)+\mathrm{Tr}A\sum g\left(A\;e_{i},Afe_{i}\right)\\ &-\sum g\left(A^{2}e_{i},Afe_{i}\right)-k\sum g\left(e_{i},Afe_{i}\right)\\ &=\frac{1}{2}\sum g\left(-\lambda e_{i}+fA\;e_{i},Afe_{i}\right)+\frac{1}{2}\sum g\left(-\lambda Afe_{i}+fA^{2}fe_{i},e_{i}\right)\\ &=\frac{1}{2}\sum \left(g\left(fA\;e_{i},Afe_{i}\right)-\;g\left(Afe_{i},Afe_{i}\right)\right)\\ &=-\frac{1}{4}|\left[f,A\right]|^{2}=0. \end{split}$$

This means Af = fA.

Theorem 1. Let M be a hypersurfaces of S^{2n+1} , n > 1. If M admits a Ricci soliton with the potential vector field U, then M is an Einstein hypersurface and locally congruent to

$$S^{p}\left(\frac{2n-2}{p-1}\right)\times S^{2n-p}\left(\frac{2n-2}{2n-p-1}\right),$$

where $p(1 is an odd number and <math>S^{p}(r)$ denotes a p-dimensional sphere of constant curvature r.

Proof. Form Lemma 3.1, we have Af = fA. Hence we have

$$\begin{split} &(L_{U}g)\ (X,Y)\\ &=g\ (\nabla_{\!X}\,U,\,Y)+g\ (\nabla_{\!Y}\,U,\,X)\\ &=g\ (fAX,\,Y)-\lambda g\ (X,\,Y)\ +g\ (fAY,\,X)\\ &-\lambda g\ (Y,\,X)\\ &=g\ ((fA-A\,f)\,X,\,Y)-2\lambda g\ (X,\,Y)\\ &=-2\lambda g\ (X,\,Y)\,. \end{split}$$

By the assumption,

$$\frac{1}{2} (L_{U}g) (X, Y) + S(X, Y) - kg(X, Y)$$

$$= S(X, Y) - (\lambda + k) g(X, Y) = 0.$$

Therefore M is an Einstein hypersurface. If dim $M \ge 3$, then $\lambda + k$ is constant. Since k is constant, λ is also a constant. Then, by Lemma 2, $\lambda = 0$. Hence the structure vector field ξ is tangent to M. Moreover, we have

$$fU=0, \qquad fV=0, \qquad u\left(U\right)=1, \qquad v\left(V\right)=1, \\ \nabla_{X}V=fX, \qquad \nabla_{X}U=fAX, \qquad AV=U.$$

Since fU = 0, we obtain fAU = AfU = 0 and hence

$$AU = \alpha U + V,$$
 $\alpha = u(AU).$

By the equation of Codazzi,

$$\begin{split} &g\left(\left(\nabla_{X}A\right)Y,\,U\right)-g\left(\left(\nabla_{Y}A\right)X,\,U\right)\\ &=g\left(Y,\left(\nabla_{X}A\right)U\right)\,-g\left(X,\left(\nabla_{Y}A\right)U\right)\\ &=g\left(Y,\nabla_{X}AU\right)-g\left(Y,A\nabla_{X}U\right)-g\left(X,\,\nabla_{Y}AU\right)+g\left(X,\,A\,\nabla_{Y}U\right) \end{split}$$

$$= \alpha g(Y, fAX) + g(Y, fX) - g(Y, AfAX)$$

$$- \alpha g(X, fAY) - g(X, fY) + g(X, AfAY)$$

$$= \alpha g((fA + Af)X, Y) + 2g(fX, Y) - 2g(AfAX, Y)$$

$$= 2\alpha g(fAX, Y) + 2g(fX, Y) - 2g(AfAX, Y) = 0$$

for any X, Y orthogonal to U and V. Consequently, we have

$$0 = \alpha g (fAX, fX) + g (fX, fX) - g (fAX, AfX).$$

From fA = Af, if AX = aX, then AfX = fAX = afX. Let X satisfies AX = aX and g(X, U) = g(X, V) = 0. Then we have

$$a^2 - \alpha a - 1 = 0.$$

Therefore we can take an orthonormal basis of M such that the shape operator A can be represented as

where ab = -1 and $a + b = \alpha$. The eigenvalue x of the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & \alpha \end{pmatrix}$$

satisfies

$$x^2 - ax - 1 = 0$$

Therefore A has two eigenvalues a and b. We put

$$Tr A = pa + qb, p + q = 2n,$$

where p is odd. If AX = aX and AY = bY, then we have

$$S(X, X) = (2n - 1) + \text{Tr} A \cdot a - a^2,$$

 $S(Y, Y) = (2n - 1) + \text{Tr} A \cdot b - b^2.$

Since *M* is Einstein, we have

$$(TrA - a - b) (a - b) = 0.$$

By ab = -1, we have $a \neq b$. Hence

$$0 = (p-1) a + (q-1) b = (p-1) a + (q-1) (-\frac{1}{a}).$$

Thus we obtain

$$a^2 = \frac{q-1}{p-1} = \frac{2n-p-1}{p-1},$$
 $b^2 = \frac{p-1}{2n-p-1}.$

Therefore a and b are constant. We consider the distributions defined by

$$T_a(x) = \{X \mid AX = aX\}, \qquad T_b(x) = \{Y \mid AX = bY\}.$$

Then T_a and T_b are parallel distribution and maximal integral manifolds are totally umbilical submanifolds with constant curvatures (see [3]). That is, the maximal integral manifold M_1 of T_a is of constant curvatures

$$1 + \frac{2n - p - 1}{p - 1} = \frac{2n - 2}{p - 1}$$

and is totally umbilical in S^{2n+1} , and the maximal integral manifold M_2 of T_b is totally umbilical in S^{2n+1} and is of constant curvature

$$1 + \frac{p-1}{2n-p-1} = \frac{2n-2}{2n-p-1}.$$

Therefore, M is locally isometric to the product of spheres

$$Sp\left(\frac{2n-2}{p-1}\right)\times S^{2n-p}\left(\frac{2n-2}{2n-p-1}\right),$$

where p is an odd number such that 1 .

Next we consider the condition that

$$\frac{1}{2}L_{U}g + S - kg = 0$$

under the assumption that k is a function. First, we prepare the following lemma.

Lemma 4. If fA = A f, then $\lambda = 0$ or $U\lambda = 1 - \lambda^2$.

Proof. Since we have $fU = -\lambda V$, $fV = \lambda U$ and $u(U) = v(V) = 1 - \lambda^2$, we have $fAU = A f U = -\lambda AV$.

Thus we obtain

$$a(fAU, U) = -a(AU, fU) = \lambda a(AU, V)$$
.

On the other hand, we have

$$g(fAU, U) = g(AfU, U) = -\lambda g(AV, U)$$
.

From these equation, we see that $\lambda g(AU, V) = 0$. Since $X\lambda = u(X) - g(AX, V)$, we have

$$U\lambda = u(U) - g(AU, V) = (1 - \lambda^2) - g(AU, V)$$
.

Thus we obtain

$$\lambda(U\lambda) = \lambda(1-\lambda^2) = 0.$$

This proves our assertion.

Theorem 2. Let M be a hypersurface of S^{2n+1} , n > 1. If M satisfies

$$\frac{1}{2}L_{U}g+S-kg=0,$$

where k is a function on M, then M is locally isometric to

$$S^{p}\left(\frac{2n-2}{p-1}\right)\times S^{2n-p}\left(\frac{2n-2}{2n-p-1}\right),$$

where $p(1 \le p \le 2n - 1)$ is an odd number, or $S^{2n}(1 + \alpha^2)$, $\alpha = v(Av)/(1 - \lambda^2)$.

Proof. From Lemma 4, we have $\lambda = 0$ or $U\lambda = 1 - \lambda^2$. When $\lambda = 0$, then the proof of Theorem 1 implies that M is congruent to

$$S^p\left(\frac{2n-2}{p-1}\right)\times S^{2n-p}\left(\frac{2n-2}{2n-p-1}\right),$$

where p is an odd number.

Next we consider the case that $U\lambda = 1 - \lambda^2$. We notice $1 - \lambda^2 \neq 0$. Then λ is not constant, and hence $\lambda \neq 0$. Then we have g(AU, V) = 0. Since fA = Af, we see, by $fV = \lambda U$,

$$fAV - \lambda AU = 0$$
,

so that

$$0 = f^{2}AV - \lambda fA U$$

= $-AV + u (A V) U + v (AV) V + \lambda^{2}AV$
= $-AV + v (A V) V + \lambda^{2}AV$.

Then we have

$$AV = \alpha V,$$
 $\alpha = \frac{v(AV)}{1 - \lambda^2}.$

On the other hand, from fAU + A fU = 0, we see $fAU = -\lambda AV$. This implies

$$g(fAU, V) = -g(AU, fV) = -\lambda g(AU, U) = -\lambda g(AV, V)$$
.

Hence we have u(AU) = v(AV). From this, we have also $AU = \alpha U$.

Moreover, we have

$$(\nabla_X A) V = \nabla_X AV - A\nabla_X V$$

= $(X\alpha) V + \alpha (fX + \lambda AX) - A(fX + \lambda AX).$

So we obtain

$$\begin{split} g\left(\left(\nabla_{\!X}A\right)V,\,Y\right) &= \left(X\,\alpha\right)v\left(Y\right) \,+\, \alpha g\left(fX,\,Y\right) +\, \alpha\lambda g\left(AX,\,Y\right) \\ &-\, g\left(A\,f\,X,\,Y\right) - \lambda g\left(A^2X,\,Y\right)\,, \\ g\left(\left(\nabla_{\!Y}A\right)\right)V,\,X\right) &= \left(Y\,\alpha\right)v\left(X\right) +\, \alpha g\left(f\,Y,\,X\right) +\, \alpha\lambda g\left(AY,\,X\right) \\ &-\, g\left(A\,f\,Y,\,X\right) -\, \lambda\, g\left(A^2Y,\,X\right)\,. \end{split}$$

By the equation of Codazzi, we have

$$0 = g((\nabla_X A) V, Y) - g((\nabla_Y A) V, X)$$

= $(X\alpha) v(Y) - (Y\alpha) v(X) + 2\alpha g(fX, Y) - 2g(fAX, Y).$

Putting Y = V, we get

$$0 = (X\alpha) (1 - \lambda^2) - (V\alpha) v(X) - 2\alpha\lambda u(X) + 2\lambda u(AX).$$

Since we have $u(AX) = q(U, AX) = \alpha u(X)$,

$$0 = (X\alpha) (1 - \lambda^2) - (V\alpha) v(X),$$

$$0 = (Y\alpha) (1 - \lambda^2) - (V\alpha) v(Y).$$

So we have

$$X\alpha = \frac{(V\alpha) v(X)}{1 - \lambda^2}, \qquad Y\alpha = \frac{(V\alpha) v(Y)}{1 - \lambda^2}.$$

Substituting these into the equation above, we have

$$fAX = \alpha fX$$

for X orthogonal to U and V. Thus we have $AX = \alpha X$. Then M is totally umbilical and is of constant curvature $1 + \alpha^2$.

References

- [1] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2009), 205-212.
- [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Wiley Interscience, New York, 1969.
- [3] P. J. Ryan, Homogeneity and some curvature condition for hypersurfaces, Tohoku Math. J. (1969), 363-388.
- [4] K. Yano and M. Kon, CR-Submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser, Boston, 1983.
- [5] K. Yano and M. Okumura, On (f, g, u, v, λ)-structures, Kōdai Math. Sem. Rep. 22 (1970), 401-423.

(2012.1.10受理)