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Infinite Product Representations
for Vignéras' Multiple Gamma Functions

(Vignéras DZET L ~ BB OERREER)

Michitomo NISHIZAWA *
o E M

Abstract Gauss’ and Euler’s type infinite product representations for Vignéras multiple gamma
function are presented. As an application of the representations, a multiplication formula for the

function is derived.
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1. Introduction

In a series of papers [2, 3, 4, 5], Barnes introduced multiple gamma functions associated with
a certain generalization of the Hurwitz zeta function. In relevant with a special case of Barnes’
function, Vignéras [15] introduced her multiple gamma functions G, (z) (r € Z = o) as a sequence

of meromorphic functions uniquely determined by the following relations:

(i) Go(z) = 2, (i) Go(1) =1, (i) Gp(z +1) = Gr_1(2)Gr(2)
(1)

dr+1

(iv) T logGr(z+1) >0 for z>0.

This formulation can be considered as a generalization of the Bohr-Morellup theorem. For
example, G,(z) is the celebrated Euler gamma functionI" (z) (¢f. Artin [1], Whittaker-Watson
[16].). G,(2) is G-function introduced in Barnes [2].

In this paper, we present two types of infinite product representations of Vignéras’ multiple
gamma function, which can be considered as a generalization of the Gauss and the Euler product
formula of Euler’s gamma function

, N
Petl) = G2 G V)

:ﬁ {(1+%)_1 <1+%>Z} (3)

(cf. Artin[1], Whittaker-Watson [16]) . Our main theorem is stated as follows: If z is not negative

(N +1)7 (2)
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integer, the multiple gamma function Gr( ) is represented as

Gr(z+1) = lim. HGrlz—l—n HGkN+1)(7 ’“)] 4)
Gk(n+1) (Tfk)
1;[ r1z+n)kHO< Gr(n) > ] o

In the case when 7 = 1, these formulas coincide with (2) and (3). We can find the representation
for G, (z) in Jackson[6]. It should be noted that infinite product formula of these types for a
g-analogue of the multiple gamma function were already obtained in[12]. However, in contrast
to simplicity in g-case, some delicate techniques are necessary to deal with infinite products
of Vignéras’ function. We verify (4) and (5) in section 1. The point is to apply an asymptotic
expansion in [13]to estimations for products of Vignéras™ functions.

In section 2, as an application of infinite product representations, we derive a multiplication
formula for Vignéras’ multiple gamma function, which can be regarded as a generalization of the

well known formula

[r (557) = %25 ®

z—

p 2
for Euler’s gamma function (¢f. Artin[1], Whittaker-Watson [16] ) . It is described as follows:
p=l AN ¢r(z)
H Gr <Z+q1+ +QT> = ew (Z)G(Z)
qi, q2,qr=0 P p
It might be seem that formula of this type can be guessed easily from (1). However, it is not easy

to determine explicit forms of ¢,(2) and ,(z). The reason why we can do it is usefulness of
our representations (4) .
For simplicity, we call Vignéras multiple gamma function only “multiple gamma function” in

the following sections.

Notations: In this paper, we use notation By (z) for the Bernoulli polynomial defined by the

generating function

Z B,.(z)t" =
r=0

and By for the Bernoulli number defined as By := By (0) . We introduce the Stirling number »S; of
the 1 st kind by

tt—1)---(t—r+1) Z St

The notation {(s) is used to refer to the Riemann zeta function defined as the series (s) :=
Z -1 =S and its analytical continuation. { '(s) is the first derivative of {(s) defined by { '(s) :=
% £(s).
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2 Innite product representations

As mentioned in introduction, our main theorem is described as follows:

Theorem 2.1 If z is not negative integer and is included in any nite region of complex plane, the

multiple gamma function Gr (z) is 7’epresented as

Gt V= i, H LG, ] HG’“ ARl k)] )
N i Grfl(n) i Gk(n—{—l) (rfk)
I G I () ®

Proof. From the Gauss product representation (7), the Euler product representation (8) follows
immediately. So, we give a proof of (7) in this section. We apply an asymptotic expansion for Gr

(z) , which was firstly appeared in [13].

Theorem 2.2 (Ueno-Nishizawa) Lef us put 0< 6 < 7, then, as |z| — ©° in the sector

{z € Cllargzl < = — 6},

1 p
logGr(z+1){<Z+1) Z JH }log(z+)

r—1 ( i1 r—1 (9)
z+ 1)
_jgon'( j+1 ZGT’J J)+0(" )

where a polynomial Gr, j(2) is dened by the generating function

r—1
(Z_u) = ZGr,j(Z)Uj (T:O"'T_l)a Gr»j(z) :O’ (‘7 ZT)
j=0

r—1

In our proof, the following lemma is useful:

Lemma 2.3 For arbitrary x, y €C,

0 g(_k)(i)z(“’) (i kro(rfk)ahj(y):Gr,j<w+y>.

Noting this lemma and that

r—1 j z+N
(z—l—N)J‘H NI+ / + dv/ z+N—-1—-u
A d
g Grj(z+ N 1){ 1 TESIE .1 u,

Jj=0

we rewrite the logarithms of terms in brackets of (7) and have the following asymptotic behavior

as N — oo:

log

[T e 00 -
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zlogGT(z-l—l)-i-Z(Tik) < >+Z JHGkJ —1) plog N—
k=0

r—1 r

(T BERCERE ZOZ( ) Gy = ¢ ()~

<
|
—
-

=0

+N
- (Z )+Z LG (2 + N —1) plog(z + N)+
= (z+ Nyt / 1
7=0 Jj=0
* du z+ N "\ Bj
=1 r 1 . - —1)=
0g G (z + )+/0 N ( i >+;j+1a,j 1(z+N-1)

_/z+N 1<r—1>dv+/ ( 1 )dvi|—|—O(N_1),

As N — oo this integral vanishes because of the following lemma, which was already shown in

[13]:

Lemma 2.4 (Ueno-Nishizawa) For arbitrary z € C, we have

() feae-n- (1)

Therefore, we have proved theorem 2.1.

3 Multiplication formula

As an application of Gauss’ product representation, we demonstrate the multiplication formula of

the multiple gamma function.

Theorem 3.1

p—1
Z+q ++Q7‘ ed)"‘(z)
I e < 1 ) = 5w ) (10
p prr
q1, q2,+qr=0

where

r—1 p—1
we =% 3 G,J(”“ *qT—Q)—GT,Az—l) )
=0

q1, ,qr=0 p

J+1
= —1).
vrle <>+Z.7+1 )

Proof. From the infinite product representation (7), it follows that
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H G <z+q1+-~+qr> _
p

1 ,9r=
p(N—-1)-1 r—1 L
= lim n=1 Gra(n) X H G,(p(N — 1))<r—i) X

Nooo | TP D Gz — 1) i

[ (z+q1+-~-+qr)/p*1) pz

f[ GT(N)ZQL“‘#IT ( r—k N
== G, (p(N — 1)) ey o1 (z4m)

O wr 1(z+m)

X lim
N—oo

We substitute the asymptotic expansion (9) to the logarithm of terms in the second brackets.

7 N)Zar, - ar (ot dar)/p=t) SN 1 (z4m)
log H GT( ) p =
= Gl — 1)) B’ szt
r—1
_ Z <(z—|—Q1+'--+qr)/P—1> +ZBJHGM (Z+Q1+"'+qr +N—2> log N—
7 —j+1 p
g1, ,4dr 7=0
r—1
z+p(N-1)-1 Bj+ !
i+ N-1)-2 L N-1-—-]-
( ) # 3 T Ona (G4 =1 =2) g p
r+1 '
NIt
—Z Z GTJ(Z‘F(‘hﬁ‘ +qr—{—N—2>—Gr7j(2+p(N_1)_1) s
5=0 Lai,.ar p G+1)
1 p(N—1)—
+p(N—-1-1 B;
A ) S Bt -1 S et o
=0

r—1 p—1 .
D> Gr,j(Z”ﬁ +%+N—2)—Gr,j<z+p<N—1>—1> ¢(=j)-

.7:0 Q17"'»q»~=0 p
pN—-1

— > ¢z +m) +o(1).
m=0
We show that its divergent terms vanish. First, we compute terms including log p.

Proposition 3.2 If we dene 1 (z) = 0 and

() = ( ) n Z Bl G,z 1),

then 7 (2) satises P (z) = z and
r—1 p(N—l)—l

(P T S Bt - -0 - S sl m) = )

r
7=0 m=0

VPr (z) does not depend on N and is uniquely determined as the polynomial satisfying the above

recurrence relation.

Proof. This proposition immediately follows from the relation
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LZ_I z+k z-+ L _ z
—~ k+1 k+1

forL € Z ..

Next, we simplify terms including ' (—7) and give a explicit form of ¢ (z) .

Proposition 3.3 If we dene

p—1
z+q+---+g
bri(2) = Z Gy ( «n - 2> — Gyj(z— 1),
q1,qr —O p

then 7 (2) = X 725 drj (2) L' (—7) is uniquely determined as a polynomial satisfying the recurrence

relation ¢ (z) = 0 and

r—1 p—1
3 { S Gy (ZW ;'“*q’" +N—2) G,,,j<z+p<zv1>1>] ¢(=5)-

i=0 |av,.a,=0

pN-1

=Y bzt m) = 6i(2)
m=0

Proof. 1t is sufficient to prove

z+q+---+gr
$rj()= G7J< « p ¢ +N—2>—Gr,j(z+p(N—1)—1)—
q1, qr

p(N-1)
zAmAq -+ g
> [Z G ( BEUEO N 2] Gy k(N - 1) - )
a1, 5qr

m=0
We can see from the identity
L
Z Grj(z+m) = Gpy15(2 + L) — Gry15(2), (L € Zxo),

and

S ctmt gt g
2 S G > -2) =

q1,4r—1= =0
p—1
-y [GT<Z+Q1+ +qr+N_2>_GT<z+q1+ +qT_2>}7
q1, qr—1,9=0 p p

The uniqueness of @, (z) follows from its polynomiality.

In order to finish our proof, we verify that the rest of terms vanish as N — oo, By lemma 2.3, we

can see that

XT: ”i 0((2—}—6]1%—7'”';‘;%")/]9_1) y

k=0 | g1, ,qr=
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k—1
N B N?
G G

g (k)+j:0j+1 ki (N Z kN =D E

(21 ) (N B NJ+1
- G G

§<—k> (k>+2 1 Z SRR FSY:

p— 1
- ¥ <(z+q1+ +a)/p - ) Z <z+q1+ + +N_2>
a1, - ar=0 4 =0/

— P4+ N2
_ Gr,j( q1 qr—I—N—2>,—2

= p G+1)

Z+N _1 r—1 Bj+1 r—1 Nj+1
_ < )jL]'z:%j?(;m(erz\f—2)—JZ:%C:,,,J»(HJ\/—2)ﬁ

From the same argument as proof of theorem 2.1, it follows that the above terms tend to zero as
N — oo, Therefore, we have proved theorem 3.1.

Our result is closely related with Kuribayashi[7]. In order to explain his result, we introduce
some functions. {r (s, z)is defined as a special case of Barnes’ zeta function[5, 14], which is

introduced as the series
<

G(s2):= Y (z4ni+-+n)"°

ni,- ne=0
for ®s > r. This function can be continued analytically to a meromorphic function whose poles

are placed ats = 1,**, . We call the analytic continuation also {r (s, z) . The gamma function I'»

)

Theorem 3.4 (Kuribayashi) I’ (z) satises the following multiplication formula:

p—1
H r, (z—I—C]1+ +QT) IPQT(Z)PT(Z),
q17.“ )qT:O p

(z) associated with &7 (s, z) is introduced as

9 ¢ (s,2)

[ (2) == exp [83

Kuribayashi exhibit the following multiplication formula:

where

Qr(z) = ,Z Sl{l )Bl}

As a consequence of facts in Vardi[14], a relation between Gr(z) and I'r(z)is expressed as

follows:
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Gr(2) = Rp(2)Tp(2)0D" where R,(2) :=exp

ZGM - )].

Thus, we have

r—1
Qr(2) = (1)"9n(2) = (-1 {() > 222G, - 1>] . i
Our expression is useful in some cases of studies on related functions. For example, noting that
Gr,0(2) = (1), we can check that the relation follows
(=1)Qrr—2) = Qr(2). (12)
from the definition of ¥ (z) and (11) . It plays an important role in the multiplication formula

s g+
H S,r- ( ql qT’) — ST.(z>,

p
q1, - ,qr=0
for Kurokawa’s multiple sine function[8, 9, 10, 11]introduced as

r+1

S.(z) = Tp(r — 2)Tn(z)7Y

In Kuribayashi’s original proof, (12) is verified through a rather complicated argument, He applied
a relation between {r(—m, z) m € Z - () and the Bernoulli polynomials B; (z) . However, once

(11) is obtained, we can check (12) immediately.

4 Appendix : an elementary proof for (11)

Without facts of zeta functions, we can prove (11) directly as follows: First, we rewrite
Kuribayashi’s @ (z) as

1)+1B (2 — 1)H1
(—1)"@r(z —r_1'27ll{ l+1l+1 Zl+1 } 13

The second term can be wrltten as follows:

(z — 1)1 -1 Lrt—1
r—1vz”l I+1 _/0 r—1dt_/0 1)

From Lemma 2.4 and
(=1)
J(O) ( 1)'7" 18]7
it follows that
1

c -1 Lrt—1 2\ 2B 1 =iy
dt — dt = Gz —1) — It (1)1,
[ G [ G- () R et n- i s

Therefore, we obtain (11) by substituting this to (13) .
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