理科教科書におけるバイオマスエネルギーの取り扱いについて

一小学校•中学校•高等学校の理科教科書の調査一
Description of Biomass Energy in Science Textbooks
Investigation of Science Textbooks for Elementary，Junior High，and High School

原田 拓真＊•勝川 健三＊＊•長南 幸安＊＊＊
Takuma HARADA＊•Kenzo KATSUKAWA＊＊• Yukiyasu CHOUNAN＊＊＊

要 旨

現在，化石燃料の枯渇と二酸化炭素の増加による地球温暖化の懸念により新エネルギーが注目されている。その中でも生体の力を利用したバイオマスエネルギーはカーボンニュートラルの観点から非常に期待されている。学校教育において，平成 24 年度から施行された中学校学習指導要領理科では，「環境保全と科学技術の利用」の単元で「自然環境の保全と科学技術の利用の在り方について科学的に考察し，持続可能な社会をつくることが重要である ことを認識すること」と明記されており，新エネルギーに対する理解の重要度は増してきている。本研究では，教科書での新エネルギーを調査し，その中でバイオマスエネルギーがどのように扱われているか明らかにする。調査 の結果，バイオマスエタノールを新エネルギーとして扱ら一方で，カーボンニュートラルを記載している教科書が少ないことが分かった。この結果より今後カーボンニュートラルを体感できる教材の開発に臨む。

キーワード：バイオマスエネルギー，カーボンニュートラル，理科

はじめに

現在，地球温暖化などの環境問題，さらにはエネル ギー資源利用問題の早急な解決が求められている。温室効果ガスの増加を抑制することが，重要な課題の一 つといえる。そのため，再生可能かつ持続可能なエネ ルギーであり，カーボンニュートラルであるバイオマ スエネルギーの開発と普及が進んでいる。

学校教育において，平成24年度から施行された中学校学習指導要領理科では，「環境保全と科学技術の利用」の単元で「自然環境の保全と科学技術の利用の在 り方について科学的に考察し，持続可能な社会をつく ることが重要であることを認識すること」と明記され ている ${ }^{1)}$ 。つまり，環境教育は理科においてさらに重要になってきている。

このような理由から，今回代替エネルギーについ て，現在使用されている教科書を用いて調査し，バイ オマスエネルギーがどのように扱われているかを明ら かにする。

方法

平成23年度以降に発行された小学校•中学校•高等学校の教科書を用いて，新エネルギーについて文献調査を行う。

文献調査

出版社ごとに教科書を調査した結果の表を挙げる。

[^0]1 小学校 ${ }^{2-7)}$
表1 小学校における各教科書の新エネルギーの扱い

	学校 図書	大日本 図書	東京 書籍	啓林館	教育 出版	信教育 出版社
太陽光	5	8	8	10	3	8
太陽熱	2	2	2	0	1	2
風	力	4	4	4	4	1
地 熱	0	1	1	1	0	0
水	力	2	1	1	1	0
バイオマス	0	0	0	0	0	0

表1より小学校における新エネルギーは太陽光発電，太陽熱利用，風力発電，地熱発電，水力発電を扱っていることがわかる。一方，バイオマスエネル ギーは扱っていない。
この結果から，新エネルギーは自然物を直接利用する方法のみを取り扱っていることが分かる。

2 中学校 ${ }^{8-12)}$

表2 中学校における各教科書の新エネルギーの扱い

	学校図書	大日本図書	東京書籍	啓林館	教育出版
太 陽 光	6	5	16	12	8
太 陽 熱	1	0	1	0	4
風 力	4	3	5	6	4
雪 水 熱	0	0	0	1	0
塩分浱度差	0	0	0	0	0
温 度 差	0	0	1	1	1
地 熱	2	1	4	3	3
水 力	3	3	4	6	6
波 力	1	0	0	1	1
バイオマス	2	1	4	5	2

表2より中学校における新エネルギーは，小学校で主に扱われた，太陽光，太陽熱，風力，地熱，水力に加え，バイオマスエネルギー，雪氷熱，温度差，波力 が取り扱われている。バイオマスエネルギーは，「自然と人間」のみで扱われており，新エネルギーの一つ として紹介されている。またバイオマスエネルギーを題材とした実験はなかった。

3 高等学校 ${ }^{13-70)}$

表3 科学と人間生活における各教科書の新エネルギーの扱い

	数研出版	東京書籍	啓林館	第一学習社
太陽 光	3	1	2	2
太 陽 熱	1	1	1	1
風 力	0	2	1	2
雪 水 熱	0	0	0	0
	0	0	0	0
温 度 差	0	0	0	0
地 熱	1	1	1	1
水 力	1	0	1	2
波 力	0	0	0	0
バイオマス	0	0	2	0

表3より科学と人間生活における新エネルギーは，太陽光，太陽熱，地熱に関するものが主に扱われてお り，風力，水力は各教科書でばらつきがみられた。バ イオマスエネルギーに関するものは一つの出版社のみ で扱われている。

表4物理における各教科書の新エネルギーの扱い
物理基礎

	東京書籍		実教出版		啓林館		数研出版		第一学習社	
	$\begin{gathered} \text { 物 }{ }^{\text {基 }} \\ 301 \end{gathered}$	$\begin{gathered} \hline \text { 物 基 } \\ 302 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 物 基 } \\ 303 \end{array}$			$\begin{gathered} \hline \text { 物 基 } \\ 306 \end{gathered}$	$\begin{gathered} \text { 物 基 } \\ 307 \end{gathered}$	$\begin{gathered} \hline \text { 物 基 } \\ 308 \end{gathered}$		$\begin{gathered} \text { 物 }{ }^{\text {基 }} 310 \end{gathered}$
太 陽 光	7	5	4	3	3	2	2	2	2	3
太 陽 熱	0	0	2	0	0	0	1	1	2	2
風 力	6	3	2	1	3	3	1	1	1	1
雪 水 熱	0	0	0	0	0	0	0	0	0	0
塩分濃度差	0	0	0	0	0	0	0	0	0	0
温 度 差	0	0	0	0	0	0	0	0	0	0
地 熱	3	1	1	0	1	0	2	2	0	0
水 力	3	2	2	2	2	2	2	1	3	3
波 力	0	0	1	0	0	0	1	1	0	0
バイオマス	1	0	0	0	0	0	0	0	1	1

物 理

		東京書籍	実教出版	啓林館	数研出版	第一学習社
		物理 301	物理 302	物理 303	物理 304	物理 305
太	陽	光	1	1	1	1
太	陽	熱	0	0	0	0
風		力	0	0	0	0
雪	氷	熱	0	0	0	0
塩分濃度差	0	0	0	0	0	
温	度	差	0	0	0	0
地	熱	0	0	0	0	0
水	力	0	0	0	0	0
波	力	0	0	0	0	0
バイオマス	0	0	0	0	0	

表4より物理基礎における新エネルギーは，太陽光，風力，水力に関するものが扱われている。地学は各教科書でばらつきがあつた。バイオマスエネルギー に関するものを扱っている教科書は非常に少ないこと

が分かった。また物理における新エネルギーは，太陽光に関するもののみを扱つており，その他の新エネル ギーに関しては扱われていなかった。

表5 化学における各教科書の新エネルギーの扱い
化学基礎

	東京書籍		実教出版			啓林館		数研出版			第一学習社	
	化 基 301	化 基 302	化 基 303	化 基 304	化 基 305	化 基 306	$\begin{gathered} \hline \text { 化 基 } \\ 307 \end{gathered}$	化 基 308	化 基 309	化 基 310	化 基 311	化 基 312
太 陽 光	1	0	0	0	0	0	0	0	1	0	1	2
太 陽 熱	0	0	0	0	0	0	0	0	0	0	0	0
風 力	0	0	0	0	0	0	0	0	0	0	0	0
雪 氷 熱	0	0	0	0	0	0	0	0	0	0	0	0
塩分濃度差	0	0	0	0	0	0	0	0	0	0	0	0
温 度 差	0	0	0	0	0	0	0	0	0	0	0	0
地 熱	0	0	0	0	0	0	0	0	0	0	0	0
水 力	0	0	0	0	0	0	0	0	0	0	0	0
波 力	0	0	0	0	0	0	0	0	0	0	0	0
バイオマス	0	0	0	0	0	0	0	0	0	0	0	0

化 学

		東京書籍		実教出版		啓林館	数研出版	第一学習社
		化学 301	化学 302	化学 303	化学 304	化学 305	化学 306	化学 307
太	陽	光	2	1	2	0	2	1
太	陽	熱	0	0	0	0	0	0
風	力	0	0	0	0	0	1	0
雪	氷	熱	0	0	0	0	0	0
塩分濃度差	0	0	0	0	0	0	0	
温	度	差	0	0	0	0	0	0
地	熱	0	0	0	0	0	1	0
水	力	0	0	0	0	0	1	0
波	力	0	0	0	0	0	0	0
バイオマス	0	0	1	0	1	1	0	

表5より化学基礎における新エネルギーは，太陽光 のみが扱われており，扱っている教科書も数少ないこ とが分かった。その他の新エネルギーに関しては扱わ れていなかった。また化学における新エネルギーは，

太陽光がほとんどの教科書で扱われており，数研出版 ではその他に風力，地熱，水力，バイオマスエネル ギーが扱われていた。バイオマスエネルギーに関して は3つの教科書で扱われていた。

表6 生物における各教科書の新エネルギーの扱い
生物基礎

	東京書籍		実教出版		啓林館		数研出版		第一学習社	
	$\begin{gathered} \text { 生 基 } \\ 301 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 302 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 303 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 310 \end{gathered}$	$\begin{gathered} \hline \text { 生 基 } \\ 304 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 305 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 306 \end{gathered}$	$\begin{gathered} \hline \text { 生 基 } \\ 307 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 308 \end{gathered}$	$\begin{gathered} \text { 生 基 } \\ 309 \end{gathered}$
太 陽 光	0	0	0	0	0	0	0	0	0	0
太 陽 熱	0	0	0	0	0	0	0	0	0	0
風 力	0	0	0	0	0	0	0	0	0	0
雪 水 熱	0	0	0	0	0	0	0	0	0	0
塩分濃度差	0	0	0	0	0	0	0	0	0	0
温 度 差	0	0	0	0	0	0	0	0	0	0
地 熱	0	0	0	0	0	0	0	0	0	0
水 力	0	0	0	0	0	0	0	0	0	0
波 力	0	0	0	0	0	0	0	0	0	0
バイオマス	0	0	2	0	0	0	0	0	0	0

生 物

	東京書籍	啓林館	数研出版	第一学習社	実教出版
	生物 301	生物 302	生物 303	生物 304	生物 305
太 陽 光	0	0	0	0	0
太 陽 熱	0	0	0	0	0
風 力	0	0	0	0	0
雪 水 熱	0	0	0	0	0
塩分濃度差	0	0	0	0	0
温 度 差	0	0	0	0	0
地 熱	0	0	0	0	0
水 力	0	0	0	0	0
波 力	0	0	0	0	0
バイオマス	0	0	0	0	0

表6より生物基礎における新エネルギーは，バイオ マスエネルギーについてのみ扱われており，扱ってい る教科書も 1 つだけであった。また生物では新エネル ギーは扱われていなかった。

地学基礎と地学では新エネルギーを取り扱っていな い事が分かった。

考察

理科教育における新エネルギーは，小学校，中学校 で主に扱われており，高等学校では物理以外ではほと

んど扱われていない。このことは新エネルギーに関 する内容が応用科学であり，部分的に物化生地を横断 するような内容であることに起因していると考えられ る。なので，その分野の基礎的な内容に焦点を当てる高校理科よりも，理科および科学全体を知ることに焦点をあてた小中理科で扱われることが多くなっている と推測される。次にバイオマスエネルギーの取り扱い方であるが，小学校では取り扱われておらず，中学校 と高等学校で扱われている。しかし，中高のどちらに おいても，バイオマスエネルギーの扱われ方は，新エ ネルギーの一つとしての紹介といらものであり，バイ オマスエネルギーで期待されるカーボンニュートラル

という概念を扱っている教科書は中学校の1つのみで あった。カーボンニュートラルは，製造過程なども含 め炭素の吸収量と排出量が同じでなくてはならず，製造過程で化石燃料を使用した時点で炭素排出量が大き く上回ってしまらということも指摘されている ${ }^{71)}$ 。な ので，カーボンニュートラルを扱らにはライフサイク ルアセスメントを考慮する必要がある。

まとめ

今回は新エネルギーに注目した結果，教科書で扱わ れているものに偏りがあることがわかり，バイオマス エネルギーに関する記述も少ないことが分かった。ま たカーボンニュートラルについてもほぼ扱われておら ず，バイオマスエネルギーの有用性を理解することが難しいと結論付けた。なので，ライフサイクルアセス メントを考慮した上で実際にカーボンニュートラルを体感できるようなバイオマスエネルギーに関する教材開発に臨む必要がある。

本研究はJSPS科研費15K00959の助成を受けたもの である。

参考文献

1）中学校学習指導要領解説 理科編平成20年9月 P95
2）新しい理科 $3 \cdot 4 \cdot 5 \cdot 6$ 東京書籍
3）たのしい理科 $3 \cdot 4 \cdot 5 \cdot 6$ 大日本図書
4）小学校理科 3 年•4年•5年•6年学校図書
5）小学理科 $3 \cdot 4 \cdot 5 \cdot 6$ 教育出版
6）わくわく理科 $3 \cdot 4 \cdot 5 \cdot 6$ 啓林館
7）楽しい理科 $3 \cdot 4 \cdot 5 \cdot 6$ 信州教育出版
$8)$ 新しい科学 $1 \cdot 2 \cdot 3$ 東京書籍
9）理科の世界 1 年•2年3年 大日本図書
10）中学校科学 $1 \cdot 2 \cdot 3$ 学校図書
11）自然の探究 $1 \cdot 2 \cdot 3$ 教育出版
12）未来へ広がるサイエンス $1 \cdot 2 \cdot 3$ 啓林館
13）科学と人間生活 啓林館
14）科学と人間生活 くらしの中のサイエンス数研出版
15）高等学校科学と人間生活 第一学習社
16）科学と人間生活 東京書籍
17）新編物理基礎 東京出版
18）物理基礎 実教出版
19）高校物理基礎 実教出版
20）物理基礎 啓林館
21）新編物理基礎 啓林館
22）物理基礎 数研出版
23）新編物理基礎 数研出版

24）物理基礎 第一学習社
25）高等学校新物理基礎 第一学習社
26）物理 東京出版
27）物理 実教出版
28）物理 啓林館
29）物理 数研出版
30）物理 第一学習社
31）化学基礎 東京出版
32）新編化学基礎 東京出版
33）化学基礎 実教出版
34）新版化学基礎 実教出版
35）高校化学基礎 実教出版
36）化学基礎 啓林館
37）新編化学基礎 啓林館
38）化学基礎 数研出版
39）高等学校化学基礎 数研出版
40）新編化学基礎 数研出版
41）高等学校化学基礎 第一学習社
42）高等学校新化学基礎 第一学習社
43）化学 東京出版
44）新編化学 東京出版
45）化学 実教出版
46）新版化学 実教出版
47）化学 啓林館
48）化学 数研出版
49）高等学校化学 第一学習社
50）生物基礎 東京出版
51）新編生物基礎 東京出版
52）生物基礎 実教出版
53）高校生物基礎 実教出版
54）生物基礎 啓林館
55）新編生物基礎 啓林館
56）生物基礎 数研出版
57）新編生物基礎 数研出版
58）高等学校新生物基礎 第一学習社
59）生物基礎 第一学習社
60）生物 東京出版
61）生物 啓林館
62）生物 数研出版
63）高等学校生物 第一学習社
64）生物 実教出版
65）地学基礎 東京書籍
66）地学基礎 実教出版
67）地学基礎 啓林館
68）地学基礎 数研出版
69）地学 啓林館
70）地学 数研出版
71）David Pimentel，Ethanol Fuels：Energy Balance， Economics，and Environmental Impacts are Negative， Natural Resources Research，Vol．12，No．2，p127－134 （2003）
（2016．1．18受理）

[^0]: ＊弘前大学大学院教育学研究科
 Graduate School of Education，Hirosaki University
 ＊＊弘前大学教育学部学校教育講座
 Department of School Education，Faculty of Education，Hirosaki University $* * *$ 弘前大学教育学部理科教育講座

 Department of Natural Science，Faculty of Education，Hirosaki University

