CLOSURE BY IPTAKALIM, A CARDIOVASCULAR K_{ATP} CHANNEL OPENER, OF RAT PANCREATIC β-CELL K_{ATP} CHANNELS AND ITS MOLECULAR BASIS

Makoto Wakui^{1,2)}, Naoko Misaki²⁾, Sechiko Suga³⁾, Xia Mao⁴⁾, Yu-Fung Lin⁴⁾ and Jie Wu⁴⁾

Abstract Diabetes mellitus is a group of diseases characterized by high levels of blood glucose resulting from defects in insulin production, insulin action, or both. Diabetes patients usually have accompanying cardiovascular disorders. Sulfonylureas have been the leading oral antihyperglycemic agents for type 2 diabetes treatment, which currently still constitute the most popular anti-diabetic drugs. Nevertheless, concern has arisen over the side effects of sulfonylureas on the cardiovascular system. Here we report that iptakalim, a novel cardiovascular ATP-sensitive potassium (K_{ATP}) channel opener, closed rat pancreatic β -cell K_{ATP} channels and increased insulin release. Using whole-cell patch-clamp recordings, iptakalim depolarized β -cells, induced action potential firing and reduced pancreatic K_{ATP} channel currents. Using single-channel recordings, iptakalim reduced K_{ATP} channel open-probability independently of intracellular ATP concentrations. We demonstrated that iptakalim elevated intracellular Ca^{2+} concentrations and increased insulin release as revealed by fluorescence imaging (fura-2) and biochemical measurements, respectively. In addition, iptakalim significantly inhibited the open-probability of recombinant Kir6.2/SUR1 and Kir6.2FL4A (a trafficking mutant of the Kir6.2) channels expressed in transfected human embryonic kidney (HEK) 293 cells. Collectively, iptakalim, a cardiovascular K_{ATP} channel opener, closes rat pancreatic β -cell K_{ATP} channels, which may result from direct inhibition of the Kir6.2 subunit. Therefore, iptakalim bi-directionally regulates K_{ATP} channels in cardiovascular and pancreatic tissues, and this unique pharmacological property suggests iptakalim could be used as a new therapeutic strategy for the treatment of type 2 diabetes with the potential benefit in alleviating cardiac and/or vascular disorders frequently associated with diabetes. Hirosaki Med. J. 59, Supplement : S89-S100, 2007

Key words: iptakalim; K_{ATP} channel; Kir6.2; islet β -cell; insulin secretion

Introduction

Type 2 diabetes, characterized by high levels of blood glucose caused by decreased secretion of insulin from pancreatic β -cells and/or decreased insulin action, is prevalent worldwide and associated with morbidity and mortality secondary to complications such as myocardial infarction, stroke and end-stage renal disease¹⁾. The importance of tight control of blood glucose levels, in either preventing or delaying the progression of complications, is well-recognized. Although both the control of food intake and regular exercise are thought to benefit diabetes patients, more than 50% of diagnosed type 2 diabetes patients still require medication. Among the choices of antidiabetic medications used to maintain normal blood glucose levels, the most effective ones reduce insulin resistance (e.g., metformin or glitazones), supply exogenous insulin or increase endogenous insulin release (e.g., sulfonylureas). Sulfonylureas, in particular, have been the leading oral antihyperglycemic agents used

¹⁾ Division of Clinical Research, Hirosaki National Hospital, Hirosaki 036-8545, Japan

²⁾ Department of Physiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan

³⁾ Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, CA 95616, USA

⁴⁾ Division of Neurology, Barrow Neurological Institute, AZ 85013-4496, USA

over the past half-century, and continue to be the most popular anti-diabetic drugs prescribed today for type 2 diabetes. The action of sulfonylureas is to trigger insulin release from pancreatic β -cells. SUR1, the regulatory subunit of pancreatic β -cell K_{ATP} channels, is capable of binding sulfonylureas, leading to closure of K_{ATP} channels, which in turn causes membrane depolarization, the opening of voltage-gated Ca²⁺ channels and subsequently exocytosis of insulin. Meanwhile, sulfonylureas also interact with K_{ATP} channels in extra-pancreatic tissues, such as cardiac, vascular and smooth muscles, and various brain regions². Side actions caused by the use of sulfonylureas when treating diabetes patients have raised concerns that sulfonylureas may close cardiovascular K_{ATP} channels thereby diminishing endogenously protective responses to ischemia that require K_{ATP} channel activation. Indeed, it has been recognized that type 2 diabetes is associated with increased incidence of cardiovascular disease risk factors including hypertension, dyslipidemia, microalbuminuria and altered hemostasis³⁾. Long-term use of sulfonylureas for treatment of type 2 diabetes has been cautiously implicated to be the cause, at least in part, of increased cardiovascular disorders, although experimental evidence remains obscure⁴⁾. Meanwhile, the application of K_{ATP} channel isoform-selective drugs, which close pancreatic β -cell K_{ATP} channels without clearly affecting KATP channels in the cardiovascular system, has been strongly recommended^{5,6)}, and there is an urgent need to develop novel, tissueselective anti-diabetic drugs. Although the major effect of sulfonylureas is to reduce blood glucose levels by closing pancreatic β -cell K_{ATP} channels, an ideal anti-diabetic compound would be one that selectively closes pancreatic β -cell while opens cardiovascular K_{ATP} channels, thereby simultaneously controlling glucose homeostasis and improving cardiac and/or vascular disorders. Unfortunately, no such compounds have yet available.

Iptakalim was initially designed and synthesized as an antihypertensive drug and exhibited remarkable antihypertensive effects in a variety of hypertensive animal modelsusing in vivo and in vitro preparations⁷⁻¹¹⁾. The molecular mechanisms underlying its antihypertensive effect include the opening of cardiovascular K_{ATP} channels^{7,8)}. For example, iptakalim significantly enhanced K⁺ currents recorded in whole-cell configurations in vascular smooth muscle cells isolated from pulmonary artery, as well as in isolated rat aorta denuded vascular endothelium⁸⁾. Moreover, Wang et al. also showed that specific binding of the K_{ATP} channel opener [³H]P1075 was displaced by iptakalim in a concentrationdependent manner⁸⁾. These results suggest that iptakalim serves as a K_{ATP} channel opener due to its ability to open cardiovascular $K_{\mbox{\scriptsize ATP}}$ channels. Considering some of its advantages, such as being water-soluble, being able to freely penetrate the blood-brain barrier and exhibiting low-toxic side effects during systemic administration^{8,12)}, iptakalim is a highly promising compound to serve as a useful pharmacological tool for studying K_{ATP} channels as well as a therapeutic agent for antihypertension and cell protection. However, whether iptakalim affects K_{ATP} channel function in pancreatic β -cells and alters insulin release has hitherto remained unknown.

In the present study, we examined the effects of iptakalim on cell excitability, K_{ATP} channel function, intracellular Ca²⁺ concentrations and insulin release using wholecell and single-channel patch-clamp recordings, fura-2 fluorescence imaging and biochemical measurements in rat pancreatic β -cells or islets. To determine the possible molecular basis of iptakalim's action, we also examined its effects on heterologously expressed Kir6.2/ SUR1 (a pancreatic K_{ATP} channel isoform) and Kir6.2RKRR368/369/370/371AAAA (i.e.,

Kir6.2FL4A, a Kir6.2 trafficking mutant capable of functional expression without SUR) channels in HEK293 cells. We show that iptakalim failed to open β -cell K_{ATP} channels; instead, it closed these K_{ATP} channels, most likely by acting on the Kir6.2 subunit. By closing pancreatic β -cell K_{ATP} channels, iptakalim depolarized β -cell plasma membrane, activated voltage-gated Ca²⁺ channels and increased intracellular Ca²⁺ concentrations, and in turn led to an increase of insulin release. This novel discovery suggests that iptakalim bi-directionally regulates the function if K_{ATP} channels expressed in the cardiovascular system and pancreatic β -cells, and it may be used to as a new therapeutic strategy to treat hyperglycemia while improving the cardiac and/ or vascular function of type 2 diabetes patients.

Materials and Methods

This study was carried out in accordance with the Guidelines for Animal Experimentation, Hirosaki University, Japan, and USA.

Pancreatic β-cell isolation

Isolation of rat islets was performed following a previously described $protocol^{52,53)}$. In short, adult male Wistar rats were anesthetized with diethyl ether, and 10 ml of Hank's buffered saline (HBSS) containing collagenase (200 U/ml, Wako Chem., Japan) was injected into the common bile duct. The pancreas, swollen with digestion solution, was quickly excised and incubated in a plastic culture bottle for 20 min at 37°C. The suspension obtained by shaking the bottle was filtered through 0.5-mm metal mesh and washed with HBSS, which included 2% bovine serum albumin (BSA). About 100 islets were obtained from one rat using the Histopaque (specific gravity 1.077, Sigma, St. Louis, MO) gradient method. After washing with HBSS, which contained 2% BSA, islets were cultured for 24 h with 5% CO_2 in tissue culture medium. Separation of islets was carried out using dispase (1000 U/ml, Godo Shusei, Japan) as previously described⁵². Separated cells were cultured for 1-4 days. Only single cells were chosen for experiments. β -cells were identified by detecting cell responses to 15 mM glucose or 500 μ M tolbutamide (Sigma). Furthermore, the percentages of cells isolated from islets (*a*: 8%, β : 87%, δ : 4%)⁵⁴ were determined to determine whether results were to be included.

Patch-clamp recordings

Cells were kept in a 35-mm Petri dish, and the dish was placed on the stage of an inverted microscope (IMT-2, Olympus, Tokyo, Japan). Membrane potentials and currents were measured using a patch-clamp amplifier (EPC-7, List Electronic, Darmstadt, Germany). The amphotericin B-based perforation patch-clamp method was used to measure the membrane potential and whole-cell currents⁵⁵⁾. The resistance of recording electrodes, when filled with pipette solution, ranged from 2 to 4 M Ω . In order to measure whole-cell membrane current, voltageramp pulses from -90 to -50 mV were repeatedly applied using a ramp pulse generator (SET-2100, Nihon Kohden, Tokyo, Japan). The membrane capacitance ranged from 8 to 14 pF. Series resistance below 12 M Ω was accepted. Singlechannel current recordings were carried out in the cell-attached and inside-out configurations. All electrophysiological experiments were performed at room temperature (22±1°C). Data of singlechannel currents were low-pass filtered at 1 kHz, digitized at 10 kHz and analyzed using a singlechannel current analysis program (Clampfit 9.2, Axon Instruments, Foster City, CA). The concentration-inhibition curve created by iptakalim was fitted using Origin 5.0 (Microcal, North Hampton, MA).

For HEK293 cell recordings, the recording electrodes were prepared as described before¹⁴⁾. The intracellular (bath) solution consisted of (in mM): KCl 110, MgCl₂ 1.44, KOH 30, EGTA

10, HEPES 10, pH to 7.2. The extracellular (intrapipette) solution consisted of (in mM): KCl 140, MgCl₂ 1.2, CaCl₂ 2.6, HEPES 10, pH to 7.4. All salts were obtained from Sigma. The equilibrium potential for potassium ions was around 0 mV as determined from the I-V relationship. Cellattached single-channel recordings were performed at room temperature 48-72 hr after transfection. All patches were voltage-clamped at -60 mV intracellularly. Single-channel currents were recorded with Axopatch 200B amplifier (Axon Instruments) and were low-pass filtered (3dB, 2 kHz) and digitized at 20 kHz. Singlechannel events were detected using Fetchan 6.05 (pCLAMP; Axon) and analyzed with Intrv5 (Dr. Barry S. Pallotta) as described before¹⁴⁾.

Fura-2 Ca²⁺ imaging

Isolated islets were placed in a glass-bottom culture dish and then loaded with a HEPES buffer solution (in mM: 140 NaCl, 4.7 KCl, 1.2 MgCl₂, 1.0 CaCl₂, 10 glucose and 10 HEPES) containing 1 μM fura-2/AM (Dojin, Kumamoto, Japan) for 20 min at room temperature. Ca²⁺ images were captured using an inverted microscope with 40X Plan-Neofluar objectives (Axiovert 135, Zeiss, Oberkochen, Germany), a silicon intensifier target camera and recorded on a fluorescence-imaging system (Argus 50/CA, Hamamatsu Photonics, Hamamatsu, Japan). Excitation wavelengths were 340 nm and 380 nm, selected from a Xenon light source, and the emission wavelength was 510 nm⁵⁶⁾. All microfluorimetric experiments were carried out at room temperature.

Measurement of insulin release

The amount of insulin released from islets was measured as previously described⁵⁷⁾. Briefly, isolated islets were hand-picked under a microscope, and 20 islets were relocated in a polypropylene syringe filter (0.45-mm filter, Corning Inc., Corning, NY) and continuously perfused with a control solution of HBSS containing 5.5 mM glucose, 10 mM HEPES and 2% BSA at a rate of 1 ml/min. Following preincubation for 30 min, the islets were perfused with the control solution for another 12 min, and then were stimulated by a high glucose concentration (22.5 mM), tolbutamide (500 μ M) or iptakalim (100 μ M) for 12 min. Before and during stimulation with glucose, tolbutamide or iptakalim, the perfusate was collected and stored at -20 °C until the assay. Insulin was measured by enzyme-linked immunosorbent assay using a microplate reader (Bio-Rad Laboratories, Inc., Hercules, CA). Insulin measurement kits were purchased from Morinaga Seikagaku Institute (Yokohama, Japan).

Solutions and drugs

The standard external solution contained (in mM): 135 NaCl, 5.6 KCl, 1.2 MgCl₂, 1 CaCl₂, 5 glucose, 10 HEPES and pH 7.3 adjusted with NaOH. For perforated patch recordings, the pipette solution contained (in mM): 100 K-gluconate, 35 KCl, 5 glucose, 0.5 EGTA, 10 HEPES, $240 \mu g/ml$ amphotericin B (Sigma) and pH 7.2. For cell-attached and inside-out singlechannel recordings, the pipette solution contained (in mM): 135 KCl, 1.2 MgCl₂, 5 glucose, 0.5 EGTA, 10 HEPES and pH 7.3. The ionic composition of the solution inside the membrane (bath solution) during inside-out recordings was the same as the pipette solution, but the pH of this solution was 7.2. For studying ATP sensitivity, ATP (10 μ M) was added to the bath solution when performing inside-out recordings. Iptakalim hydrochloride (N- (1-methylethyl) -1,1,2- trimethyl-propylamine hydrochloride) was kindly provided by Dr. H. Wang (Institute of Pharmacology and Toxicology, Beijing, P.R. China), and both diazoxide and tolbutamide were purchased from Sigma. Pancreatic β -cells in the bath were continuously exposed to a stream of external solution throughout the experiments.

Statistics

Data are expressed as mean±SEM of several experiments, and statistical significance was evaluated by the two-tailed paired and unpaired Student's t-tests. P values less than 0.05 were considered to be significant.

Results Iptakalim induced electrical excitation of single rat pancreatic β-cells

Using amphotericin B-based perforated wholecell recordings in current-clamp mode, the resting membrane potential of rat β -cells was stable $(-52.9\pm1.1 \text{ mV}, n=28)$ and the cells were electrically silent (i.e., no spontaneous action potential firing) with 5.5 mM glucose in the external solution. Bath application of 22.5 mM glucose induced action potential firing following a slowly-developed membrane depolarization, suggesting that the high concentration of glucose increased β -cell excitability, presumably by increasing intracellular ATP production that led to the subsequent closure of K_{ATP} channels. Under the same experimental conditions, iptakalim (100 μ M; also slowly depolarized β -cell plasma membrane and elicited action potential firing. Moreover, in the presence of 10 μ M nifedipine, an L-type Ca²⁺ channel blocker that suppressed action potential firing, iptakalim depolarized, but diazoxide (100 μ M, a classic SUR1-selective K_{ATP} channel opener) hyperpolarized, pancreatic β -cell plasma membrane. These results suggest that iptakalim regulates β -cell excitability by closing K_{ATP} channels.

Iptakalim reduced whole-cell currents of K_{ATP} channels in rat pancreatic β -cells

In order to determine whether currents permeating through pancreatic β -cell K_{ATP} channels were inhibited by iptakalim, membrane

currents induced by repetitive ramp pulses from -90 to -50 mV (at 0.2 Hz) were recorded in voltage-clamped whole-cell mode (external glucose=5.5 mM). The classic K_{ATP} channel blocker tolbutamide (500 μ M) reversibly suppressed the ramp-evoked currents, suggesting that these currents were K_{ATP} channel-mediated currents. Bath application of iptakalim (100 μ M) reduced whereas diazoxide (100 μ M) increased these currents. The inhibition of β -cell K_{ATP} channels by iptakalim was concentrationdependent. The IC₅₀ and Hill coefficient of iptakalim were 30.4 μ M and 0.8, respectively (n=7). These results suggest iptakalim closes β -cell K_{ATP} channels in a concentration-dependent

Iptakalim decreased pancreatic β -cell K_{ATP} channel open-probability in cellattached and inside-out patches

manner.

Single-channel currents in pancreatic β -cells were recorded in cell-attached patches clamped at a pipette potential (Vp) of 0 mV. Bathapplication of tolbutamide (500 μ M) completely abolished, while diazoxide (100 μ M) markedly enhanced, single-channel currents, indicating that the recorded currents were permeating through K_{ATP} channels. Moreover, subsequent application of iptakalim (100 μ M) reduced the single-channel currents. The values of open probability (NPo) before and during application of iptakalim were 0.147 ± 0.014 and 0.067 ± 0.007 (20 patches; p < 0.01), respectively. From an analysis of total KATP channel current amplitude distribution before and during application of iptakalim, it was clear that iptakalim reduced numbers of KATP channel openings without altering single-channel conductance. The mean current amplitudes before and during application of iptakalim were 3.31 ± 0.16 and 3.26 ± 0.14 pA (20 patches; p>0.05), respectively. These results suggest that iptakalim suppresses K_{ATP} channel currents in rat pancreatic β -cells.

In order to examine whether inhibition of K_{ATP} channels by iptakalim was mediated by any effects on intracellular ATP concentrations, inside-out patch experiments were also performed. As shown in Figure 4, in the absence of intracellular ATP the mean open probability values were reduced from $0.120\pm$ 0.025 (n=7) to 0.048 ± 0.014 (n=7, p<0.01) by iptakalim (100 μ M). In the presence of 10μ M ATP, iptakalim (100 μ M) reduced open-time probability from 0.074 ± 0.012 (n=7) to $0.034\pm$ 0.011 (n=6, p<0.05). These results suggest that the block of rat pancreatic β -cell K_{ATP} channels by iptakalim is likely independent of intracellular ATP concentrations.

Iptakalim elevated pancreatic β-cell intracellular Ca²⁺ concentrations

To determine whether iptakalim-induced membrane depolarization triggered Ca²⁺ influx (through voltage-gated Ca²⁺ channels), intracellular Ca^{2+} concentrations were measured using fura-2 fluorescence imaging. An increase in glucose concentration from 5.5 to 22.5 mM induced marked elevation of intracellular Ca²⁺ concentrations. The changes were sensitive to diazoxide (100 μ M; 6 cells), suggesting that the increase in intracellular Ca²⁺ concentrations was due to glucose-induced closure of KATP channels, which subsequently depolarized cell membrane and activated voltage-gated Ca²⁺ channels. The closure of K_{ATP} channels by tolbutamide (500 μ M) caused a similar elevation of intracellular Ca²⁺ concentrations (6 cells). Likewise, bathapplied iptakalim (100 μ M) also induced an increase of intracellular Ca²⁺ concentrations (8 cells), and the increase was sensitive to both nifedipine (1 μ M; 5 cells) and diazoxide (100 μ M; 8 cells). These results indicate that in rat pancreatic β -cells, iptakalim increases intracellular Ca²⁺ concentrations, presumably by closing KATP channels, which leads to cellular membrane depolarization and subsequent activation of L-type voltage-gated Ca²⁺ channels.

Iptakalim increased insulin release from rat pancreatic islets

The effects of iptakalim on insulin release were examined. With 5.5 mM glucose in the external solution, basal insulin secretion was measured. The application of 22.5 mM glucose increased insulin secretion from a basal level of 21.5 ± 0.9 to 59.2 ± 8.6 pg/islet/min (p<0.01, 5 cells), while 500 μ M tolbutamide increased insulin secretion from 20.1 ± 1.2 to 43.7 ± 2.1 pg/islet/min (p<0.01, 5 cells) and 100 μ M iptakalim increased insulin secretion from 22.5 ± 1.2 to 34.5 ± 1.8 pg/islet/min (p<0.05, 7 cells). These data indicate that iptakalim increases insulin secretion, presumably by inhibiting K_{ATP} channels in rat pancreatic β -cells.

Iptakalim inhibited Kir6.2/SUR1 and Kir6.2FL4A K_{ATP} channels heterologously expressed in HEK293 cells

To determine whether the effects of iptakalim on K_{ATP} channels were subunit-dependent, we examined its action on recombinant Kir6.2/SUR1 channels, a pancreatic K_{ATP} channel isoform, in transiently expressed in HEK293 cells. The single-channel currents of Kir6.2/SUR1 channels in cell-attached patches were reduced by iptakalim, and the normalized NPo in the presence of 500 μ M iptakalim was 0.49±0.15 (7 patches, p < 0.05; control as 1). These results suggest that iptakalim suppresses the Kir6.2/ SUR1 channel, supporting the inhibitory effects of iptakalim on native pancreatic β -cell K_{ATP} channels described above. To determine whether iptakalim exerts its inhibitory action on Kir6.2/ SUR1 channels by directly interacting with the pre-forming Kir6.2 subunit, we investigated the effect of iptakalim on the tetrameric Kir6.2FL4A channel in the absence of SUR subunits. The opening pattern of Kir6.2FL4A KATP channels in cell-attached patches exhibited more brief openings, a feature also observed in Kir6.2 Δ C36 channels, another mutant of Kir6.2 that was capable of functional expression without the SUR subunit^{13,14)}. Iptakalim (100 and 500 μ M) reduced the single-channel currents of Kir6.2FL4A channels in a concentration-dependent manner, and the normalized NPo values were 0.65±0.04 (p<0.0001; 8 patches) and 0.38±0.05 (p<0.001, 5 patches), respectively (control as 1). The single-channel conductance was not affected. These results suggest that iptakalim suppresses the function of β -cell K_{ATP} channels by directly inhibiting the Kir6.2 subunit.

Discussion

The novel and important finding obtained from the present study is that iptakalim, a cardiovascular K_{ATP} channel opener, closed instead of opened rat pancreatic β -cell K_{ATP} channels, which in turn increased cell excitability, elevated intracellular Ca2+ concentrations and enhanced insulin release. Furthermore, by examining the heterologously expressed Kir6.2/ SUR1 and Kir6.2FL4A KATP channels in HEK293 cells, we provided direct evidence that iptakalim inhibits Kir6.2/SUR1 channels and that the molecular target responsible for interacting with iptakalim is the Kir6.2 subunit, which explained the effects of iptakalim in modulating cell excitability and insulin release in pancreatic β -cells. The findings that iptakalim closed β -cell K_{ATP} channels, but opened cardiovascular K_{ATP} channels⁷⁻¹¹⁾, implicate a promising new therapeutic strategy for the treatment of patients afflicted with type 2 diabetes, as iptakalim may be beneficial in relieving symptoms of cardiac and/or vascular disorders or even improve cardiovascular function of diabetes patients.

Iptakalim did not open β-cell K_{ATP} channels

Iptakalim was initially designed as a new K_{ATP} channel opener with a unique structure

and antihypertensive effects; its antihypertensive effects are abolished by the $K_{\mbox{\scriptsize ATP}}$ channel blocker glibenclamide7-11). Using smooth muscle cells isolated from pulmonary artery as well as isolated rat aorta denuded vascular endothelium, Wang⁸⁾ reported that iptakalim significantly enhances whole-cell K⁺ currents. Also, specific binding of the labeled K_{ATP} channel opener [³H]P1075 was displaced by iptakalim in a concentration-dependent manner⁸⁾. These results indicate that iptakalim opens vascular K_{ATP} channels, which may account for its antihypertensive effects. In the present study, however, iptakalim failed to open pancreatic β -cell K_{ATP} channels, while the classic β -cell KATP channel opener diazoxide clearly opened β -cell K_{ATP} channels. Although the precise mechanisms are unclear, the $K_{\mbox{\scriptsize ATP}}$ channel subunits specifically expressed in β -cells (i.e., Kir6.2 and SUR1) may explain the inability of iptakalim to open β -cell K_{ATP} channels.

It is well known that KATP channels are expressed in a variety of tissues with different SUR subunits¹⁵⁻¹⁷⁾. For instance, cardiovascular $K_{\rm ATP}$ channels are formed by Kir6.2/6.1 and SUR2A/2B^{18,19)}, pancreatic β -cell K_{ATP} channels are formed by Kir6.2 and SUR1²⁰⁾, while neuronal K_{ATP} channel isoforms are Kir6.2/SUR1²¹⁻²⁴⁾ and/or Kir6.2/SUR2B^{24,25)}. This tissue-specific expression of SUR renders different sensibilities of K_{ATP} channels to metabolic stress, sulfonylureas and K_{ATP} channel openers. It has also been reported that in the presence of ATP, pinacidil effectively opens Kir6.2/SUR2A, but fails to open Kir6.2/SUR1, KATP channels in Xenopus oocytes^{26,27)}. Scuvee-Moreau et al.²⁸⁾ compared the efficacy of K_{ATP} channel openers in two types of central neurons and found that hippocampal CA1 pyramidal neurons were sensitive to the K_{ATP} channel openers diazoxide, pinacidil and lemakalim, whereas A10 dopaminergic neurons were only sensitive to diazoxide. The presence of SUR1 also explains the activation of tolbutamideand iptakalim-sensitive K_{ATP} channels by diazoxide in pancreatic β -cells in the present study, as diazoxide has been reported to bind to both SUR1 and SUR2 and opens Kir6.2/SUR1 and Kir6.2/SUR2B K_{ATP} channels when MgATP is present²⁹⁻³¹. In addition, our data obtained from recombinant Kir6.2/SUR1 channels in transfected HEK293 cells demonstrated that iptakalim failed to open, although diazoxide clearly opened, these channels³². Therefore, it is likely that the SUR2A and/or SUR2B, rather than the SUR1, subunit of K_{ATP} channels may be the target of iptakalim that mediates K_{ATP} channel activation.

Iptakalim closed pancreatic β-cell K_{ATP} channels

Iptakalim was unable to open pancreatic eta-cell K_{ATP} channels, perhaps due to the presence of the SUR1, but not the SUR2, subunit in these cells. Moreover, an intriguing finding revealed here was that iptakalim in fact closed pancreatic β -cell K_{ATP} channels. It has been reported that PNU-99963, a non-sulfonylurea K_{ATP} channel inhibitor, is structurally similar to the K_{ATP} channel opener pinacidil³³⁾. Structurally, iptakalim is similar to the core portion of pinacidil, and it may be possible that K_{ATP} channel opener analogues with such structure can inhibit K_{ATP} channels. Would this be the possible structural basis for iptakalim's block of pancreatic β -cell K_{ATP} channels? Several possible mechanisms may underlie the iptakalim-induced β -cell K_{ATP} channel closure. First, iptakalim may bind to glibenclamide sites of the SUR1 subunit, thereby altering SUR subunit conformation, which in turn reduce β -cell K_{ATP} channel opening. Emerging evidence has demonstrated that iptakalim-induced pharmacological effects in the cardiovascular and central nervous systems can be prevented by pretreatment with glibenclamide^{9,10,12,34-36}, suggesting that iptakalim and glibenclamide may compete for similar ligand binding sites on SUR2A/B subunits. In rat pancreatic β -cells, however, this mechanism appears to be absent since β -cell K_{ATP} channels do not express SUR2A/B subunits. Second, iptakalim may suppress β -cell K_{ATP} channel activity by increasing either ATP production or sensitivity of $K_{\mbox{\scriptsize ATP}}$ channels to intracellular ATP. We recently reported that systemic administration of either iptakalim or diazoxide protects rats against metabolic stress in a 6-OHDA-induced Parkinson's disease model, and that this protection is abolished by the relatively selective mitochondrial KATP channel blocker 5-hydroxydecanoate³⁷⁾, suggesting that iptakalim may open mitochondrial KATP channels expressed in rat midbrain cells. Based on these results, it seemed possible that iptakalim would be able to open mitochondrial KATP channels expressed in rat β -cells, depolarize mitochondrial membrane and alter ATP production. In addition, we previously found that some K_{ATP} channel modulators regulate K_{ATP} channel activity by altering KATP channel sensitivity to intracellular ATP³⁸⁾. However, the results that iptakalim showed equal inhibition in the inside-out patch recordings with and without intracellular ATP appears to exclude this possibility. Finally, iptakalim may directly block β -cell K_{ATP} channels by acting on the Kir6.2 subunit. It is well known that some K_{ATP} channel modulators, such as nicorandil, pinacidil or glibenclamide, regulate K_{ATP} channel activity by targeting the regulating subunit SUR^{27,39)}, whereas others (e.g., phentolamine and cibenzoline) directly inhibit the pore-forming subunit Kir $6.2^{40,41}$. Moreover, tolbutamide has been shown to act on both SUR1 and Kir 6.2^{29} . As previously discussed, since iptakalim-induced inhibition of pancreatic β -cell K_{ATP} channels does not appear to result from interacting with SUR1 or altering β -cell K_{ATP} channel sensitivity to intracellular ATP, another possible target of iptakalim may be the Kir6.2 subunit. The best model to test this hypothesis is to use K_{ATP} channels composed of the heterologously expressed truncated or mutant Kir6.2 subunit in the absence of the SUR subunit⁴¹. Our data obtained from the tetrameric Kir6.2 (i.e. Kir6.2FL4A) channels expressed in the absence of the SUR subunit suggest that the Kir6.2 subunit likely mediates iptakalim-induced pancreatic β -cell K_{ATP} channel inhibition.

Therapeutic implications

In pancreatic β -cells, K_{ATP} channels play a pivotal role in maintaining plasma membrane potential and regulating cell excitability. The closure of these K_{ATP} channels causes β -cells to depolarize, in turn activates voltage-sensitive Ca²⁺ channels and increases cytosolic Ca²⁺ concentrations, thereby leading to insulin release. Therefore, the pancreatic β -cell K_{ATP} channel is thought to be a key target for the treatment of type 2 diabetes^{6,15)}. Indeed, many K_{ATP} channel blockers, including tolbutamide, glyburide, gliclazide, nateglinide, repaglinide and glibenclamide have been used for many years for the treatment of type 2 diabetes $^{42\cdot44)}$. On the other hand, $K_{\mbox{\scriptsize ATP}}$ channels are also widely expressed in a variety of different tissues, including heart, smooth muscle, skeletal muscle and the nervous system $^{15\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}$. Blockade of K_{ATP} channels in non-pancreatic tissues due to the treatment of type 2 diabetes using KATP channel blockers may cause some severe side effects⁴⁵⁾. For example, it is believed that in the heart, K_{ATP} channels play an important role in the intrinsic mechanisms that protect cardiac muscle during hypoxia/ischemia⁴⁶⁾. In arterial smooth muscle, $K_{\mbox{\scriptsize ATP}}$ channels help maintain contractile tone, in turn controlling blood pressure and blood flow 47 . In patients with type 2 diabetes that have been treated with $K_{\mbox{\scriptsize ATP}}$ channel blockers, the major cause of death is cardiovascular disease, which has been argued that could, at least in part, be related to the side effects of sulfonylureas in blocking cardiovascular $K_{\rm ATP}\ channels^{48\text{-}50)}$

Therefore, there is a substantial need to develop novel types of pancreatic β -cell K_{ATP} channel blockers that exhibit little blocking effects on, or even open, cardiovascular K_{ATP} channels. Unfortunately, there are no such optimal drugs that meet these specifications thus far. Although tolbutamide and gliclazide are reported to produce high-affinity closure of β -cell (Kir6.2/SUR1) but not cardiac (Kir6.2/SUR2A) or smooth muscle (Kir6.1/SUR2B), K_{ATP} channels^{5,27,51)}, they exhibit insignificant (or no) opening effects on cardiovascular KATP channels. In the present investigation, we found, for the first time, that iptakalim closed β -cell K_{ATP} channels, depolarized β -cells, elevated β -cell intracellular Ca²⁺ concentrations and increased insulin release. The finding that iptakalim, a cardiovascular K^{ATP} channel opener, blocked pancreatic β -cell K^{ATP} channels indicates that iptakalim is a highly promising compound to satisfy therapeutic demands. Evidence has indicated that iptakalim exerts remarkable protective effects against cardiovascular disorders, especially hypertension, in a variety of animal models that use in vivo and in vitro preparations^{7,8,11}, and clinical trials to treat hypertension are currently being conducted⁸⁾. The unique property of bidirectional regulation of pancreatic β -cell and cardiovascular K_{ATP} channels suggests that iptakalim exhibits great potential to serve as, and stimulate the development of, a new generation of anti-diabetic (type 2 diabetes) drugs, and is particularly desirable for the treatment of type 2 diabetes in patients that have accompanying cardiac and/or vascular disorders. Considering its physical and pharmacological properties, such as being a small molecule, water-soluble, able to cross the blood-brain barrier, with few side effects after long-term systemic administration, iptakalim is a promising agent for the treatment of type 2 diabetes and may even benefit the preservation of normal functioning of the cardiac and/or vascular systems.

Acknowledgements

Authors thank Dr. Hai Wang (Beijing Institute of Pharmacology and Toxicology, P.R. China) for his kind support by providing iptakalim as a gift.

References

- Nourparvar A, Bulotta A, Di Mario U, Perfetti R. Novel strategies for the pharmacological management of type 2 diabetes. Trends Pharmacol Sci 2004;25:86-91.
- 2)Gribble FM, Reimann F. Sulphonylurea action revisited: the post-cloning era. Diabetologia 2003;46: 875-91.
- 3)Shin JJ, Rothman J, Farag A, McFarlane SI, Sowers JR. Role of oral anti-diabetic agents in modifying cardiovascular risk factors. Minerva Med 2003;94:401-8.
- 4) Meier JJ, Gallwitz B, Schmidt WE, Mugge A, Nauck MA. Is impairment of ischaemic preconditioning by sulfonylurea drugs clinically important? Heart 2004;90:9-12.
- 5)Lawrence CL, Proks P, Rodrigo GC, Jones P, Hayabuchi Y, Standen NB, Ashcroft FM. Gliclazide produces high-affinity block of KATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells. Diabetologia 2001;44:1019-25.
- 6) Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes 2002;3:S368-S76.
- 7) Wang H. Acta Pharmacol Sin 1998;19:257-67.
- 8) Wang H. Drug Dev Res 2003;58:65-8.
- 9) Wang H, Long, CL and Zhang YL. A new ATPsensitive potassium channel opener reduces blood pressure and reverses cardiovascular remodeling in experimental hypertension. J Pharmacol Exp Ther 2005;312:1326-1333.
- 10) Wang H, Zhang YL, Chen YP. Targeting small arteries of hypertensive status with novel ATPsensitive potassium channel openers. Curr Vasc Pharmacol 2005;3:119-24.
- 11) Xue H, Zhang YL, Liu GS, Wang H. A new ATP-

sensitive potassium channel opener protects the kidney from hypertensive damage in spontaneously hypertensive rats. J Pharmacol Exp Ther 2005;315: 501-9.

- 12) Wang H, Zhang YL, Tang XC, Feng HS, Hu G. Targeting ischemic stroke with a novel opener of ATP-sensitive potassium channels in the brain. Mol Pharmacol 2004;66:1160-8.
- 13)Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K⁺ channels in the absence of the sulphonylurea receptor. Nature 1997;387:179-83.
- 14) Lin YF, Jan YN, Jan LY. Regulation of ATPsensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. EMBO J 2000;19:942-55.
- 15) Mannhold R. KATP channel openers: structureactivity relationships and therapeutic potential. Med Res Rev 2004;24:213-66.
- 16) Ashcroft FM. K_{ATP} channels and insulin secretion: a key role in health and disease. Biochem Soc Trans 2006;34:243-6.
- 17) Hansen JB. Towards selective Kir6.2/SUR1 potassium channel openers, medicinal chemistry and therapeutic perspectives. Curr Med Chem 2006;13:361-76.
- 18) Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic β-cells, brain, heart and skeletal muscle. FEBS Lett 1995;377:338-44.
- 19) Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 1996;45:1439-45.
- 20) Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA. Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995;268:423-6.
- 21)Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J & Seino S. A family

of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K^+ channels. Neuron 1996;16:1011-1017.

- 22)Karschin C, Ecke C, Ashcroft FM, Karschin A. Overlapping distribution of K_{ATP} channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 1997;401:59-64.
- 23) Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J 1999;18:833-46.
- 24) Avshalumov MV, Chen BT, Koos T, Tepper JM, Rice ME. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 2005;25:4222-31.
- 25) Liss B, Neu A, Roeper J. The weaver mouse gainof-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels. J Neurosci 1999;19:8839-48.
- 26) Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 1999;48:1341-7.
- 27) Ashcroft FM, Gribble FM. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K_{ATP} channels. J Diabetes Complicat 2000;14:192-6.
- 28) Scuvee-Moreau J, Seutin V, Vrijens B, Pirotte B, De Tullio P, Massotte L, Albert A, Delarge J, Dresse A. Effect of potassium channel openers on the firing rate of hippocampal pyramidal cells and A10 dopaminergic neurons in vitro. Arch Physiol Biochem 1997;105:421-8.
- 29)Gribble FM, Tucker SJ, Ashcroft FM. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K⁺ channel currents expressed in Xenopus oocytes: a reinterpretation. J Physiol 1997;504:35-45.
- 30) Shyng S, Ferrigni T, Nichols CG. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 1997;110:643-54.
- 31) Schwanstecher M, Sieverding C, Dorschner H,

Gross I. Aguilar-Bryan L. Schwanstecher C & Bryan J. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J. 1998;17:5529-35.

- 32) Wu J, Hu J, Chen YP, Takeo T, Suga S, DeChon J, Liu Q, St John PA, Hu G, Wang H, et al. Iptakalim modulates ATP-sensitive K⁺ channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 2006;319:155-64.
- 33) Cui Y, Tinker A, Clapp LH. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A. Br J Pharmacol 2003;139:122-8.
- 34) Yang Y, Liu X, Ding JH, Sun J, Long Y, Wang F, Yao HH, Hu G. Effects of iptakalim on rotenoneinduced cytotoxicity and dopamine release from PC12 cells. Neurosci Lett 2004;366:53-7.
- 35) Wang S, Hu LF, Yang Y, Ding JH, Hu G. Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson's disease: implications for treating Parkinson's disease? Neuropharmacology 2005;48: 984-92.
- 36) Yang Y, Liu X, Long Y, Wang F, Ding JH, Liu SY, Sun YH, Yao HH, Wang H, Wu J, et al. Systematic administration of iptakalim, an ATP-sensitive potassium channel opener, prevents rotenoneinduced motor and neurochemical alterations in rats. J Neurosci Res 2005;80:442-9.
- 37) Yang YL, Meng CH, Ding JH, He HR, Ellsworth K, Wu J, Hu G. Iptakalim hydrochloride protects cells against neurotoxin-induced glutamate transporter dysfunction in in vitro and in vivo models. Brain Res 2005;1049:80-8.
- 38) Suga S, Wu J, Ogawa Y, Takeo T, Kanno T, Wakui M. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels. BMC Pharmacol 2001;1:3.
- 39) Gribble FM, Ashcroft FM. Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues. Metabolism 2000;49:3-6.
- 40)Proks P, Ashcroft FM. Phentolamine block of KATP channels is mediated by Kir6.2. Proc Natl

Acad Sci USA 1997;94:11716-20.

- 41) Mukai E, Ishida H, Horie M, Noma A, Seino Y, Takano M. The antiarrhythmic agent cibenzoline inhibits KATP channels by binding to Kir6.2. Biochem Biophys Res Commun 1998;251:477-81.
- 42)Gromada J, Dissing S, Kofod H, Frokjaer-Jensen J. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassiumchannels and cytosolic calcium levels in β TC3 cells and rat pancreatic beta cells. Diabetologia 1995;38:1025-32.
- 43) Malaisse WJ. Non-insulin-dependent diabetes mellitus and islet B-cell mitochondrial glycerophosphate dehydrogenase deficiency. Diabet Med 1995;12:479-81.
- 44) Hu S, Wang S, Dunning BE. Tissue selectivity of antidiabetic agent nateglinide: study on cardiovascular and *a*-cell K_{ATP} channels. J Pharmacol Exp Ther 1999;291:1372-9.
- 45)Engler RL, Yellon DM. Sulfonylurea KATP blockade in type II diabetes and preconditioning in cardiovascular disease. Time for reconsideration. Circulation 1996;94:2297-301.
- 46)Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu. Rev Physiol 2000;62:79-109.
- 47) Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 1997;77:1165-232.
- 48) Cleveland JC Jr, Meldrum DR, Cain BS, Banerjee A, Harken AH. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 1997;96:29-32.
- 49) Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998;31:950-6.

- 50) Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA. Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide) Eur Heart J 2000;21:220-9.
- 51)Gribble FM, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K (ATP) channels. Diabetes 1998;47:1412-8.
- 52)Suga S, Kanno T, Nakano K, Takeo T, Dobashi Y, Wakui M. GLP-I (7-36) amide augments Ba²⁺ current through L-type Ca²⁺ channel of rat pancreatic beta-cell in a cAMP-dependent manner. Diabetes 1997;46:1755-60.
- 53) Kanno T, Suga S, Nakano K, Kamimura N, Wakui M. Corticotropin-releasing factor modulation of Ca²⁺ influx in rat pancreatic beta-cells. Diabetes 1999;48:1741-6.
- 54) Suga S, Takeo T, Nakano K, Sato T, Igarashi T, Yamana D, Wakui M. Pertussis toxin-sensitive pathway inhibits glucose-stimulated Ca²⁺ signals of rat islet beta-cells by affecting L-type Ca²⁺ channels and voltage-dependent K⁺ channels. Cell Calcium 2004;36:469-77.
- 55)Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391:85-100.
- 56)Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260: 3440-50.
- 57)Nakano K, Suga S, Takeo T, Ogawa Y, Suda T, Kanno T, Wakui M. Intracellular Ca²⁺ modulation of ATP-sensitive K⁺ channel activity in acetylcholineinduced activation of rat pancreatic β-cells. Endocrinology 2002;143:569-76.

S 100