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Hiroshi Sashinami1），Keiichi Takagaki2） and Akio Nakane1）

Abstract　Proteoglycans （PGs） are complex glycohydrates, which are widely distributed in connective tissues and 
on the cell surface of mammalian tissues.  We investigated the effect of PG extracted from salmon cartilage on 
cytokine responses to stimulation with heat-killed Escherichia coli （HKEC） in a mouse macrophage cell line, RAW264.7. 
PG exhibited the suppression of tumor necrosis factor （TNF）-α production and enhancement of interleukin （IL）-10 
production compared with chondroitin 4 sulfate （C4S） and chondroitin 6 sulfate （C6S）.  PG, C4S and C6S suppressed 
HKEC-induced Toll-like receptor 4 （TLR4） and inducible nitric oxide synthase （iNOS） expression dose-dependently 
and the PG showed the strongest suppressive effect among 3 compounds. Only PG dramatically up-regulated the 
expression of signal transducers and activators of transcription 3 （STAT3） and the phosphorylation of STAT3 in mouse 
macrophages.  Our results showed strong suppression of PG on infl ammatory response and suggested that the novel 
interaction might exist between the extracellular matrix and immune system.
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　 P r o t e og l y c an s  （PGs） a r e  c omp l ex 
glycohydrates, which are composed of core 
proteins and glycosaminoglycans （GAGs） 
that bind to core proteins.  PGs are one of 
main components of extracellular matrix 

（ECM）.  ECM is composed from PGs, collagen, 
fibronectin, laminin, hyaluronic acid and other 
glycoproteins and they form complex in 
ECM1-3）.  PGs and other components exist in 
connecting tissue, such as skin, cartilage, bone, 
and vascular wall.  PGs are involved in cellular 
proliferation and adhesion cooperated with 
collagen, fi bronectin, and laminin4）.  Chondroitin 
sulfate （CS）, one of elements that form PGs, 
is a main component of joint cartilage and is 
thought to be important for prevention of joint 
disorder in elderly people5,6）.  Several articles 
showed that recruitment of CS suppresses 
inflammation in rheumatoid arthrit is7-10）.  
These findings suggest that PGs could modify 

inflammatory responses.  There have been 
some reports suggesting that ECM components 
are involved in transduction of proinflammatory 
signals.  Reactive oxygen intermediates and 
hyaluronidase from macrophages and neutrophils 
breaks hyaluronic acid in ECM into low molecular 
weight fragments, and these fragments stimulate 
macrophages via CD4411）.  Hyaluronan fragments 
also activate dendritic cells12） via Toll-like receptor 

（TLR） 413）.  The secreted ECM protein, mindin, is 
essential for innate immune response to bacterial 
infections14）.  Small leucin-rich proteoglycan 

（SLRP）, decorin, induces expressions of inducible 
NO synthase （iNOS）, tumor necrosis factor （TNF）
-α, interleukin （IL）-1β and IL-6 in macrophages15） 
and other SLRP family, biglycan, leads to 
activation of p38, extracellular signal-regulated 
kinase and nuclear factor kappa B （NF-κB） 
in macrophage via TLR2 and TLR416）.  These 
fi ndings indicate that ECM components promote 
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infl ammatory responses.
　 When the host is exposed to infection with 
bacteria and to allow bacterial invasion, ECM 
becomes the site that is important for innate 
immunity.  To recognize microbial pathogens, the 
innate immune system uses pattern recognition 
receptors （PRRs） that sense pathogen-associated 
molecular patterns （PAMPs）.  TLRs, members 
of PRRs, are establishment of innate immunity.  
Bacterial components are recognized by TLRs 
and lipopolysaccharide （LPS） is recognized by 
TLR417）. 
　 One of host responses involved in host 
defense against bacterial infections is the 
induction of inflammatory cytokines such as 
interferon （IFN）-γ and TNF-α.  IFN-γ plays 
an important role in resistance to infections 
with intracellular pathogens by activating 
microbicidal activities of macrophages18,19）.  IFN-γ 
is important for host resistance against bacterial 
infections20-22）.  TNF-α is also important for host 
resistance against bacterial infections. TNF-α 
activates resident macrophages23）, and enhances 
nitric oxide （NO） synthesis that is involved 
in the bactericidal action24）.  On the other 
hand, IL-10 has important regulatory effects 
on the immune responses25）.  IL-10 is a well-
characterized anti-inflammatory cytokine25-27）, 
and suppresses the production of reactive 
oxygen and reactive nitrogen intermediates 
from activated macrophages by IFN-γ24）.  IL-10 
also suppresses TNF-α and IL-12 production by 
macrophages28）.
　 In this study, we investigated the effect of 
PG and CS extracted from salmon cartilage on 
response of macrophages to bacteria, and we 
here show that PG suppresses inflammatory 
response of macrophage by up-regulation 
of IL-10 production and down-regulation of 
TNF-α production mediated by TLR down-
regulation.  All data in this study was expressed 
as means ± standard deviations, and Student’s 
t test was used to determine the significance 

of the diff erences in the bacterial counts of the 
specimens by the control and experimental 
groups. Each experiment was repeated at least 
twice.  Mouse macrophage cell line RAW264.7 
was purchased from Dainippon Pharmaceutical 
Co. Ltd., Osaka, Japan.  Cells were cultured in 
Dulbecco’s modified Eagle medium （DMEM, 
Nissui Pharmaceutical Co. Ltd., Tokyo, Japan） 
supplemented with 10% of  feta l  bovine 
serum （JRH Biosciences, Lenexa, KS）, 3% of 
L-glutamine （Wako Pure Chemical Industries 
Ltd., Osaka, Japan）.  E. coli strain IFO3806 
was provided by Institution of Fermentation, 
Osaka, Japan.  E. coli was grown in LB broth 

（Invitrogen Co., Carlsbad, CA） and heat-killed 
E. coli （HKEC） were obtained by heating the 
bacteria in boiling water for 1 h. PG extracted 
from salmon cart i lage was prepared as 
described previously29）.  Chondroitin-4-sulfate 

（C4S） and chondroitin-6-sulfate （C6S） were 
purchased from Seikagaku Co. Ltd., Tokyo, 
Japan.  RAW264.7 cells were prepared to 2×
106/well in a 24-well culture plate and stimulated 
with 2×107/well of HKEC for 48 h in the 
absence or presence of various doses of PG, C4S 
or C6S. At fi rst, to assess the response of mouse 
macrophages to bacteria, the titers of TNF-α 
as one of inflammatory cytokines and IL-10 as 
a member of anti-infl ammatory cytokines in the 
culture supernatants were determined （Figure 
1）.
　 Titers of TNF-α and IL-10 were determined 
by  ELISAs as  descr ibed  prev ious ly 30）. 
Stimulation with HKEC up-regulated the 
production of TNF-α from RAW264.7 cells 

（Figure 1）.  Treatment with PG decreased the 
up-regulation of TNF-α induced by HKEC 
in a dose-dependent manner （Figure 1A）. 
Neither C4S nor C6S aff ected the up-regulation 
TNF-α production in response to HKEC 
stimulation （Figure 1A）.  IL-10 production 
from cells stimulated with HKEC was up-
regulated by treatment with PG, C4S, and C6S 
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（Figure 1B）.  The treatment with PG strongly 
up-regulated IL-10 production from HKEC-
stimulated cells compared with C4S and C6S 

（Figure 1B）.  TNF-α is a major mediator of 
inflammation induced by macrophages during 
bacterial infections32）.  TNF-α shows various 
functions, such as induction of apoptosis33）, 
induction of IL-1, IL-6 and IL-10 secretion, 
activation of T cell and other cells involved in 

inflammation32）.  Our results showed that PG 
down-regulated TNF-α production induced 
by stimulation with HKEC （Figure 1A） and 
up-regulated IL-10 production （Figure 1B） 
from macrophages.  IL-10 is anti-inflammatory 
cytokine, and mediates immunosuppression 
induced by CD4+CD25+ T cells in autoimmune 
or inflammatory diseases34,35）.  IL-10 also 
suppresses the production of TNF-α and IL-6 

Figure 1　TNF-α and IL-10 production from mouse macrophage cell line RAW264.7 stimulated with 
heat-killed bacteria. RAW264.7 cells were prepared to 2×106 /well in DMEM and stimulated 
with 2×107 /well of HKEC for 48 h supplemented with 50, 100 or 200 ìg/well of PG （circle）, 
C4S （square） or C6S （triangle）. Then culture supernatants were collected and titers of 
TNF-α （A） and IL-10 （B） were determined by ELISAs. Each result represents the mean 
and SD for the group of four samples. An asterisk （P<0.01） and a cross （P<0.05） indicate 
that values are signifi cantly diff erent between two groups.
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from macrophages, synoviocytes, and T cells in 
an experimental inflammation model36）.  This 
result suggests that PG has a suppressive eff ect 
on inflammatory responses during bacterial 
infections.
　 Next, we investigated the expressions of 
TLR4 in mouse macrophages in response to 
HKEC by quantitative real time RT-PCR. For 
quantitative real time RT-PCR, total RNA was 
isolated from cultured cells by a guanidium 
thiocyanate-phenol-chloroform single-step 
method31）. First-strand cDNAs were synthesized 
by reverse transcription of 1 μg total RNA 
using random primers （Takara, Shiga, Japan） 
and reverse transcriptase Moloney murine 
leukemia virus （Invitrogen）.  For detecting 
TLR4, these primers were used; forward, 5’-AG
TGGGTCAAGGAACAGAAGCA-3’, and reverse, 
5’-CTTTACCAGCTCATTTCACACC-3’, and 
for glyceraldehydes-3-phosphate dehydrogenase 

（GAPDH） as internal control, forward, 5’
-TGAAGGTCGGTGTGAACGGATTTGG-3’ , 
and reverse, 5’-ACGACATACTCAGCACCAG
CATCAC-3’. SYBR Green Supermix （Bio-Rad 
Laboratories, Inc., Hercules, CA） was used as a 

PCR solution. PCR was run following protocol: 
initial activation of Taq DNA polymerase at 95 
℃ for 5 min, 30 sec at 95 ℃ for denaturing, 30 
sec at 55 ℃ for annealing, 30 sec at 72 ℃ for 
elongation and 40 PCR cycles were performed. 
All experiments were run in duplicate and non-
template controls and dissociation curves were 
used to detect primer-dimer conformation and 
nonspecific amplification. The threshold cycle 

（CT） of each target product was determined 
and set in relation to the amplification plot 
of GAPDH. The detection threshold is set 
to the log linear range of the amplification 
curve and kept constant （0.05） for all data 
analysis. Difference in CT values （ΔCT） of 
two genes was used to calculate the relative 
expression ［relative expression=2-（C

T
of STATs-C

T
 

of GADPH）=2-ΔC
T］.  The TLR4 expression was up-

regulated by HKEC stimulation compared with 
unstimulated controls （Figure 2）.  PG, C4S, 
and C6S suppressed TLR4 up-regulation by 
HKEC stimulation （Figure 2）. TLR4 recognizes 
LPS37,38） and TLR4 triggers TNF-α secretion in 
macrophages through activation of NF-κB39,40）. 
Therefore we examined the effect of PG on 
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Figure 2　Expression of TLR4 mRNA in RAW264.7 cells stimulated with heat-killed bacteria. RAW264.7 
cells were prepared to 2×106 /well in DMEM and stimulated with 2×107 /well of HKEC for 48 h 
supplemented with 50, 100 or 200 ìg/well of PG （circle）, C4S （square） or C6S （triangle）. Then cells 
were collected and mRNAs were prepared. Expression of TLR4 was determined by quantitative real-
time RT-PCR. Each result represents the mean and SD for the group of four samples. An asterisk 

（P<0.01） and a cross （P<0.05） indicate that values are signifi cantly diff erent between two groups.
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TLR4 expression during HKEC stimulation.  PG 
treatment suppressed the enhancement of TLR4 
expression induced by stimulation with HKEC 

（Figure 2）, suggesting that the suppressive 
eff ect of PG on infl ammatory responses during 
HKEC stimulation may be due to suppression of 
enhancement of TLR4 expression.
　 TNF-α induces inducible NO synthase 

（iNOS） expression. Therefore we examined 
the expression of iNOS in mouse macrophages 
stimulated by HKEC （Figure 3）.  For detecting 
iNOS, these primers were used; forward, 5’
- ATGGCTTGCCCCTGGAAGTTTC-3’, and 
reverse, 5’- GGACTTGCAAGTGAAATCCGA
TG-3’.  Stimulation with HKEC induced iNOS 
expression, and the treatment with PG, C4S 
and C6S suppressed iNOS expression in a 
dose-dependent manner （Figure 3）. In HKEC 
stimulation, PG suppressed iNOS expression 
compared with other groups （Figure 3）. 
Activated macrophages up-regulate the 
synthesis of NO that is involved in bactericidal 
activity41）.  Therefore we investigated the 
expression of iNOS in mouse macrophages 
during stimulation with HKEC.  Treatment with 

PG, C4S and C6S suppressed iNOS induction by 
stimulation with HKEC （Figure 3）.  This result 
indicates that these compounds may show the 
suppressive effect on the bactericidal function 
of macrophages and PG reveals the strongest 
eff ect among 3 compounds.
　 IL-10 is able to activate STAT3.  Therefore, 
we investigated whether the expression of 
STAT3 during stimulation with HKEC in mouse 
macrophages is affected by PG, C4S or C6S 
treatment or not. For detecting STAT3, these 
primers were used; forward, 5’-CAAAACCCTC
AAGAGCCAAGGAGAC-3’, and reverse, 5’-GCCG
GTGCTGCACGATAGGG-3’. The up-regulation of 
STAT3 expression during stimulation with HKEC 
was shown only PG-treated RAW cells in a dose-
dependent manner （Figure 4A）.  Neither C4S nor 
C6S aff ected the STAT3 expression by Western 
blotting. For Western blotting, cultured cells were 
lysed in lysis buff er （0.05M Tris-HCl, 2% SDS, 6% 
2-mercaptoethanol, 10% glycerol）.  The protein 
concentration of each sample was determined 
using the Bradford protein assay （Bio-Rad）.  
Each amount of protein was developed by SDS-
PAGE using 10% SDS-polyacrylamide gel and 

Figure 3　Expression of iNOS mRNA in RAW264.7 cells stimulated with heat-killed bacteria. RAW264.7 cells were 
prepared to 2×106 /well in DMEM and stimulated with 2×107 /well of HKEC for 48 h supplemented 
with 50, 100 or 200 ìg/well of PG （circle）, C4S （square） or C6S （triangle）. Then cells were collected and 
mRNAs were prepared. Expression of iNOS was determined by quantitative real-time RT-PCR. Each 
result represents the mean and SD for the group of four samples. ND indicates that iNOS expression is 
under detectable level. An asterisk （P<0.01） and a cross （P<0.05） indicate that values are signifi cantly 
diff erent between two groups.
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transferred to Immobilon™-P transfer membrane 
（Millipore Corporation, Bedford, MA）.  After 
blocking, the membrane was incubated with a 
primary antibody specific for phosphorylated 
STAT3 （Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA）. After washing, the membrane was 
incubated with horseradish peroxidase-conjugated 
anti-rabbit IgG.  Immunoreactive bands were 
visualized ECL™ Western Blotting Analysis 
System （Amarsham Biosciences, UK）.  These 
results also showed that treatment with PG 
strongly up-regulated STAT3 phosphorylation 
compared with C4S- or C6S-treated group 

（Figure 4B）.  In a signaling pathway, IL-10 
activates STAT342）.  Our result showed that PG 
shows the strong eff ect on STAT3 up-regulation 
and phosphorylation in macrophages during 
stimulation with HKEC （Figure 4）, suggesting 
that suppressive effect of PG is mediated by 
IL-10 up-regulation.  It is still unclear why only 

PG exhibits the strong suppressive effect on 
inflammatory responses stimulated by HKEC. 
Previous studies showed that hyaluronan with 
high molecular weight inhibits NF-κB activation 
and with decreasing the molecular weight of 
hyaluronan, this inhibitory effect is reduced43）. 
This report suggests that glycoprotein with high 
molecular weight, such as PG, might have an 
anti-infl ammatory eff ect.
　 Finally, our present results demonstrated 
that PG has a potent effect on suppression of 
inflammatory responses induced by bacteria 
in mouse macrophages. These results suggest 
the existence of novel interaction of ECM 
components with macrophages in infl ammatory 
responses during bacterial infections.
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