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TRANSIENT NEURAL ENERGETICS BY FMRI FOR BRIEF AND LONG 
STIMULI

Peter Herman1-3），Basavaraju G. Sanganahalli1-3），Daniel Coman1-3），
Hal Blumenfeld2-6） and Fahmeed Hyder1, 2, 3, 7）

Abstract　Neuronal activity mapping of cerebral functions using oxidative energetics has become an accepted 
functional magnetic resonance imaging （fMRI） technique, termed calibrated fMRI. It requires calculation of oxygen 
consumption （CMRO2） from blood oxygenation level dependent （BOLD） signal using multi-modal measurements 
of blood flow （CBF） and volume （CBV）. This approach is based on a biophysical model which describes tissue 
oxygen extraction at steady-state, therefore it is unclear if this conventional steady-state BOLD model can be applied 
transiently for calculating dynamic CMRO2 changes. In particular, it is unknown whether calculation of CMRO2 from 
calibrated fMRI differs between brief and long stimuli. In this study linearity was experimentally demonstrated 
between BOLD-related components and neural activity. We used multi-modal fMRI （at 11.7T） and neuronal signal 
measurements of local fi eld potential （LFP） and multi-unit activity （MUA） in α-chloralose anesthetized rats during 
forepaw stimulation to show that respective transfer functions （of BOLD, CBV, CBF） generated by deconvolution 
with LFP （or MUA） are time invariant, for events in the millisecond to minute range. Since the transfer functions are 
time invariant for event-related and steady-state stimuli, it is possible to use calibrated fMRI in a dynamic manner. 
The multi-modal results allowed assignment of a significant component of the BOLD signal that can be ascribed 
to CMRO2 transients. Here we discuss the importance of minimizing residual signal, represented by the diff erence 
between modeled and raw signals, in convolution analysis using multi-modal fMRI and neural signals.
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Introduction
 　Mapping neural activity is widely used 
in neuroscience. Despite advancements to 
measure neural activity directly, e.g. , with 
electroencephalography （EEG） or magneto-
encephalography （MEG）, the techniques still 
have limited spatial resolution and localization 
problems1）. Alternat ive methods of bra in 
mapping are based on secondary signals which 
measure the effect of the neuronal activity on 
processes such as changes in blood oxygenation 
level dependent （BOLD） signal and blood 
f low （CBF） or volume （CBV）. However a 
more direct measure of brain activity, based 
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on thermodynamic principles, is the energy 
consumption2）. The main energy source for brain 
is glucose which is stoichiometrically oxidized 
in mitochondria to produce ATP efficiently3）. 
At steady-state, cerebral oxygen consumption 

（CMRO2） is measured with 13C or 17O magnetic 
resonance spectroscopy （MRS）4,5） as well as 
with 11C  and 15O positron emission tomography 

（PET）6,7）. Since these methods require expensive/
radioactive isotopes, alternative ways of CMRO2 

estimation are being sought. 
　 Functional magnetic resonance imaging 

（fMRI） is widely used for non-invasive brain 
act ivity mapping. It provides an indirect 
measure of neural activity by sensing hyperemic 
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changes with the BOLD signal which has both 
energetic and hemodynamic basis . CMRO2 
can be calculated by calibrating fMRI with 
additional measurements of CBF and CBV. The 
BOLD image-contrast depends on changes of 
magnetic properties of blood: oxy-hemoglobin 
is diamagnetic, while deoxy-hemoglobin is 
paramagnetic8）. At steady-state, based on the 
Fick’s principle9）, the fractional change of BOLD 
signal （ΔS/S） is given by
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where A is a magnetic fi eld dependent constant 
and the biophysical and physiological basis 
of Eq. 1 have been previously described10,11）. 
Therefore high spatial resolution CMRO2 maps 
can be obtained by calibrated fMRI using 
multi-modal but concurrent measurements of 
BOLD, CBF, and CBV, where each parameter is 
measured independently （in the same session） 
with dif ferent MRI contrasts （i.e . , BOLD 
with gradient or spin echo; CBF with arterial 
spin labeling; CBV with exogenous contrast 
agent）. Furthermore the calculated CMRO2 can 
be validated by comparison with MRS or PET 
measurements13-15）.
 　An alternative for dynamic calibrated fMRI 
is to test the linearity of the multi-modal signals 
with neural activity for short and long stimuli. 
If the strength of each BOLD-related component 
in Eq. 1 is demonstrated to be linear with neural 
activity across various stimulus durations, then 
the respective transfer functions generated by 
deconvolution with the neural signals should 
be time invariant, i.e. the transfer function will 
not depend on the stimulation duration, and 
thus used for calculating CMRO2 dynamics. For 
CMRO2 transients associated with neural events, 
underlying BOLD-related components were 
measured and combined with electrophysiology 
data, over a range of stimuli. Transfer functions 
generated for brief stimuli with convolution 

analysis were successfully used to model 
responses for long stimuli within the range of 
the uncertainty of experimental measurements12）. 

Materials and Methods
Animal preparation and stimulus presentation
　 Al l  exper iments  were conducted on 
artificially ventilated （1-2% halothane during 
surgery, plus 70%N2O/30%O2） adult male rats 

（n = 26; Sprague-Dawley; 200-300 g; Charles 
River, Wilmington, MA）. Femoral artery and 
vein were cannulated respectively for monitoring 
physiologic parameters （pCO2, pO2, pH, blood 
pressure） and for infusion of iron oxide contrast 
agent for measuring CBV changes13）. The 
α-chloralose （~40 mg/kg/h） and D-tubocurarine 
chloride （~0.3 mg/kg/h） were administered 
intraperitoneally. Stimulus parameters consisted 
of 2 mA amplitude pulses of 0.3 ms duration 
where multiple pulses were separated by 333 ms 
and the number of pulses varied from 1 to 90. 
A resting period of 300 s was allowed between 
repeated stimulation trials （at least four trials 
per rat: two repetitions per forepaws）. 
Electrophysiology and CBF
 　The first group of rats （n = 12） were 
mounted on a stereotaxic frame and small 
burr holes were drilled for insertion of adjacent 
electrical and laser-Doppler flowmetry （LDF） 
probes to simultaneously measure neural and 
CBF signals16）. Although arterial spin labeling 

（ASL） MRI is used to provide quantitative CBF 
measurements at steady-state, we used LDF 
for dynamic CBF measurements because ASL 
techniques loose perfusion sensitivity at higher 
temporal resolution17）. Recordings were localized 
to middle cortical layers （4.4 mm lateral, 1.0 mm 
anterior to bregma, 0.9±0.1 mm depth from 
cortical surface） and confi rmed histologically16,18） 
for comparison with fMRI signals at the same 
depth. The scalp was used as the reference and 
ground for extracellular recordings. Local field 
potential （LFP） and multi unit activity （MUA） 
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were obtained by splitting the extracellular 
data into low （<150 Hz） and high （0.4 -10 
kHz） bands. Magnitude of the LDF data was 
calibrated to CBF collected with ASL MRI （3 
Hz, 2 mA, 0.3 ms, >90 pulses）17）. Electrical and 
optical signals were digitized with CED μ-1401 
using Spike 2 software （Cambridge Electronic 
Design, Cambridge, UK） at 20 kHz and 50 Hz, 
respectively. To compare with lower temporal 
resolution BOLD and CBV data, we averaged 
the raw neural data by running 0.02 s bins. 
Multi-modal fMRI
　 In the second group of rats （n = 14） all fMRI 
data were obtained on a modifi ed 11.7T Bruker 
horizontal-bore spectrometer （Bruker, Billerica, 
MA） using a 1H surface coil radio-frequency 
probe （1.4 cm diameter） with conventional 
methods for BOLD and CBV contrasts19,20）. We 
used echo-planar imaging （EPI） with sequential 
sampling21） and repetition and gradient echo 
times of 1000 and 15 ms, respectively17）. We used 
center-of-mass analysis22） on all fMRI data to 
eliminate data sets with movement artifacts.
Estimating parameters of gamma-based transfer 
functions 
　 The transfer function, h（t）, can be computed 
by deconvolution between the input signal, i（t）, 
and the output signal, r（t）. The LFP （or MUA） 
was used as the input signal, i（t）, whereas the 
BOLD, CBV, and CBF responses each was used 
as an independent response, r（t）. It can be shown 
that

　 r(t)h(t)i(t)   （2）

where t is time. 
　 The gamma variate function is widely used 
for modeling transfer functions23 -25）. Since 
the original form of the equation has some 
undesirable mathematical properties, we used a 
slightly diff erent form where the parameters are 
independent of each other26）, 
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where y0 is the baseline shift, ym is the magnitude 
of the peak, tm is the peak time, and α is related 
to the rise and fall times while the appearance 
time is fi xed to zero. 
 　The BOLD and CBF impulses are single 
gamma variate functions, whereas the CBV 
impulse is described by two additive gamma 
variate functions, with fast and slow components. 
As a result of this dual property, the CBV 
impulse rises fast, nearly similarly as the BOLD 
and CBF impulses, but its tail decays slowly 
requiring more than 30 s to reach the pre-
stimulation baseline compared to 4-8 s required 
for the other two transfer functions . The 
gamma variate function parameters （ym, tm, α） 
of BOLD and CBF impulses are 0.0061, 2.5637, 
2.3518 and 0.1131, 1.8339, 3.896 respectively. 
The fast component of the CBV impulse has the 
parameters of 0.058, 2.0595, 3.2279, while the 
slow component is described by 0.0044, 4.9701, 
0.4119. The baseline shift （y0） is 0 in every case.
Calculating the standard deviation of CMRO2

　 Eq. 1 can be rewritten as follows to describe 
the connection between CMRO2, CBF, CBV, and 
BOLD signal

　 s
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Eq. 4, we can estimate the uncertainty of CMRO2 
estimation using error propagation27,28）. Measured 
values of CBF, CBV, and BOLD signal along 
with their respective standard deviations （σ） 
can be used to analytically describe the time 
dependent standard deviation of CMRO2. If the 
measured signals are independent from each 
other, the error propagation is restricted only 
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by the standard deviation of each individual 
measured component. If different components 
of the measured data （CBF, CBV, BOLD） are 
correlated, then their covariances with each 
other are required to be taken into consideration. 
Towards that end, the covariances of the 
correlated data were converted into Pearson 
correlation coefficients27,28）. To define the error 
propagation formulas in simple mathematical 
terms （e.g. multiplication, summation, etc.）,  Eq. 
4 needs to be rearranged into
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The following correlation coefficients （ρ） are 
required to calculate the standard deviation of 
CMRO2. Correlation between the CBF and the X 
is given by the parameter r1, where

 sfXfr ln,,1 . 

Correlation between CBF and Y is given by the 
parameter r2, where
 
 )ln(1,,2 s

A
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Correlation between the numerator （Z） and 
the denominator （v） of Eq. 5 is given by the 
parameter r3, where
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Using these coefficients, the standard deviation 

of CMRO2 （σm） can be described by
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 　To calculate a transfer function, a least-square 
mean （Gauss-Newton） fitting method （Matlab, 
Natick, MA） was used with iterative steps 

（Fig. 1）: a transfer function was created with 
initial parameters; it was convolved on the input 
function; a diff erence between the modeled and 
the measured response was calculated to create 
a residual signal. This method is a modifi cation 
of Newton’s method for detecting a function 
minimum without using second derivatives, 
thereby minimizing computational load and 
time. If the modeled response was signifi cantly 
different from the measured response, then 
parameters of the transfer function were 
changed and the process was repeated. The 
fitting process was usually completed within 
several hundred iterations. We assumed the 
residuals to be acceptable if all of their values 
were within the range of uncertainty of the 
measured response, given by ± standard 
deviation （SD） of the raw signal. 

Results
　 We simultaneously measured electrical and 
CBF signals from the somatosensory cortex 
using a dual-sensor probe and compared these 
signals with BOLD and CBV signals （at 11.7T） 
in the same cortical location. The LFP （or 
MUA） and imaging signals （BOLD, CBV, CBF） 
were measured with brief and long forepaw 
st imuli to assess whether the hyperemic 
responses were linearly associated with neural 
activity. Fig. 2 shows a representative single-
trial data set with 4 stimulus pulses. The evoked 
neural response was immediate and short lived 
in comparison to the imaging signals which 
lasted at least about 4s.

P. Herman, et al.
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 　Each neural response had two phases  
（Fig. 2A）. A positive phase was initiated 
immediately after each stimulus pulse which 
lasted about 150ms. A negative phase, which 
lasted about 200ms, followed the positive peak. 
But its amplitude was less than 5% of the initial 
positive peak, which is well below the SD of the 
measurement. These positive peaks were used 
as input signals for the convolution analysis （Fig. 
1）. Evoked neural responses to multiple stimulus 
pulses demonstrated a unique pattern （Fig. 2A） 
which have been noted by others29） where the 
alternate responses were attenuated most likely 
due to inhibitory mechanisms30） or because 
of cortical refractory effects31）. Therefore all 
subsequent evoked responses were normalized 
to the first positive component （Fig. 3A）. For 
long lasting stimuli （90 pulses）, in addition to 
the alternating stronger and weaker responses 
for consecutive stimulus pulses, the magnitude of 
responses generally decreased during the initial 
5-6s to subsequently reach a new plateau （e.g., 
see Fig. 3A, extreme right）. These observations 
are in good agreement with prior results32,33）.
　 Amplitudes and time-to-peak of the imaging 
signals （Figs. 3 B-D） are in good agreement 
with prior observations34,35）. The mean time-

to-peak of the BOLD response was 3.9±0.3s. 
The response intensity （and width） gradually 
increased from 1 to 4 pulses and reached a 
plateau for 90 pulses （2.9±1.8%, 3.4±1.2%, 4.4
±2.1%, 8.02±1.3%, and 7.8±4.2%, respectively）. 
The CBF signals showed similar tendencies. The 
mean time-to-peak of the CBF response was 
3.2±0.2s, whereas the intensities were 51.8±
28.2%, 75.1±23.3%, 87.7±23.2%, 100.9±31.1%, 
and 100.1±37.8%, respectively. The mean time-
to-peak in CBV response was 3.3±0.7s and the 
response intensities gradually increased from 1 
to 4 pulses （0.8±1.8%, 3.8±1.2%, 7.6±2.1%, and 
9.5±1.4%, respectively）. The CBV response for 
90 pulses of stimulation after an initial rapid rise 

（10.8±3.6%） showed a secondary slow increase 
（15±5%） lasting more than 15s. These temporal 
characteristics of CBV are typical of red blood 
cell and plasma volume changes19）. Using the 
strength （i.e., both intensity and width） of each 
evoked signal, neural responses were correlated 
with the strength of each imaging signal . 
Increasing number of stimulus pulses augmented 
responses in each of the signals  （Fig. 3E）. The 
so-called Grubbs law36） （i.e., CBV = CBFφ） is 
critical for calculating dynamic CMRO2 from 
calibrated fMRI34）. The value of Φ was ~0.15 

Figure 1　 Convolution analysis for calculating transfer functions. For each measured imaging signal （e.g., BOLD, CBV, CBF）, 
a two-step process was utilized to calculate a transfer function which links the measured neural activity （e.g., 
LFP, MUA） to the measured raw signal. Step 1: The stimulus-evoked neural activity convolved with a simulated 
gamma variate transfer function was used to calculate a modeled signal. Step 2: A residual signal （noise） was 
created by diff erencing the modeled signal from the measured raw signal. The two steps were iterated until 
the residual signal （noise） was below ± SD of the measured signal. Only the transfer function was numerically 
varied during each iterative step following the least-square mean Gauss-Newton fi tting method （Matlab, Natick, 
MA）. Less than 300 steps were needed for the convergence between the raw and modeled signals. Data shown 
for BOLD and LFP with two pulses （2 mA amplitude, 0.3 ms duration） separated by 333 ms. Gray horizontal 
scale bar is 1 s. （Adapted from Ref #12 with the permission of "John Wiley and Sons".）
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at the peak of the hyperemic response （Fig. 
3F）, which is in agreement with prior animal 
studies35,37）. 
 　Difference between linear and non-linear 
relationships can be elucidated with a trans-
formation between neural and imaging signals 
with a transfer function. We applied convolution 
and fitting methods in an iterative way to find 
a transfer function relating the neural and 
imaging signals. The eff ectiveness of this process 
was characterized by the residual signal given 
by the difference between the measured and 
modeled signals （Fig. 1）. In all cases examined, 
the residual signal was lower than ±SD in 
measurement of each imaging signal （Fig. 3B-D, 
bottom traces）. For a more thorough inspection 
for goodness of fi t, we averaged the root mean 
square （RMS） of the residual signal for an entire 
data set and compared that with the average 
of measurement SD. In all cases examined, 
the average value of RMS residual signal was 
significantly lower than the average values of 
measurement SD. These results suggest a linear 
relationship between neural and imaging signals 
to provide universal transfer functions, applicable 

for both brief- and long-lasting stimuli. Results of 
linearity from the convolution analysis, therefore, 
provides a strong basis for applying Eq. 1 to 
calculate CMRO2 changes （using A = 0.516,18） 
at 11.7T）, not only for steady-state stimuli but 
also for transient events. The calculated CMRO2 
dynamics in Fig. 4 show experimental evidence 
of a linear dependency of oxidative energy 
demanded by neural events and its relationship 
with CBF. A detailed description of the SD 
calculation for CMRO2 shows that CBF has a 
dominanting infl uence and thus the larger SD of 
CBV has minimal eff ect on CMRO2 uncertainties. 

Discussion
　 The goal here was to calculate CMRO2 
transients using dynamic calibrated fMRI. We 
used a systematic convolution analysis to fi nd a 
transfer function between neural activity and 
each imaging signal, whereas the eff ectiveness of 
the impulse response function was portrayed by 
the residual signal （Fig. 1）. If fl uctuations of the 
residual signal were smaller than the uncertainty 
or SD of the raw signal, the convolution process 
could produce a universal impulse response 
function that may be used to model each 
BOLD-related component successfully for all 
stimulus parameters. Then linearity between 
each imaging signal and neural activity will be 
demonstrated and render the respective transfer 
functions to be time invariant. Similar trends 
were observed with LFP or MUA used as the 
input signal for the deconvolution process （data 
not shown）. 
 　In α-chloralose anesthetized rats, multi-modal 
fMRI and electrophysiology data （Fig. 2） were 
evaluated to show that the respective transfer 
functions （of BOLD, CBV, CBF） generated by 
convolution with neural activity （LFP or MUA） 
are indeed time invariant, for both brief- and 
long-lasting events （Fig. 3）. It was possible, 
therefore, to extract a considerable part of the 
BOLD signal and assign it to dynamic CMRO2 

Figure 2　 Single trial multi-modal data. Representative 
neural （A; LFP） and imaging （B-D; BOLD, 
CBV, CBF） signals for brief forepaw stimuli. 
While there was an evoked LFP for each 
stimulus pulse, alternate LFP’s were not 
identical. A similar trend was observed for 
MUA （data not shown）. （Adapted from Ref #12 
with the permission of "John Wiley and Sons".）

P. Herman, et al.
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changes, for stimuli ranging from milliseconds 
to minute ranges （Fig. 4）. Because CMRO2 
predicted at steady-state by calibrated fMRI 
had been validated in the past by independent 
measurements11）, the CMRO2 data calculated 
here for 90 stimulus pulses withstands the same 
corroboration because ΔCMRO2 predicted in our 

prior and present studies are in good agreement. 
Given that the exact same transfer functions 

（of BOLD, CBV, CBF） can be used for modeling 
signals with few or many stimulus pulses, 
the CMRO2 data validation for longer stimuli 
can be extended to shorter stimuli, pending 
independent measurements at this time scale. 

Figure 3　 Multi-modal data for brief and long events. Measured neural （A; LFP） and imaging （B-D; BOLD, CBV, CBF, upper 
rows） signals were used to generate transfer functions. Transfer functions were used to generate modeled signals. 
The residual signal, created by subtracting the modeled signal from the measured signal, was lower than ± SD of 
the measured signal （B-D; BOLD, CBV, CBF, lower rows）. （E） Relationship between strength （i.e., both intensity 
and width） of evoked signals. The LFP responses were normalized to the response with 4 stimulus pulses. The 
BOLD, CBV and CBF data were calculated as normalized by area under the curves. （F） The so-called Grubb’s 
law （i.e., CBV = CBFΦ） given by the slope of the log-log plot of change in CBF and CBV. The data points are from 
the hyperemic portion for all stimuli with Φ of ~0.08 where the peak values averaged to ~0.15. （Adapted from 
Ref #12 with the permission of "John Wiley and Sons".）
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The characteristics of CMRO2 responses were 
similar to CBF changes, but were impacted by 
CBV dynamics. However because the Φ value 

（prescribed by Grubb’s law: CBV = CBFφ） varied 
throughout the hyperemic response, we did not 
use a fi xed Φ value for the CMRO2 calculation34）. 
　 Results of a convolution are contingent on 
the choice of the input signal. The stimulus 
itself is often used as the input when neural 
activity measures are lacking. However the 
evoked neural response is preferred because the 
imaging signals are mechanistically linked to 
both pre- and post-synaptic events at the nerve 
terminal38）, not the stimulus itself. Neural activity 
can be measured invasively （i.e., directly with 
microelectrodes） or non-invasively （i.e., indirectly 
with EEG or MEG）. 
 　EEG measures summed activity of post-
synaptic currents, whereas MEG measures 
tiny magnetic fields （in fT range） produced 
by synchronized dendritic activities. EEG and 
MEG signals originate from slightly different 
cortical locations and are acquired with diff erent 
temporal resolutions （ms vs. μs）. Since EEG 
and MEG suff er from the inverse problem （i.e., 
diffi  culty localizing origin of signal）, the spatial 
resolution （in cm range） is compromised. EEG 
signals are susceptible to body movements and 
MEG signals from the brain sometimes compete 
with higher magnitude environmental noise. 

However non-invasive use of EEG and MEG 
in humans is invaluable for basic science and 
clinical research38）.
　 Extracel lular recordings （LFP, MUA） 
typically represent activity from neuronal-
glial ensembles in the microelectrode’s vicinity, 
integrating a wide bandwidth of signals spanning 
short distances in the cortex （μm to mm）. 
Because of the higher spatiotemporal resolution 
of extracellular recordings, LFP （or MUA） is an 
obvious candidate for the input signal because 
each evoked signal in response to a stimulus 
pulse can be incorporated into the convolution 
analysis, thereby sensitizing the subtle dynamic 
nuances of neural activities onto the modeled 
imaging signals. While evoked signals captured 
by EEG may appear to be similar in shape 
and form to LFP, there is greater chance of 
signal contamination due to noise injection from 
a variety of sources （e.g., limb movements, 
breathing, heart beat, etc.）38）.
 　Because of technical limitations, it is diffi  cult 
to measure neural and imaging signals from 
the same exact tissue volume. Therefore our 
convolution analysis of the multi-modal data 
acquired within a single “mesoscopic scale” 
compartment could be termed as a heuristic 
approach. However multi-compartment oxygen 
delivery models, which have detailed descriptions 
of the microvascular bed, take account of 

Figure 4　 （A） Measured LFP and calculated CMRO2 signals for transient to steady-state stimuli. Convolution analysis of the 
universal transfer functions suggests linearity of the imaging signals with neural activity （Fig. 3E）.  （B） Coupling 
between changes in CBF and CMRO2 with a linear fi t （slope=0.661, interception= -0.039, r2=0.81）. （Adapted from 
Ref #12 with the permission of "John Wiley and Sons".）

P. Herman, et al.
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different sampling volumes39-42） but lack multi-
modal experimental data. Therefore future 
renditions of these oxygen transport models can 
make use of the multi-modal data availed from 
our study. 
　 Consistent , and yet peculiar, practices 
in convolution analysis are smoothing and 
integration of neural signals. The smoothing 

（or box-car） approach stems from lumping 
consecutive stimuli prior to convolution43,44）. 
This means that difference between one and 
two pulses would be double, one and three 
pulses would be triple, and so on. This approach 
overlooks attenuation of early vs. late responses 
during long stimuli （90 pulses）. The integration 
approach is related to interpolating between 
separate neural events to create the impression 
of a more robust neural signal25,32,45）. This means 
that if there were four evoked responses to four 
stimulus pulses, by integrating between the 
signals there would be one pseudo box-car to 
represent the neural signal. For long stimulus 
durations, the smoothing/integration processes 
will have minimal impact on the convolution 
analysis compared to the case if actual neural 
signals were used. However for shorter stimuli, 
where the goal is to include subtleties of the 
neural response variations from moment-to-
moment, these practices could generate apparent 
non-linearity trends.
 　The same universal transfer function is 
applicable for event related paradigms and 
steady-state conditions （Figs. 2 and 3） but also 
for stimuli with higher （6Hz） and lower （1.5Hz） 
frequencies31）, which is in agreement with prior 
studies where linearity has been observed 
with variat ion of st imulat ion frequencies 
using di f ferent anesthet ics29 ,4 6）. Although 
different anesthetized （or baseline） states 
produce different sensory-induced magnitude 
of responses47-50）, coupling between changes in 
neural and imaging signals are well correlated. 
In agreement with our findings, prior studies 

using a similar st imulation paradigm but 
different anesthetized conditions have shown 
that neural activity is coupled with imaging 
signals using a variety of stimulus durations46,51）. 
　 Prior studies demonstrate non-linearity trends 
with stimulus amplitude variations33,45,46,52-54）. 
Therefore our approach excluded amplitude 
variations given the narrow dynamic range for 
testing linearity relationships. Since the transfer 
functions are dependent on measured neural 
responses and each of the measured imaging 
signals, we expect that the predictions could be 
applied to other baseline situations, but limited 
to the somatosensory region. 
 　Factors that affect the BOLD signal include 
blood hematocrit8,10,11）. At steady-state, CMRO2 
calculation by calibrated fMRI assumes that 
volume （or discharge） hematocrit is unchanged. 
Under steady-state conditions, this assumption 
has been partly confi rmed by comparing kinetics 
of red blood cell and plasma volumes19）. However 
dynamically different velocities of red blood 
cell and plasma compartments may become 
exaggerated in capillaries which in turn could 
aff ect the fl ow （or tube） hematocrit55）. Therefore 
an important consideration for future studies 
is the involvement of transient hematocrit 
changes56） on the dynamic BOLD contrast, which 
may account for some of the small imperfections 
in the residual signals we have observed.
　 In summary, we collected multi-modal data 
consisting of neural and imaging signals and 
applied convolution analysis （i） to demonstrate 
linear relationships between neural and imaging 
signals as well as （ii） to verify the time 
invariance of their transfer functions. Because 
these transfer functions could produce modeled 
signals for brief （1-4 pulses） and long （90 pulses） 
stimuli successfully, we extended calibrated fMRI 
for CMRO2 calculation, from transient events 
to steady-state. Results from our laboratory31） 
suggest that this approach can be extended for 
stimuli of varying frequencies. However further 
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studies are required to understand differences 
between cortico-cortical and cortico-subcortical 
regions where neural activity patterns and 
microvasculature are known to be diff erent57）.
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