
Hirosaki Med．J.　61（Suppl.）：S147―S156，2010

1. Introduction
 　Thrombolytic therapy with tissue plasmi-
nogen activator （tPA） is highly effective for 
ischemic stroke, by securing reperfusion in the 
nervous tissue with marginally compromised 
blood supply.  Although the therapeutic time 
window is currently limited within 3 h after the 
onset, recent studies suggest that the therapy 
can be initiated within up to 4.5 h after the 
onset1-3）.  However, reperfusion may be associated 
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with a burst of free radicals , which cause 
oxidative damage to lipids, proteins and nucleic 
acids.  Oxidative damage to mitochondrial 
membranes triggers the release of cytochrome 
C and caspase 9, which leads to the activation of 
caspase 3, the main executioner of cell apoptosis.
　 Edaravone, a brain-penetrant, free radical 
scavenger, is known to ameliorate postischemic 
neuronal dysfunction in patients with acute 
ischemic stroke4-6）.  It is expected to be particularly 
eff ective in controlling reperfusion injury through 
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its antioxidative property.  In our previous 
study, edaravone was also found to regulate 
the expression of vascular endothelial growth 
factor （VEGF） in astrocytes7）; and this fact may 
explain part of deterrent effect of edaravone on 
brain edema development since VEGF enhances 
vascular permeability.
 　One of the major functions of astrocytes is 
to maintain homeostasis in the central nervous 
system （CNS） through regulating the coordinated 
expression of various genes. Thus regulation of 
astrocyte gene expression may be expected to be 
a potential therapeutic target in stroke, and this 
review is intended to address such a therapeutic 
paradigm employing neuroprotective agents. 

2. Edaravone, as a neuroprotective 
agent

2.1. Development of edaravone
　 Edaravone （3-methyl-1-phenyl-2-pyrazolin- 
5-one （Fig. 1, upper left）, MCI-186, RADICUT®, 
molecular weight 174.20, Mitsubishi Tanabe 
Pharma, Osaka, Japan） was developed for the 
treatment of acute cerebral infarction6,8）, and 
has been clinically available since June 2001 in 
Japan9-12）.  Edaravone is amphipathic and, thereby, 
brain-penetrant （permeable to the blood-brain 
barrier, BBB）.  

2.2. Edaravone as a free radical scavenger
 　Edaravone chemically interacts with a 
variety of reactive oxygen species （ROS） 
including hydroxyl radical （•OH）13,14）, peroxyl 
radical （LOO•）8,13,15）, alkoxyl radical （LO•）16）, 
peroxynitrite （ONOO-）8） and singlet oxygen 

（1O2）17）, to which it donates electrons and then 
is transformed into the stable compound, 2-oxo-
3-（phenylhydrazono）-butanoic acid6,8）.  Although 
the high concentration （1 or 3 mmol/L） of 
edaravone slightly scavenges superoxide anion 

（O2
-）18）, the lower concentration （≤100 μmol/L） of 

edaravone has no eff ect on superoxide anion13,19）.  
Edaravone also quenches hydrogen peroxide 

（H2O2） in cellular （neutrophil） and cell-free 
（xanthin-xanthin oxidase） systems19）.  Edaravone 
suppresses ROS generation and reduces brain 
edema in a rat ischemic stroke model20）.  It also 
represses delayed neuronal death, induced by 
ROS, in the hippocampus and cerebral cortex 
following ischemia in the rat21）.  

2.3. Pharmacokinetics of edaravone
2.3.1. Permeability to BBB
　 Edaravone is demonstrated to have molecular 
property for its effectiveness in the brain 
with the ability to permeate to BBB.  In an 
animal study, the ratio of the concentrations 
of edaravone in plasma and cerebral spinal 
fluid （CSF） is reported to range from 0.50 to 
0.65, indicating that the BBB permeability of 
edaravone is around 60%22）.

2.3.2. Metabolism and excretion of edaravone
 　Plasma concentration of edaravone reaches 
a maximum level of 17.6 μmol/L after a single 
intravenous infusion in a dose of 1.5 mg/kg over 
40 min, and after an intravenous infusion of 
2.0 mg/kg over 3 h, the concentration reaches 
a maximum level of 7.0 μmol/L23）.  The plasma 
concentration reaches a maximum level of 9.3-10.4 
µmol/L after 7 consecutive intravenous infusions, 
each over 40 min, in a dose of 1.0 mg/kg per 
day23）.  The pharmacokinetics in elderly subjects, 
over 65 years old, shows a pattern similar to that 
in younger subjects, indicating a maximum level 
of 6.0±0.6 μmol/L after 4 intravenous infusions, 
each over 30 min, in a dose of 0.5 mg/kg per 12 
h24）.  
　 In healthy volunteers （5 men）, 87±4% 
of edaravone administered by infusion is 
metabolized and excreted into urine within 24 
h23）.  Although the urinary excretion of edaravone 
is slow ranging 0.6 -1.0% in 24 h, sulfate or 
glucuronide conjugation enhances the urinary 
excretion: 5.6 -13.2% and 68.6 -83.2% in 24 h, 
respectively23）.  
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 　After a single intravenous administration 
of 14C -edaravone （2 mg/kg） to rats ,  the 
disappearance of radioactivity from blood vessel 
is delayed and the radioactivity in blood vessel 
is detected even after 8 days25）.  After repeated 
administration of 14C-edaravone in a dose of 2 
mg/kg/day for 21 days, the radioactivity in blood 
vessel is detected even after 30 days26）.  In the 
brain, no region-specifi c distribution of edaravone 
is observed and most of the radioactivity consists 
of non-metabolized edaravone, whereas most of 
the radioactivity in the kidney consists of the 
sulfated form25）.
　 After a single intravenous administration of 
14C-edaravone （2 mg/kg） to male rats, 92.0±
1.7% of the radioactivity is excreted into urine 
within 72 h, whereas 4.6±1.2% into bile25）.  The 
glucuronide conjugate constitutes 69.6±3.1% of 
the total biliary excretion, and most of it may 
enter the entero-hepatic circulation and finally 
excreted from the kidney: 67.3±4.5% of the 
administered dose is excreted into urine25）.  

3. Edaravone in brain injury
3.1. Effects of edaravone in experimental ischemia 
and/or reperfusion models
 　In vitro studies have demonstrated that 
edaravone inhibits lipid peroxidation and vascular 
endothelial cell injury27）.  In rat brain ischemia 
models, edaravone inhibited brain edema20,28,29）, 
tissue injury13,30,31）, infl ammatory responses32）, lipid 
free radical formation33） and delayed neuronal 
death21）.  In human umbilical vein endothelial 
cells, edaravone increases endothelial nitric oxide 
synthase （eNOS） with the inhibition of low-density 
lipoprotein （LDL） oxidation34）.  In mice with 
transient brain ischemia, edaravone suppresses the 
early accumulation of lipid peroxidation products 
and oxidative DNA damage, and eliminate a 
sequence of inflammatory responses resulting in 
the reduction of inducible NOS35）.  In rat ischemia/
reperfusion models, edaravone is demonstrated 
to reduce intracellular free Ca2+concentration, 

raise superoxide dismutase （SOD） activity, and 
decrease mitochondria membrane damage36）; and 
prevents the dissociation of the neurovascular 
unit （integration of astrocyte endfeet and 
microvascular basement membrane）37）.  Edaravone 
is known to suppress the expression of VEGF in 
a rat ischemia/reperfusion model38）.  We confi rmed 
the suppression, by edaravone, of the hypoxia-
induced VEGF expression in cultured human 
astrocytes7）.  

3.2. Ef f icacy of edaravone in pat ients with 
cerebrovascular diseases
　 As for the clinical effectiveness of edaravone, 
several trials have confirmed neuroprotective 
eff ects of edaravone in patients with acute cerebral 
infarction4-6）.  Several studies demonstrated the 
efficacy of edaravone in delaying evolution of 
cerebral infarcts and edema39）, reducing the 
generation of ROS40）, oxidized LDL, cytosolic 
protein S-100B and Mn-SOD41）.  Improvement of 
functional outcome in patients with acute ischemic 
stroke, including lacunar infarction10）, cardioembolic 
stroke11） and aneurysmal subarachnoid hemor-
rhage12）, is also reported9）.  

3.3. Edaravone in traumatic brain injury
 　In patients with traumatic brain injury, 
edaravone is reported to suppress the blood 
levels of alkoxyl radicals that contribute to lipid 
peroxidation16）.  Edaravone is also demonstrated 
to inhibit production of free radicals in a rat 
model for traumatic brain injury, and this is 
associated with the protection of neuronal stem 
cells that have the potential to diff erentiate into 
neurons and glia around the injured area42）. 

3.4. Edaravone in diabetic neuropathy
　 In the development of diabetic neuropathy, 
oxidative stress is implicated as a fi nal common 
pathway.  Edaravone is demonstrated to inhibit 
the augmented angiotensin II-induced contraction 
in endothelium intact aortic spinal preparations 
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isolated from thoracic aorta in diabetic rats43）.  
Edaravone also shows improving eff ects on nerve 
conduction velocity, nociception, lipid peroxidation 
status, and anti-oxidant enzymes （SOD and 
catalase） in a rat model of diabetic neuropathy44）.

3.5. Side effects of edaravone
 　During the phase I study in hea lthy 
volunteers, an increase of serum total bilirubin 

（0.2 mg/kg dose） and a decrease of platelet count 
（0.2 mg/kg dose） were observed; however, they 
were recovered 1 w after the infusion.  No other 
problems were observed, and edaravone was 
regarded to have a good tolerability in healthy 
volunteers23）.  
　 Adverse reactions to edaravone, including 
renal and hepatic disorders, have been reported 
after its launch in June 2001, and renal disorders 
have been the most frequent and sometimes 
serious.  In a study reviewed 207 Japanese 
patients who were treated with edaravone 
for acute stroke and developed renal disorder, 
no particular factor other than edaravone 
administration was found as a possible cause 
for the renal disorders in 17 patients （8.2%）, 
whereas factors other than edaravone were 
associated with renal disorders in the remaining 
190 patients45）.  The frequency of renal dysfunc-
tion as a complication of edaravone treatment 
is estimated to be 0.04% （207/530000） since 
edaravone was given to 530000 patients in Japan 
during the same period of analysis, June 2001 to 
September 200545）.  
 　In the 207 patients with renal disorders, the 
overall recovery rate of renal function was 43%; 
risk factors for the nonrecovery of renal function 
were the complication of severe infection and the 
implication of blood purifi cation, and risk factors 
for death were advanced age （≥ 80 years） and 
the complication of severe infection46）.  
　 The precise role（s） of edaravone in the 
pathogenesis of renal disorders remain（s） unclear.  
Early detection of renal disorders and control of 

infection are critical during edaravone treatment.  
Also, it has been pointed out that care should be 
taken with the clinical use of edaravone when 
pterin derivatives stay in the body47）.

4. Therapeutic potential of Nrf2-
inducers

 　Carnosic acid （Fig. 1, upper right）, a component 
of rosemary （Rosmarinus of ficinalis L.）, induces 
a transcription factor Nrf2 （nuclear factor-
erythroid 2-related factor 2）, a master regulator 
of antioxidant response, by inhibiting Keap1 

（Kelch-like ECH-associated protein 1）48-50）.  Keap1 
is a bifunctional protein that serves as an Nrf2-
specific adaptor for the Cullin3 ubiquitin ligase 
complex51,52） and a sensor for oxidative and/or 
electrophilic stresses53）.  Keap1 has many reactive 
cysteine residues that have the potential to sense 
various electrophiles54）.  
　 Nrf2 plays an important role in the coordi-
nated expression of many phase 2 detoxifiying 
enzymes such as glutathione S-transferases, 
heme oxygenase-1 and NAD（P）H quinone 
oxidoreductase55,56） and is considered as an 
indicator and modulator of oxidative stress 
in neurodegeneration57）.  Nrf2 expression in 
astrocytes, by overexpression, prevents neuronal 
death in a mouse model of Parkinson’s disease58）.  
 　The Nrf2 pathway is also activated by 
other electrophilic compounds including natural  
products such as sulforaphane59）and curcumin60） 

（Fig. 1, bottom left and right）.  The mitogen-
activated protein kinases （MAPK） are activated 
by phase 2 gene inducers and involved in 
survival response leading to the transcriptional 
activation of defense genes mediated by ARE/
EpRE （antioxidant or electrophile response 
element）61）.  A marked nuclear accumulation of 
Nrf2 protein is reported in cultures of HK-2 
human renal proximal tubular epithelial cells or 
T84 human intestinal epithelial cells exposed 
to hypoxia62）.  Some Nrf2-inducers may be 
a potential modulator of the expression of 
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neuroprotective genes in astrocytes and useful 
as therapeutic agents.

5. Astrocytes as a therapeutic target in 
ischemic brain injury

5.1. Regulation of VEGF in astrocytes
　 Astrocytes play integral roles in maintaining 
homeostasis and regulat ing responses to 
various stresses in the CNS63,64）.  Hypoxia 
upregulates many genes in astrocytes, including 
glycolytic enzymes and angiogenic growth 
factors as VEGF 65,66）.  VEGF, a potent mitogen 
specifi c for endothelial cells and a stimulator of 
neovascularization, is also known to enhance 
vascular permeabi l ity 67-70）, which may be 
involved in the development of brain edema 
during cerebral ischemia71）.  A neutralizing 
antibody against VEGF is reported to reduce 
infarct volume in a rat 2-vein occlusion model72）.  
Edaravone may protect ischemic brain tissue 
from the development of vasogenic edema, in 
part, through the suppression of the enhanced 
VEGF transcription in astrocytes7）.

5.2. Regulation of nerve growth factor (NGF) in 
astrocytes
 　Neurotrophins including NGF are essential 
for neuronal growth and subsequent survival73）.  
Astrocytes continue to produce NGF74-76）, and its 
circulating and brain levels undergo significant 
variations after exposure to stressful events77）.  

For instance, transient focal cerebral ischemia 
enhances the expression of NGF in reactive 
astrocytes particularly in the peri-infarct 
penumbra78）.  In our previous study, platelet-
activating factor （PAF）, a proinflammatory 
phospholipid79）, was found to enhance the NGF 
expression in human astrocytes80）.  Since PAF 
is generated in high levels in ischemic brain 
tissue81,82）, it may play a dual role, by promoting 
inflammation and protecting neuronal cells, in 
ischemic brain injury.  Also, carnosic acid is 
demonstrated to upregulate the NGF expression 
in T98G human glioblastoma cells83）.  NGF exerts 
protective eff ects on cultured neurons against a 
variety of deleterious factors84-86）.  
　 Signaling pathways through MAPK87,88） 

（including extracellular signal-regulated kinase 
（ERK）89）） and phosphatidylinositol 3-kinase 
（PI3K）90） are known to mediate NGF expression 
in astrocytes.  Ethanol extracts of an edible 
mushroom, Hericium erinaceus （Yamabushitake）, 
are reported to promote NGF expressions for 
mRNA and protein, via c-Jun N-terminal kinase 

（JNK） signaling, in 1321N1 human astrocytoma 
cells91）.  Also, JNK pathway is likely to mediate 
the astrocyte NGF expression in response to 
edaravone92） or carnosic acid （Yoshida et al., 
unpublished data）.

5.3. Perspectives
 　The benefit of edaravone as a therapeutic 
measure against ischemic stroke is almost 
establ ished both from the viewpoints of 
immediate prognostic assessment and from 
functional outcome of the patients in chronic 
stage.  Thrombolysis with tPA is now an 
essential therapeutic strategy in the treatment 
of acute cerebral infarction, and edaravone 
is suggested to be useful for the extension of 
the therapeutic time window for thrombolytic 
therapy6,35,93）.  The combination of neuroprotective 
agents, such as edaravone or carnosic acid, with 
tPA may be considered as a current standard 

Figure 1　Chemical structures of edaravone and Nrf2-
inducers.
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in the treatment of acute cerebral infarction; 
and this is expected to expand the indication of 
thrombolytic therapy beyond 3 h after stroke.
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