SYNTHESIS OF 2-NBDLG, THE ANTIPODE OF FLUORESCENT D-GLUCOSE TRACER 2-NBDG

Toshihiro Yamamoto¹⁾, Yuji Nishiuchi¹⁾, Tadashi Teshima¹⁾, Seiji Watanabe²⁾, Sechiko Suga³⁾, Hideaki Matsuoka⁴⁾ and Katsuya Yamada⁵⁾

Abstract D-Glucose is one of the most important energy sources for the survival of various organisms, from *E. coli* to mammals. For live-cell monitoring of glucose uptake at the single-cell level, a fluorescent D-glucose derivative 2-[*N*-(7-nitrobenz-2-oxa-1,3-diazol-4- yl)amino]-2-deoxy-D-glucose [2-NBDG], which we developed, has been widely used in various research fields. For the last ten years, however, researchers have awaited an optical control substance for evaluating the extent of non-specific adsorption of 2-NBDG upon plasma membrane and/or the rate of unhealthy 2-NBDG uptake through partially (or transiently) damaged membrane.

Here we introduce a fluorescent L-glucose derivative, 2-[*N*-(7-Nitrobenz-2-oxa- 1,3-diazol-4-yl) amino]- 2-deoxy-L-glucose [2-NBDLG]. L-Glucosamine is a key intermediate toward the synthesis of 2-NBDLG, but not commercially available. Although a few papers on the synthesis of L-glucosamine have been reported, a new synthetic method of L-glucosamine should be absolutely required in practical view of optical purity and preparative scale. We converted commercially available L-mannose into desired L-glucosamine by 10 steps in 14% of overall yield. The ¹H-NMR data of synthetic L-glucosamine were completely identical with those of commercially available D-glucosamine. On the other hand, optical purity of L-glucosamine was confirmed by comparison of specific rotation with that of D-glucosamine. L-Glucosamine thus obtained was coupled with NBD-halide to give 2-NBDLG. Use of transporter-recognizable (D-isomer) and unrecognizable (L-isomer) fluorescent analogues combined with real-time confocal microscopy, should provide valuable information on dynamism of glucose transport.

Hirosaki Med. J. 61, Supplement : S187-S191, 2010

Key words: L-Glucosamine; 2-NBDG; 2-NBDLG; GLUTs; Glucose Uptake

An essential sugar, D-glucose is one of the most important energy sources for the survival of various organisms, from *E. coli* to mammals. Recent molecular techniques have revealed increasing numbers of glucose transporters such as GLUTs (glucose transporters) and SGLTs (sodium/glucose cotransporters) that may be located in particular sites of the plasma membrane¹⁾. In addition, translocation of some transporters in response to insulin stimulation

has been documented²⁾. Historically, glucose transport activity has been monitored by radiolabeled tracers such as [¹⁴C] 2-deoxy-D-glucose³⁾. However, they cannot be used for time-lapse monitoring of glucose uptake at the single-cell level due to their poor spatial and temporal resolution.

In 1996, we developed a fluorescent D-glucose derivative, 2-[N-(7-nitrobenz-2-oxa- 1,3-diazol-4-yl)-amino]-2-deoxy-D-glucose [2-NBDG] (1)

culture and Technology, Koganei, Tokyo 184-8588, Japan.

¹⁾ Saito Research Center, Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.

²⁾ Department of Anatomy, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.

³⁾ Center of Research & Education for Lifelong Learning, Hirosaki University, Hirosaki, Aomori 036-8560, Japan.

⁴⁾ Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agri-

⁵⁾ Department of Physiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.

Saito Research Center, Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan. e-mail: yamamoto@peptide.co.jp

fax: +81 72 643 4422

Figure 1 Structures of 2-NBDG(1) and 2-NBDLG(2)

as shown in Fig.1., that allows a more sensitive measurement of glucose uptake in single-cell of living *E. coli*⁴. Then we proved that 2-NBDG (1) is incorporated into mammalian cells through glucose transporters in a time, concentration, and temperature-dependent manner⁵.

So far 2-NBDG (1) has been successfully applied in various organisms by different groups⁶. Of particular interest is its application to the brain⁷, which utilizes glucose as a sole energy source, and to malignant tumor cells⁸. However, care should be taken in that the fluorescence intensity is an arbitrary measure and that previous 2-NBDG methods had no control fluorescent substrate. This is important particularly when applied to tissues consisting of heterogeneous cells showing divergent activity⁶. To overcome the difficulties, we selected 2-NBDLG (2) as shown in Fig.1., an enantiomer of 2-NBDG (1), as a control substrate for 2-NBDG $(1)^{9}$. It is known that mammalian cells predominantly incorporate D-isomer of glucose¹⁰⁾. Thus, measurement of the difference in the fluorescence derived from 2-NBDG (1) and 2-NBDLG (2) would provide critical information on the net stereospecific uptake of D-glucose into single, living cells, setting it apart from other factors such as non-specific uptake and/or transporter-unrelated binding to the cellular surface that can be serious problems in some application¹¹.

As shown in Fig.2., L-glucosamine (3) is an essential key intermediate for 2-NBDLG (2). Although there are a few papers¹²⁾ on synthesis of L-glucosamine (3), a new synthetic method of L-glucosamine (3) should be absolutely required in practical view of optical purity and preparative scale. Here we describe the first synthesis of 2-NBDLG (2) as well as optically pure L-glucosamine in practical scale.

L-Glucosamine (3) was synthesized from L-mannose (4) in 10 steps as shown in Fig.2. By the applications of Montgomery's method¹³, transformations of a starting material, L-mannose (4) into the compound 9¹⁴ with one free hydroxyl group at C-2 position was carried out, namely peracetylation, bromination at C-1 position, orthoester-formation, deacetylation, benzylation and acidic methanolysis. The free 2-hydroxyl group in methyl glycoside 9 was sulfonylated with trifluoromethanesulfonic anhydride in the presence of pyridine to give the compound 10^{15} . By use of tetrabutylammonium azide¹⁶ in benzene, the triflate 10 was converted to azide 11, being accompanied by inversion of

Figure 2 Synthesis of L-glucosamine (3) and 2-NBDLG (2).

the configuration at C-2 position¹⁷⁾. Catalytic hydrogenation of the azide 11 gave the primary amine 12. Finally, the methyl glycoside was hydrolyzed with 6N-HCl at 100 °C¹⁸⁾ to form the target compound. The ¹H-NMR data¹⁹⁾ of synthetic L-glucosamine (3) thus obtained, was completely identical with that of commercially available D-glucosamine. On the other hand, optical purity of L-glucosamine was confirmed by the comparison of specific rotation with that of D-glucosamine²⁰⁾. Optically pure L-glucosamine thus obtained, was coupled with 4-fluoro-7-

nitrobenz-2-oxa-1,3-diazole (NBD-F) to give 2-NBDLG (2) in 76% yield²¹⁾ It was more than three times as compared with the use of 4-chloro-7-nitrobenz-2-oxa-1,3- diazole (NBD-Cl).

Use of 2-NBDG (1) has brought exciting implications including such as metabolic wave^{7a)} and intercellular transport of D-glucose and/or its phosphorylated form through gap junction²²⁾ By using of transporter-recognizable (D-isomer) and unrecognizable (L-isomer) fluorescent analogues combined with modern live-cell imaging techniques, such as real-time confocal microscopy,

should provide valuable information on dynamism of glucose transport.

Acknowledgements

This research was supported by Science and Technology Incubation Program in Advanced Regions, Japan Science and Technology Agency and Research funds from Research Foundation for Opto-Science and Technology.

References and notes

- Wood IS, Trayhurn P. "Horizons in Nutritional Science Glucose Transporters (GLUT and SGLT): expanded families of sugar transport proteins" Br J Nutr 2003;89:3-9.
- 2) McEwen BS, Reagan LP. "Glucose Transporter Expression in the Central Nervous System: relationship to synaptic function" Eur J Pharmacol 2004;490:13-24.
- 3) Sokoloff L, Reivich M, Kennedy C *et al.* "The [¹⁴C] Deoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization Theory, Procedure, and Normal Values in the Conscious and Anesthetized Albino Rat" J Neurochem 1977;28:897-916.
- 4) Yoshioka K, Saito, M, Matsuoka H et al. "A Novel Fluorescent Derivative of Glucose Applicable to the Assessment of Glucose Uptake Activity of Escherchia coli" Biochim Biophys Acta 1996;1289:5-9.
- 5) Yamada K, Nakata M, Horimoto N, Saito M, Matsuoka H, Inagaki N. "Measurement of Glucose Uptake and Intracellular Calcium Concentration in Single, Living Pancreatic β-Cells" J Biol Chem 2000;275:22278-83.
- 6) Yamada K, Saito M, Matsuoka H, Inagaki N. "A Real-time Method of Imaging Glucose Uptake in Single Living Mammalian Cells" Nat Protoc 2007;2:753-62.
- 7) (a) Bernardinelli Y, Magistretti PJ, Chatton JY.
 "Astrocytes Generate Na⁺-Mediated Metabolic Waves" Proc Natl Acad Sci USA 2004;101:14937-42. (b) Barros L, Bittner CX, Loaiza A, Porras OH,
 "A Quantitative Overview of Glucose Dynamics in the Gliovascular Unit" Glia 2007;55:1222-37.

- 8) (a) O'Neil RG, Wu L, Mullani N. "Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells" Mol Imaging Biol 2005;7:388-92. (b) Cheng Z, Levi J, Xiong Z et al., "Near-Infrared Fluorescent Deoxyglucose Analogue for Tumor Optical Imaging in Cell Culture and Living Mice" Bioconjugate Chem 2006;17:662-9.
- 9) Yamamoto T, Nishiuchi Y, Teshima T, Matsuoka H, Yamada K. "Synthesis of 2-NBDLG, a Fluorescent Derivative of L-Glucosamine; the antipode of D-glucose tracer 2-NBDG" Tetrahedron Lett 2008; 49:6876-8.
- 10) LeFevre PG. "Sugar Transport in the Red Blood Cell: structure-activity relationships in substrates and antagonists" Pharmacol Rev 1961;13:39-70.
- 11) Etxeberria E, Gonzalez P, Tomlinson P, Pozueta-Romero J, "Existence of Two Parallel Mechanisms for Glucose Uptake in Heterotrophic Plant Cells" J Exp Botany 2005;56:1905-12.
- (a) Lehmann J, Moritz A. "Synthesis of N-Acetyl-Dand -L-glucosamine, cis-3,5-Cyclohexadiene-1,2-diol as Building Block for the Preparation of Modified Hexoses" Liebigs Ann.Chem. 1991;937-40. (b) Ermolenko L, Sasaki NA, Potier P. "Asymmetric Synthesis of Amino Sugars. Part 2. A novel versatile approach to the chiral non-racemic synthesis of 2-amino-2-deoxy sugars. Preparation of L-glucosamine, L-mannosamine and L-talosamine derivatives" J Chem Soc, Perkin Trans 1 2000;2465-73. (c) Lafont D, Boullanger P. "Syntheses of L-glucosamine donors for 1,2-trans- glycosylation reactions" Tetrahedron Asym. 2006;17:3368-79.
- 13) Franks NE, Montgomery R. "Stereoselective Ring-opening of β-D-Mannopyranose 1,2-(Alkyl Orthoacetates)" Carbohydr Res 1968;6:286-98.
- 14) ¹H-NMR data of the compound 9 (in CDCl₃, 400 MHz): δ7.24-7.36 (m, 15H, Ph), δ4.80 (d, 1H, J = 1.6 Hz, H-1), δ4.69 (ABq, 2H, J = 11.9 Hz, CH₂-Ph), δ4.67 (ABq, 2H, J = 11.3 Hz, CH₂-Ph), δ4.60 (ABq, 2H, J = 12.4 Hz, CH₂-Ph), δ4.03 (m, 1H, H-2), δ3.70-3.88 (m, 5H, H-3, H-4, H-5, H-6a and H-6b), δ3.37 (s, 3H, OMe), δ2.49 (br.d, 1H, J = 2.5 Hz, C2-OH).
- 15)¹H-NMR data of the compound 10 (in CDCl₃, 400 MHz): δ7.10-7.38 (m, 15H, Ph), δ5.11 (m, 1H, H-2), δ4.90 (d, 1H, J = 1.9 Hz, H-1), δ4.69 (ABq, 2H, J = 12.0 Hz, CH₂-Ph), δ4.64 (ABq, 2H, J = 10.7 Hz,

CH₂-Ph), $\delta 4.61$ (ABq, 2H, J = 11.7 Hz, CH₂-Ph), $\delta 4.00$ (dd, 1H, J = 2.9 and 8.9 Hz, H-3), $\delta 3.69$ -3.84 (m, 4H, H-4, H-5, H-6a and H-6b), $\delta 3.40$ (s, 3H, OMe).

- 16) Danishefsky SJ, DeNinno MP, Chen S. "Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-D-manno-2-octulosonic acid. A new and stereospecific approach to sialo and 3-deoxy-Dmanno-2-octulosonic acid conjugates" J Am Chem Soc 1988;110:3929-40.
- 17)¹H-NMR data of the compound 11 (in $CDCl_3$, 400 MHz): $\delta7.15-7.38$ (m, 15H, Ph), $\delta4.87$ (ABq, 2H, J = 12.4 Hz, CH₂-Ph), $\delta4.83$ (d, 1H, J = 3.5 Hz, H-1), $\delta4.66$ (ABq, 2H, J = 10.7 Hz, CH₂-Ph), $\delta4.57$ (ABq, 2H, J = 12.4 Hz, CH₂-Ph), $\delta3.98$ (dd, 1H, J = 8.9 and 10.2 Hz, H-3), $\delta3.66-3.80$ (m, 4H, H-4, H-5, H-6a, and H-6b), $\delta3.45$ (dd, 1H, J = 3.5, 10.4 Hz, H-2), $\delta3.43$ (s, 3H, OMe).

Because of E2 elimination from the triflate 10 as a side reaction, the desired compound, azide 11 was obtained in low yield.

18) Under usual condition such as at 60 °C in 1N-HCl compound 12 was very stable and no hydrolysis occurred probably due to the amino group at C-2 position.

- 19)¹H-NMR data of L-glucosamine (3) (in D₂O, 400 MHz): δ5.36 (d, 0.6H, J = 3.5 Hz, H-1α), δ4.85 (d, 0.4H, J = 8.3 Hz, H-1β), δ3.36-3.84 (m, 5H, H-3α and 3β, H-4α and 4β, H-5α and 5β, H-6a α and β, and H-6b α and β), δ3.21 (dd, 0.6H, J = 3.5, 10.6 Hz, H-2α), δ2.92 (dd, 0.4H, J = 8.3, 10.6 Hz, H-2β). Anal. Calcd for C₆H₁₄ClNO₅: C, 33.42; H, 6.54; N, 6.50. Found: C, 33.31; H, 6.46; N, 6.36.
- 20)[α]_D at 20 °C (24 h after dissolving in water) synthetic L-glucosamine (3): -72.05 (c1.0, H₂O) commercially available D-glucosamine: +72.20 (c1.0, H₂O)
- 21)¹H-NMR data of 2-NBDLG (2) (in D_2O , 400 MHz): $\delta 8.52$ (d, 1H, J = 9.1 Hz, H6'), $\delta 6.56$ and $\delta 6.54$ (d x 2, 0.5H x 2, J = 9.1 Hz and J = 9.1 Hz, H5'), $\delta 5.38$ (d, 0.5H, J = 2.8 Hz, H-1 α), $\delta 4.89$ (d, 0.5H, J = 8.1 Hz, H-1 β), $\delta 3.50$ -4.02 (m, 6H, H-2 α and 2 β , H-3 α and 3 β , H-4 α and 4 β , H-5 α and 5 β , H-6a α and β , and H-6b α and β).
- 22) Tabernero A, Medina JM, Giaume C. "Glucose Metabolism and Proliferation in Glia: Role of Astrocytic Gap Junctions" J Neurochem 2006;99: 1049-61.