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PRODUCTION OF GROWTH-RELATED ONCOGENE PROTEIN-a IN A
HUMAN ORAL SQUAMOUS CELL CARCINOMA CELL LINE STIMULATED
WITH TUMOR NECROSIS FACTOR-a: ROLE IN TUMOR ANGIOGENESIS
AND TUMOR PROLIFERATION
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Ryohei Ttoh", Kosei Kubota", Hirotaka Sakaki’, Ken Furudate”,

Hidemi Yoshida”, Tadaatsu Imaizumi®, Wataru Kobayashi’ and Hiroto Kimura"

Abstract The CXC chemokine growth-related oncogene protein-o (GRO-a) has a wide variety of biological
activities including as neutrophil trafficking or migration of vascular endothelial cells. In addition, studies have shown
a crosstalk between tumor cells and vascular endothelial cells; GRO-a released by endothelial cells induces invasion
of tumor cells toward endothelial cells, indicating an importance of GRO-a in a tumor environment. Oral squamous
cells are reported to produce GRO-a in response to cytokines such as tumor necrosis factor-a (TNF-a). However,
little is known about how GRO-a is involved in oral cancer. Here, we investigated the biological role of GRO-u for
both tumor growth and angiogenesis in oral squamous cell carcinoma cells. We first evaluated the effect of TNF-a
on GRO-o expression in three oral cancer cells from different origins. Among the cell lines we used, KOSC-2 cells
expressed the highest amount of GRO-a mRNA in response to TNF-a. TNF-o-treated condition medium from KOSC-
2 cells enhanced endothelial cell chemotaxis and the chemotactic activity was partially inhibited by the addition of
neutralizing anti-GRO-a antibody. In addition, GRO-a exerted tumor cell migration of KOSC-2. From these results,
we conclude that GRO-o may contribute to both angiogenesis and proliferation in oral cancer.
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Introduction

Tumor necrosis factor-a (TNF-a) regulates
a variety of biological functions related to
inflammatory reactions, cell growth and
apoptosis; and the most important source
of TNF-a is macrophages’. TNF-a affects
carcinoma cells to induce the expressions of

23 Constitutive activation

many cytokines
of nuclear factor-kB (NF-kB) is observed in
many types of cancer cells, strongly suggesting
a critical role in cancer development and
progression”. Among several carcinogens,
TNF-a is thought to be the most potent
activator of NF-«B”. In the tumor mass, tumor-
associated macrophage (TAM) should be major
source of TNF-o”.

Growth-related oncogene protein-a (GRO-a)
/ CXCL1 was first identified as a growth factor
of melanoma”®. GRO-a belongs to the C-X-C
chemokine family and has chemotactic activity
for neutrophilsg). Some types of the C-X-C
chemokine family, which contain the sequence
Glu-Leu-Arg (the ELR motif) in front of the
C-X-C motif, have been shown to possess a
potent angiogenic property'”. Interleukin-8 (IL-
8) / CXCLS, epithelial and neutrophil activating
protein-78 (ENA-78) /CXCL5, and GRO-a are
the members of this group'”. A variety of
chemokines including GRO-a are rapidly and
markedly induced by TNF-o'”. This indicates
that GRO-a acts as the secondary mediator in
response to TNF-a. TNF-a has also be reported
to induce GRO-o normal oral keratinocytes;
however, the role of GRO-a in oral squamous
cells has not been proven by experimental
analysism.

In healthy oral mucosa, IL-8 and monocyte
chemotactic protein-1 (MCP-1) /CCL2 mRNA
are constitutively expressed whereas mRNA
expression of GRO-y /CXCL3, a member of
GRO family chemokine, is significant lower'.

In contrast, high level of GRO-a expression

is shown to be correlated with both tumor
angiogenesis and lymph node metastasis
in oral cancer'”. Furthermore, microarray
analysis revealed that GRO-a is more markedly
expressed in oral cancer cells than in normal

% These suggest the

oral epithelial cells
essential role of GRO-a in oral cancer cells.

Endothelial cells express NF-kB-dependent
GRO-a, mostly in response to TNF-a'”. CXC
chemokines including GRO-o and IL-8 secreted
by endothelial cells have been shown to induce
tumor cell invasion'”. On the other hand,
the role of GRO-a, which is produced from
oral squamous carcinoma, is incompletely
understood.

We have been studying the effect of TNF-a
on human oral squamous cell carcinoma, and
here we report the expression of GRO-a is
cell line-specific, even in response to TNF-a.
We also studied the effect of GRO-a on tumor
growth and endothelial cell chemotaxis.

Materials and Methods

Reagents

Cell culture medium Humedia EB-2 and its
supplements were purchased from Kurabo
(Osaka, Japan). Primer oligo(dT)5,s and
M-Mulv reverse transcriptase were from GIBCO-
BRL (Gaithersburg, MD, USA). Digoxigenen
(DIG)-labeling and detection systems were
obtained from Boehringer Mannheim (Mannheim,
Germany) and a GRO-a enzyme-linked
immunosorbent assay (ELISA) kit from R&D
Systems (Minneapolis, MN, USA). An RNeasy
total RNA isolation kit and Taq DNA polymerase
were from Qiagen (Hilden, Germany). A
Northern Max kit and a Lig'nScribe kit were
from Ambion (Austin, TX, USA).

Cell culture
A cell line of human oral squamous cell
carcinoma, KOSC-2, was a generous gift from
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the National Institute of Health Science (Tokyo,
]apan)18>. The other human oral squamous
cell carcinoma cell lines, HSC-3 and Ca9-22
were purchased from JCRB Cell Bank (Osaka,
Japan). The cells were cultured using RPMI-
1640 (KOSC-2) or DMEM (HSC-3 and Ca9-
22) supplemented with 10% fetal bovine serum
(FBS) and penicillin/streptomycin. The cells
were subjected to the stimulation with TNF-a
when they reached about 80% confluence.

Human umbilical vein endothelial cells
(HUVECs) were purchased from KURABO
Tokyo, Japan). The cells were cultured in
Humedia EB-2 supplemented with 2% FBS, 10
ng/mL recombinant human (r(h)) epidermal
growth factor, 5 ng/mL r(h) basic fibroblast
growth factor, 1pg/mL hydrocortisone and 10
pg/mL heparin. CD45+ cells were found in the
cultures.

RNA extraction and quantitative reverse transcription-
polymerase chain reaction (QRT-PCR)

Total RNA was extracted from the cells
using an RNeasy total RNA isolation kit. Single-
strand cDNA was synthesized from 1 pg of total
RNA using primer oligo(dT) 5,5 and M-Mulv
reverse transcriptase. A CFX96 Real-Time PCR
System (Bio-Rad) was used for quantitative
analyses of GRO-a and 18S rRNA expression.
The sequences of the primers were:

GRO-o-F (5-ATGGCCCCGCGTGCTCTCTCC-3),
GRO-0-R (5-GTTGGATTTGTCACTGTTCAG-3),
18S rRNA-F: 5-ACTCAACACGGGAAACCTCA-3,
and rRNA-R: 5-AACCAGACAAATCGCTCCAC-3.
Amplifications were performed using 1Q
SYBR Green Supermix (Bio-Rad), according
to the manufacturer’s specifications. Cycling
conditions were as follows: 50°C, 2 min; 95°C,
3 min; 40 cycles of 95°C (15s) + 58°C (30 s) +
72°C (30 s). A melting curve was generated
by acquiring fluorescence measurements
while slowly heating to 95°C at a rate of 0.1°C
per second. Melting curves and quantitative

analysis of the data were performed using a
CFX manager, as previously reportedlg).

ELISA for GRO-a

After the treatment with TNF-0, the KOSC-
2 cells were washed twice with RPMI- 1640
and incubated for 2 h in RPMI-1640 containing
0.5% human serum albumin (RPMI-HSA). The
medium was collected and subjected to ELISA
for GRO-o.

Endothelial cell chemotaxis

Endothelial cell chemotaxis was examined
using a 24-well chemotaxis chamber as
described previously”. Briefly KOSC-2 cells
were grown to confluence and stimulated for 4 h
with 10 ng/mL TNF-a. Then the medium was
replaced with Medium 199 containing 0.5% HSA
(M199-HSA), and the cells were conditioned
for 2 h. Aliquots (100 uL) of the conditioned
medium, M199-HSA containing 1 ng/mL r(h)
GRO-a, 10 pg/mL vascular endothelial growth
factor (VEGF), or control medium were placed
in lower chambers and upper chambers filled
with 100 uL of HUVEC suspension (1x10° cells/
mL M199- HSA). When indicated, an anti-
GRO-o neutralizing antibody was added to the
medium. After incubating for 4 h at 37°C, the
membrane from each chamber was fixed with
methanol and stained with Giemsa solution.
Transmigrated cells in random four low-power
fields were counted under a microscope.

Wound assay

Confluent monolayers of KOSC-2 cells
were wounded using a scalpel and a rubber
policeman as described®”’. Then the cultures
were washed with 20 mM phosphate-buffered
saline, pH 74 (PBS), and further incubated in
the conditioned medium of the cells stimulated
for 4 h with 10 ng/mL TNF-o. The cells were
washed with PBS, fixed with 10% formaldehyde,
and photographed under a microscope. Control
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Fig. 1 Time course of the expression of GRO-a in KOSC-2 cells stimulated with TNF-a.

(A) KOSC-2

(@), HSC-3 (M), and Ca9-22 (&) cells were incubated with 1 ng/mL of TNF-a for 4-72 h. mRNA
expression of GRO-a or 18s rRNA were analyzed by real-time RT-PCR. (B) KOSC-2 cells were
incubated with 1 ng/ml of TNF-a for 4-72 h. The conditioned medium was collected and ELISA was
performed. Means (+SD) of three experiments shown.

medium and the medium containing 1 ng/mL
r(h) GRO-a were also tested in parallel.

Statistics

For chemotaxis assay (Fig.3.), data were
analyzed using one-way analysis of variance
(ANOVA) to compare the treatment effects.
Tukey's post-hoc analyses were applied for
multiple comparisons, with the statistical
significance set at P<0.05.

Results
Expression of GRO-a in oral squamous cell lines
stimulated with TNF-a

We first asked whether most of the oral
squamous cancer cells can induce GRO-a in
response to TNF-a. In this study, we used
three oral cancer cells from different donors to
observe GRO-a expression in response to TNF-a.

TNF-a (10 ng/mL) transiently expressed
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Fig. 2 Concentration-dependent induction of GRO-a by TNF-a. KOSC-2 cells were incubated with 0.01- 100ng/
mL TNF-a for 4 h. (A) The expression of mRNA for GRO-a or GAPDH was analyzed by RT-PCR. (B)
The conditioned medium of KOSC-2 cells was collected and subjected to ELISA for GRO-a. Means (*

SD) of three experiments are shown.

GRO-a in KOSC-2 and HSC-3 cells. In both cells,
GRO-a mRNA reached the maximal level 4
h after the stimulation with TNF-a (Fig 1A).
The induced levels of mRNA levels of GRO-a
in KOSC-2 were markedly higher than that in
HSC-3 cells. In contrast, no such increase of
GRO-a was observed in Ca9-22 (Fig 1A). These
observations suggested that the induction of
GRO-o in response to TNF-a varies depending
on the cell type. The time course of GRO-a
protein secretion corresponded with that of the
mRNA expression (Fig. 1B).

TNF-a enhanced GRO-a mRNA expression
of KOSC-2 cells in a concentration- dependent
manner (Fig. 2A). The expression of GRO-a
was observed from the treatment with 0.1 ng/
mL TNF-o. TNF-a also stimulated the secretion
of GRO-a protein and the maximal effect was
observed at 10 ng/mL (Fig. 2B).

GRO-0 has chemotactic activity for endothelial
cells

The results of endothelial cell chemotaxis
are summarized in Fig. 3. VEGF is known as
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Fig. 3 Endothelial cell transmigration in response to GRO-a. Control medium (M199-HSA), VEGF (100
pg/mL, in M199-HSA). GRO-o (1 ng/mL, in M199-HSA) or conditioned medium (from KOSC-2
stimulated with TNF-o for 4 h) was placed in lower chambers, and upper chambers were filled with
HUVEC suspension. When indicated, anti-neutralizing GRO-a antibody was added to the conditioned
medium. After incubating for 4 h at 37°C, the membrane was fixed and stained with Giemsa solution.
Transmigrated cells in random four fields were counted under a microscope. *P<0.05 statistically
significant difference compared with the control, **P<0.05 vs TNF-o-treated conditioned medium.

control

GRO-a

Fig. 4 KOSC-2 cells migration in the presence of GRO-a. Confluent monolayers of KOSC-2 cells were wounded
as described in “Materials and Methods”. The cells were incubated in the presence or absence of 1 ng/
mL GRO-a, or conditioned medium (from KOSC-2 cells stimulated with TNF-a for 4 h) for 20 h, then

fixed and photographed.

The arrows point to the original edge of the wound. Data shown represent from two independent

experiments.

a potent angiogenic factor, and thus we used
VEGF as a positive control for this migration
assay for endothelial cells. As we expected, only
small amount of VEGF could induce chemotaxis
in HUVECs. The conditioned medium from
TNF-a-treated KOSC-2 cells significantly

enhanced the transmigration of endothelial cells,
and r(h) GRO-a was also found to be active
in this assay. To evaluate the possible role
for GRO-a in the TNF-a-treated conditioned
medium, we added anti-neutralizing antibody
against GRO-a in the conditioned medium, and
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found partial, but significant (P<0.05) inhibition
by GRO-a neutralization. These data suggest a
positive role of GRO-a as a secondary mediator.
In agreement with this result, r(h) GRO-a
induces chemotaxis of HUVECs.

GRO-a promotes migration of KOSC-2 cells

The results of KOSC-2 cell migration in
wound assay are shown in Fig. 4. Twenty
hours after wound assay, control KOSC-2 cells
grew into the wounded area. In countrast, the
growth was faster in the cells incubated with
the medium conditioned by TNF-a-treated cell.
r(h) GRO-a also showed a migration promoting
activity on KOSC-2 cells.

Discussion

TNF-a was first identified as a factor that
induces necrosis of tumor cells; however,
various functions of this cytokine have been

22,23 .
' In some case, it

demonstrated thereafter
serves as a “tumor growth factor™. TNF-a
activates transcriptional factors such as AP-1
and NF-kB, and subsequently induces the
expression of various chemokines™ .

In the present study, we initially found that
TNF-a induces expression of GRO-a in KOSC-
2 cells. GRO-a is known to be expressed in
various types of cells including endothelial
cells, bronchial epithelium, macrophages and

27-30)

polymorphonuclear neutrophils Previous

report has shown the expression of GRO-a

by TNF-a in oral keratinocytesm.

However,
Ca9-22 derived from an oral squamous cell
carcinoma did not express GRO-o in response
to TNF-a. Moreover, super-induction of
GRO-a was observed in TNF-o-treated KOSC-
2 cells. These results suggested that the
level of GRO-a is dependent on individual
oral squamous cell carcinoma. GRO-a has a
neutrophil chemotactic activity and plays an

important role in inflammatory responses, but

the ubiquitous nature of its expression suggests
that GRO-a is involved in biological events other
than leukocyte chemotaxis” 9 In fact some
members of C-X-C chemokines that contain ELR
motif are demonstrated to act as an angiogenic
factor, while the members that lack ELR- motif

serve as an angiostatic factor'”.

In the present
study, we found that the conditioned medium
from TNF-a-treated KOSC-2 cells contained
a substantial amount of GRO-a protein and
enhanced endothelial cell transmigration. r(h)
GRO-a was also found to enhance endothelial
migration. Although the medium conditioned
by the TNF-a-treated KOSC-2 cells contains
many endothelial chemotactic factors, such
as IL-8, ENA-78, or VEGF (data not shown),
GRO-a may partly account for the activity in
the conditioned medium.

GRO-a was originally found as a factor that
promotes the growth of melanoma cells, and a
subsequent report demonstrated the growth-
enhancing effect on other malignant tumors™3"
We demonstrated, in the wound assay, that
GRO-a enhances the growth of KOSC-2 cells;
and TNF-a may control the autocrine regulation
mechanism of the growth of KOSC-2 cells.

In summary, TNF-a stimulates the secretion
of GRO-a by KOSC-2 cells and may control the
tumor spread through angiogenesis and growth
of the tumor cells.
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