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ORIGINAL ARTICLE

PRODUCTION OF GROWTH-RELATED ONCOGENE PROTEIN-α IN A 
HUMAN ORAL SQUAMOUS CELL CARCINOMA CELL LINE STIMULATED 
WITH TUMOR NECROSIS FACTOR-α: ROLE IN TUMOR ANGIOGENESIS 

AND TUMOR PROLIFERATION

Norihiko Narita1），Tomoh Matsumiya2），Takao Kon1），Ryo Hayakari2）， 
Ryohei Itoh1），Kosei Kubota1），Hirotaka Sakaki1），Ken Furudate1）， 

Hidemi Yoshida2），Tadaatsu Imaizumi2），Wataru Kobayashi1） and Hiroto Kimura1）

Abstract　 The CXC chemokine growth-related oncogene protein-α （GRO-α） has a wide variety of biological 
activities including as neutrophil trafficking or migration of vascular endothelial cells.  In addition, studies have shown 
a crosstalk between tumor cells and vascular endothelial cells; GRO-α released by endothelial cells induces invasion 
of tumor cells toward endothelial cells, indicating an importance of GRO-α in a tumor environment.  Oral squamous 
cells are reported to produce GRO-α in response to cytokines such as tumor necrosis factor-α （TNF-α）.  However, 
little is known about how GRO-α is involved in oral cancer.  Here, we investigated the biological role of GRO-α for 
both tumor growth and angiogenesis in oral squamous cell carcinoma cells. We first evaluated the effect of TNF-α 
on GRO-α expression in three oral cancer cells from different origins.  Among the cell lines we used, KOSC-2 cells 
expressed the highest amount of GRO-α mRNA in response to TNF-α.  TNF-α-treated condition medium from KOSC-
2 cells enhanced endothelial cell chemotaxis and the chemotactic activity was partially inhibited by the addition of 
neutralizing anti-GRO-α antibody.  In addition, GRO-α exerted tumor cell migration of KOSC-2.  From these results, 
we conclude that GRO-α may contribute to both angiogenesis and proliferation in oral cancer. 
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原　著

培養ヒト口腔扁平上皮癌細胞における TNF-α 依存的な GRO-α の誘導：
GRO-α による血管新生作用と腫瘍増殖作用について

成　田　紀　彦1） 　　松　宮　朋　穂2） 　　今　　　敬　生1） 　　早　狩　　　亮2） 

伊　藤　良　平1） 　　久保田　耕　世1） 　　榊　　　宏　剛1） 　　古　舘　　　健1） 

吉　田　秀　見2） 　　今　泉　忠　淳2） 　　小　林　　　恒1） 　　木　村　博　人1）

抄録　CXC ケモカインファミリーである GRO-α は，好中球走化性因子として知られている他，腫瘍増殖能や血管新生
能を有することが明らかとなっている．これまでに口腔粘膜上皮の GRO-α 産生は報告されていたが，GRO-α の口腔癌
における役割は不明である．そこで本研究では口腔癌における GRO-α を介した血管新生作用や腫瘍増殖効果について実
験的に検討した． 3 種類の口腔扁平上皮癌由来細胞に TNF-α 処理をしたところ，GRO-α の発現量は細胞間で大きく異
なっており，TNF-α 依存的な GRO-α 産生は個々の腫瘍細胞の性質に依存することが示唆された．GRO-α を最も多く産
生した KOSC-2（舌癌由来細胞株）の TNF-α 処理後の培養上清は，血管内皮細胞の走化性を亢進し，GRO-α 特異的な中和
抗体の添加はその亢進を部分的に抑制した．さらに，ヒト組み換え型 GRO-α は KOSC-2 の増殖を促進した．これらの結
果から，口腔癌において GRO-α は腫瘍の増悪因子である可能性が示唆された．
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is shown to be correlated with both tumor 
angiogenesis and lymph node metastasis 
in oral cancer14）.  Furthermore, microarray 
analysis revealed that GRO-α is more markedly 
expressed in oral cancer cells than in normal 
oral epithelial cells15）.  These suggest the 
essential role of GRO-α in oral cancer cells.  
 　Endothelial cells express NF-κB-dependent 
GRO-α, mostly in response to TNF-α16）.  CXC 
chemokines including GRO-α and IL-8 secreted 
by endothelial cells have been shown to induce 
tumor cell invasion17）.  On the other hand, 
the role of GRO-α, which is produced from 
oral squamous carcinoma, is incompletely 
understood.
　 We have been studying the effect of TNF-α 
on human oral squamous cell carcinoma, and 
here we report the expression of GRO-α is 
cell line-specific, even in response to TNF-α.  
We also studied the effect of GRO-α on tumor 
growth and endothelial cell chemotaxis.

Materials and Methods
Reagents
 　Cell culture medium Humedia EB-2 and its 
supplements were purchased from Kurabo 

（Osaka, Japan）.  Primer oligo（dT）12-18 and 
M-Mulv reverse transcriptase were from GIBCO-
BRL （Gaithersburg, MD, USA）.  Digoxigenen 

（DIG）-labeling and detection systems were 
obtained from Boehringer Mannheim （Mannheim, 
Germany） and a  GRO-α  enzyme- l inked 
immunosorbent assay （ELISA） kit from R&D 
Systems （Minneapolis, MN, USA）.  An RNeasy 
total RNA isolation kit and Taq DNA polymerase 
were from Qiagen （Hilden, Germany）.  A 
Northern Max kit and a Lig’nScribe kit were 
from Ambion （Austin, TX, USA）.

Cell culture
　 A cell line of human oral squamous cell 
carcinoma, KOSC-2, was a generous gift from 

Introduction

　 Tumor necrosis factor-α （TNF-α） regulates 
a variety of biological functions related to 
inflammatory reactions, cell growth and 
apoptosis; and the most important source 
of TNF-α is macrophages1）.  TNF-α affects 
carcinoma cells to induce the expressions of 
many cytokines2，3）.  Constitutive activation 
of nuclear factor-κB （NF-κB） is observed in 
many types of cancer cells, strongly suggesting 
a critical role in cancer development and 
progression4）.  Among several carcinogens, 
TNF-α is thought to be the most potent 
activator of NF-κB5）.  In the tumor mass, tumor-
associated macrophage （TAM） should be major 
source of TNF-α6）.
　 Growth-related oncogene protein-α （GRO-α） 
/ CXCL1 was first identified as a growth factor 
of melanoma7，8）.  GRO-α belongs to the C-X-C 
chemokine family and has chemotactic activity 
for neutrophils9）.  Some types of the C-X-C 
chemokine family, which contain the sequence 
Glu-Leu-Arg （the ELR motif） in front of the 
C-X-C motif, have been shown to possess a 
potent angiogenic property10）.  Interleukin-8 （IL-
8） / CXCL8, epithelial and neutrophil activating 
protein-78 （ENA-78） /CXCL5, and GRO-α are 
the members of this group10）.  A variety of 
chemokines including GRO-α are rapidly and 
markedly induced by TNF-α11）.  This indicates 
that GRO-α acts as the secondary mediator in 
response to TNF-α.  TNF-α has also be reported 
to induce GRO-α normal oral keratinocytes; 
however, the role of GRO-α in oral squamous 
cells has not been proven by experimental 
analysis12）. 
　 In healthy oral mucosa, IL-8 and monocyte 
chemotactic protein-1 （MCP-1） /CCL2 mRNA 
are constitutively expressed whereas mRNA 
expression of GRO-γ /CXCL3, a member of 
GRO family chemokine, is significant lower13）.  
In contrast, high level of GRO-α expression 
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the National Institute of Health Science （Tokyo, 
Japan）18）.  The other human oral squamous 
cell carcinoma cell lines, HSC-3 and Ca9-22 
were purchased from JCRB Cell Bank （Osaka, 
Japan）.  The cells were cultured using RPMI-
1640 （KOSC-2） or DMEM （HSC-3 and Ca9-
22） supplemented with 10% fetal bovine serum 

（FBS） and penicillin/streptomycin.  The cells 
were subjected to the stimulation with TNF-α 
when they reached about 80% confluence.
　 Human umbilical vein endothelial cells 

（HUVECs） were purchased from KURABO 
Tokyo, Japan）.  The cells were cultured in 
Humedia EB-2 supplemented with 2% FBS, 10 
ng/mL recombinant human （r（h）） epidermal 
growth factor, 5 ng/mL r（h） basic fibroblast 
growth factor, 1μg/mL hydrocortisone and 10 
μg/mL heparin.  CD45+ cells were found in the 
cultures.

RNA extraction and quantitative reverse transcription-
polymerase chain reaction (qRT-PCR)
　 Total RNA was extracted from the cells 
using an RNeasy total RNA isolation kit. Single-
strand cDNA was synthesized from 1 μg of total 
RNA using primer oligo（dT）12-18 and M-Mulv 
reverse transcriptase.  A CFX96 Real-Time PCR 
System （Bio-Rad） was used for quantitative 
analyses of GRO-α and 18S rRNA expression.  
The sequences of the primers were:   
GRO-α-F （5’-ATGGCCCCGCGTGCTCTCTCC-3’）,
GRO-α-R （5’-GTTGGATTTGTCACTGTTCAG-3’）,
18S rRNA-F: 5’-ACTCAACACGGGAAACCTCA-3’,
and rRNA-R: 5’-AACCAGACAAATCGCTCCAC-3’.
Amplif ications were performed using iQ 
SYBR Green Supermix （Bio-Rad）, according 
to the manufacturer’s specifications.  Cycling 
conditions were as follows: 50°C, 2 min; 95°C, 
3 min; 40 cycles of 95°C （15s） + 58°C （30 s） + 
72°C （30 s）.  A melting curve was generated 
by acquiring fluorescence measurements 
while slowly heating to 95°C at a rate of 0.1°C 
per second.  Melting curves and quantitative 

analysis of the data were performed using a 
CFX manager, as previously reported19）.

ELISA for GRO-α
 　After the treatment with TNF-α, the KOSC-
2 cells were washed twice with RPMI- 1640 
and incubated for 2 h in RPMI-1640 containing 
0.5% human serum albumin （RPMI-HSA）.  The 
medium was collected and subjected to ELISA 
for GRO-α.

Endothelial cell chemotaxis
　 Endothelial cell chemotaxis was examined 
using a 24-wel l  chemotaxis chamber as 
described previously20）.  Briefly KOSC-2 cells 
were grown to confluence and stimulated for 4 h 
with 10 ng/mL TNF-α.  Then the medium was 
replaced with Medium 199 containing 0.5% HSA 

（M199-HSA）, and the cells were conditioned 
for 2 h.  Aliquots （100 μL） of the conditioned 
medium, M199-HSA containing 1 ng/mL r（h）
GRO-α, 10 pg/mL vascular endothelial growth 
factor （VEGF）, or control medium were placed 
in lower chambers and upper chambers filled 
with 100 μL of HUVEC suspension （1x105 cells/
mL M199- HSA）.  When indicated, an anti-
GRO-α neutralizing antibody was added to the 
medium.  After incubating for 4 h at 37°C, the 
membrane from each chamber was fixed with 
methanol and stained with Giemsa solution.  
Transmigrated cells in random four low-power 
fields were counted under a microscope.

Wound assay
　 Confluent monolayers of KOSC-2 cells 
were wounded using a scalpel and a rubber 
policeman as described21）.  Then the cultures 
were washed with 20 mM phosphate-buffered 
saline, pH 7.4 （PBS）, and further incubated in 
the conditioned medium of the cells stimulated 
for 4 h with 10 ng/mL TNF-α.  The cells were 
washed with PBS, fixed with 10% formaldehyde, 
and photographed under a microscope. Control 
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medium and the medium containing 1 ng/mL 
r（h）GRO-α were also tested in parallel.

Statistics
　 For chemotaxis assay （Fig.3.）, data were 
analyzed using one-way analysis of variance 

（ANOVA） to compare the treatment effects. 
Tukey's post-hoc analyses were applied for 
multiple comparisons, with the statistical 
significance set at P<0.05. 

Results
Expression of GRO-α in oral squamous cell lines 
stimulated with TNF-α
　 We first asked whether most of the oral 
squamous cancer cells can induce GRO-α in 
response to TNF-α.  In this study, we used 
three oral cancer cells from different donors to 
observe GRO-α expression in response to TNF-α.  
TNF-α （10 ng/mL） transiently expressed 

Fig. 1　Time course of the expression of GRO-α in KOSC-2 cells stimulated with TNF-α.  （A） KOSC-2 
（●）, HSC-3 （■）, and Ca9-22 （▲） cells were incubated with 1 ng/mL of TNF-α for 4-72 h.  mRNA 
expression of GRO-α or 18s rRNA were analyzed by real-time RT-PCR. （B） KOSC-2 cells were 
incubated with 1 ng/ml of TNF-α for 4-72 h.  The conditioned medium was collected and ELISA was 
performed. Means （±SD） of three experiments shown.
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GRO-α in KOSC-2 and HSC-3 cells.  In both cells, 
GRO-α mRNA reached the maximal level 4 
h after the stimulation with TNF-α （Fig 1A）.  
The induced levels of mRNA levels of GRO-α 
in KOSC-2 were markedly higher than that in 
HSC-3 cells.  In contrast, no such increase of 
GRO-α was observed in Ca9-22 （Fig 1A）.  These 
observations suggested that the induction of 
GRO-α in response to TNF-α varies depending 
on the cell type.  The time course of GRO-α 
protein secretion corresponded with that of the 
mRNA expression （Fig. 1B）.  

　 TNF-α enhanced GRO-α mRNA expression 
of KOSC-2 cells in a concentration- dependent 
manner （Fig. 2A）.  The expression of GRO-α 
was observed from the treatment with 0.1 ng/
mL TNF-α.  TNF-α also stimulated the secretion 
of GRO-α protein and the maximal effect was 
observed at 10 ng/mL （Fig. 2B）.
  
GRO-α has chemotactic activity for endothelial 
cells
　 The results of endothelial cell chemotaxis 
are summarized in Fig. 3.  VEGF is known as 

Fig. 2　Concentration-dependent induction of GRO-α by TNF-α. KOSC-2 cells were incubated with 0.01- 100ng/
mL TNF-α for 4 h. （A） The expression of mRNA for GRO-α or GAPDH was analyzed by RT-PCR. （B） 
The conditioned medium of KOSC-2 cells was collected and subjected to ELISA for GRO-α. Means （±
SD） of three experiments are shown.
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a potent angiogenic factor, and thus we used 
VEGF as a positive control for this migration 
assay for endothelial cells.  As we expected, only 
small amount of VEGF could induce chemotaxis 
in HUVECs.  The conditioned medium from 
TNF-α -treated KOSC-2 cells significantly 

enhanced the transmigration of endothelial cells, 
and r（h） GRO-α was also found to be active 
in this assay.  To evaluate the possible role 
for GRO-α in the TNF-α-treated conditioned 
medium, we added anti-neutralizing antibody 
against GRO-α in the conditioned medium, and 

Fig. 3　Endothelial cell transmigration in response to GRO-α.  Control medium （M199-HSA）, VEGF （100 
pg/mL, in M199-HSA）.  GRO-α （1 ng/mL, in M199-HSA） or conditioned medium （from KOSC-2 
stimulated with TNF-α for 4 h） was placed in lower chambers, and upper chambers were filled with 
HUVEC suspension.  When indicated, anti-neutralizing GRO-α antibody was added to the conditioned 
medium.  After incubating for 4 h at 37°C, the membrane was fixed and stained with Giemsa solution. 
Transmigrated cells in random four fields were counted under a microscope. *P<0.05 statistically 
significant difference compared with the control, **P<0.05 vs TNF-α-treated conditioned medium.
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found partial, but significant （P<0.05） inhibition 
by GRO-α neutralization.  These data suggest a 
positive role of GRO-α as a secondary mediator.  
In agreement with this result, r（h） GRO-α 
induces chemotaxis of HUVECs.

GRO-α promotes migration of KOSC-2 cells
　 The results of KOSC-2 cell migration in 
wound assay are shown in Fig. 4. Twenty 
hours after wound assay, control KOSC-2 cells 
grew into the wounded area. In countrast, the 
growth was faster in the cells incubated with 
the medium conditioned by TNF-α-treated cell.  
r（h） GRO-α also showed a migration promoting 
activity on KOSC-2 cells.

Discussion
　 TNF-α was first identified as a factor that 
induces necrosis of tumor cells; however, 
various functions of this cytokine have been 
demonstrated thereafter22，23）.  In some case, it 
serves as a “tumor growth factor”24）.  TNF-α 
activates transcriptional factors such as AP-1 
and NF-κB, and subsequently induces the 
expression of various chemokines25，26）.
　 In the present study, we initially found that 
TNF-α induces expression of GRO-α in KOSC-
2 cells.  GRO-α is known to be expressed in 
various types of cells including endothelial 
cells, bronchial epithelium, macrophages and 
polymorphonuclear neutrophils27-30）.  Previous 
report has shown the expression of GRO-α 
by TNF-α in oral keratinocytes12）.  However, 
Ca9-22 derived from an oral squamous cell 
carcinoma did not express GRO-α in response 
to TNF-α .   Moreover, super-induction of 
GRO-α was observed in TNF-α-treated KOSC-
2 cells.  These results suggested that the 
level of GRO-α is dependent on individual 
oral squamous cell carcinoma.  GRO-α has a 
neutrophil chemotactic activity and plays an 
important role in inflammatory responses, but 

the ubiquitous nature of its expression suggests 
that GRO-α is involved in biological events other 
than leukocyte chemotaxis9，10）.  In fact some 
members of C-X-C chemokines that contain ELR 
motif are demonstrated to act as an angiogenic 
factor, while the members that lack ELR- motif 
serve as an angiostatic factor10）.  In the present 
study, we found that the conditioned medium 
from TNF-α-treated KOSC-2 cells contained 
a substantial amount of GRO-α protein and 
enhanced endothelial cell transmigration.  r（h）
GRO-α was also found to enhance endothelial 
migration.  Although the medium conditioned 
by the TNF-α-treated KOSC-2 cells contains 
many endothelial chemotactic factors, such 
as IL-8, ENA-78, or VEGF （data not shown）, 
GRO-α may partly account for the activity in 
the conditioned medium.
　 GRO-α was originally found as a factor that 
promotes the growth of melanoma cells, and a 
subsequent report demonstrated the growth-
enhancing effect on other malignant tumors7,8,31）.  
We demonstrated, in the wound assay, that 
GRO-α enhances the growth of KOSC-2 cells; 
and TNF-α may control the autocrine regulation 
mechanism of the growth of KOSC-2 cells.
 　In summary, TNF-α stimulates the secretion 
of GRO-α by KOSC-2 cells and may control the 
tumor spread through angiogenesis and growth 
of the tumor cells.
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