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In this paper, using commutative group algebras, webshall give some reciprocity theorems
and Lenstra’s primality test. ‘ : '
Let A=C" be the set of all mappings from a finite field F, of order ¢ to the complex
number field C. Then we define the convolution product in A by the following - '

Fxg)(c) := D, fla)g(d)

abeF, atb=c
for f,g € A and ¢ € F,. This product together with the usual sum and the scalar product gives
the structure of a commutative group algebra of the additive group of F, over C. If there is
no chance of confusion, we shall denote the product f * g by the usual notation fg. :
Let # = u. be the characteristic function of a € F,, namely, % is defined by the following

1ifb=a
b) : = . .
w(5) {Oifb:#a.

Then we have the following equation.

. Uelhy = Uas+yand f = :Zf(a)u., for f € A.

. a€F,
Thus {# | @ € F,} forms a basis of the group.algebra A. - »

We denote by F‘, the set of all characters of the multiplicative group Fr=F,— {0},by x (4]
kth power of X € ﬁ‘, with respect to the convolution prdduét and by & the trivial character. We

set €(0) =1and x(0) =0 for-x + ¢.
‘The next is our key Lemma.

Lemma. Let £> 1 be the order of x € 1/‘\‘, let n be a prime number with (n, q) =1 and

let ¢ and s be natural numbers with n° = s mod 0. Then

n— 5

‘x_“(n) = (jg) 2" (1) mod # where j = x"'(— l)x“:_”(l-).

Proof. We have the next equation

2= Sr@u)” = 32" (@)

aek, acF,
=x ") DD thea = 2T (0) X"

a€ K,
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= x'”‘(n)x‘ mod 7.
On the other hand, using X * #uo = X and x * ¢ = 0, we have the next by [3, Lemma 2 (2)].
™ = ') [%]*xm- = Glqu — &) =TT %z - (jq')%xm
where j = x (— Dx"* 7 (1). Thus we 6btain |
x7°(n) = ()" 2"(1) mod =.

The next is a specialization of Lemma.

Corollary. Let £ > 1 be the order of X € F,, let D be a prime number with (p, q) = 1 and
p=1mod & Then

27 () = ()T mod p where j = 2 (— D2 @).

Theorem 1 (Quadratic reciprocity). Let p and q be distinct odd primes in Z. Then

q=1
2

%) = 1@ (- DT

where X, € ﬁ‘q and X, € F} are of the order 2.

Proof. It follow from Corollary that

%) = (u(—1)g) T mod p.

Using the next equation, we have the assertion.

(=1 = (=D and ¢"7 = x(g) mod p.

Proposition 1. Let O be the principal ideal ring of all integers in a quadratic field, let =
be prime in O and let x. be a character of order £ > 2 of a finite field O/zO with N (z) elements

such that

N (x) —1
la) =a * modnr

where N means the norm. Then we have
(1) If = = q is rational and ¢ = — 1 mod ¥4, then x,(a) = 1 for rational integers a.

(2) If » is complex, then x(1) and = are associates.
Proof. (1): It is easy see that x,(a) is real and so x,(a) = 1. Thus we have the assertion

from the next.

X(a) = QT = (a"—l)qTH =1 mod gq.
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(2): Since N (x) = q is prime and N (xf”(l)) = ¢, we have 22 is prime.
We can see the next from 2 wer,a =0 for k<qg — 1.

x3(1) = ZX.(a)x,(l —a) = Zaj%(l — Zz)i‘:l_.E 0 mod =..

a€eF a€F

Thus we have the assertion.

Theorem 2 (Cubic reciprocity). Let n and A be primary primes in Z[w] with Nz, NAL +
3 and Nn+ N, where w is the primitive 3rd root of 1, and N means the norm. Then we have

X)) = ta(x)
where X. and X are the cubic residue characters modulo = and modulo A, respectively.

Proof. In virtue of Proposition 1, we may assume r is complex and we have
7= x(— 1) x21) and = are associates. We set N (z) = ¢ =1 mod3. We can see from the

next by [3, Lemma 2] that j = 2 mod 3 and j is primary.
j(quw — &) = 2= the = ¢ — w mod 3.
. o a€Fy :

Hence we have 7 = z. _ .
In case A = p is rational, namely, A =p=2 mod 3, setting n = p, =3, e=2,and s =

1 in Lemma, we have x, (p) = (71:(1)!"_—l mod p and so -
X)) = x(ng) = %2 0(q) = xp(rz).
In case A is complex, namely, N (1) = p = 1 mod 3, using Corollary7 we have
(@) = (z)"7 mod p.
Hence we obtain |

x. ' (p) = x(x) 2 (q), similarly, x, '(gq) = x,(p),g,(i).

Thus we have -

a(x) =270 = 27 O 2.0 2 (1) = 2.(1).

Theorem 3 (Biquadratic reciprocity). Let = and A be }elatively pn’nie and primary primes
in Z[i] where i = /— 1. Then
‘ N(x)—1 N)-1
Q) =) (—1) ¢ ‘

where X. and X are the biquadratic residue charvacters modulo = and modulo A, respectively.

Proof. In virtue of Proposition 1, we may assume = is complex and we have xX(1) and



96 , K. MOTOSE

= are associates. We set N (x) = g=1mod4, =xandj = x,( 1 251).
"We obtain the next from [3, Lemma 2].
jlgw — &) = = (e*2)? = G2 W ™
= 23D (— 1) (g — &) = D) (g — ).

Thus j = 2(1)? and =* are associates. On the other hand, We obtain

= Sr@u)’ =72 Cr2au) =727 mod 2.
ac€F, a€F,

Using the above equation, we have

2

J(qu — &) = x[:’— @) = 2" = quy — & mod 4.
Thus 7 = 1 mod 4, namely, 7 is primary. Since j and #’ are associates, we have j = x".
In case A is complex, namely, N (1) = p = 1 mod 4, then using Corollary, we have x. ' (p)
= (ﬁzq)L‘_-mod p and so
%) = (2 = 2 (2D = 0 (D xln) = ().
In case A is rational, namely,ﬁ A=p=3mod4, thensettingn =p, =4, ¢e=1and s =

3 in Lemma, we have from z” = # mod p that

Ca(—p) = (- l)x.‘s(_p) = 2(— D (£ 2

PAE

= (2'7) = = ( 37:)':31 =x % = x(x) mod p.

From here on we proceed 'exactly as in- [1, pp. 126-127] to the desired conclusion.

In the remainder of this paper, we shall state Lenstra’s primality test (see [2]).

Proposition 2. Assume n s prime.
8 Thereexzstscwzthc B = — 1 mod n.
(2) Let x, € F, be of order p where p | ¢ — 1 and (pg, n) = 1. Then we have

Gq) S = X (%) mod n where j = x,(— l)xf’—” (1).

Proof.
(1) It is easy to see the assertion for a primitive root ¢ of =.
(2) We set s =1, e=p—1, 2=p in Lemma. Then es = — 1 mod £ and

(]'q)"—»’:-—1 = (ig)" " = 2,°(n). = (n) mod n.

Theorem 4 (Lenstra). Let n be an odd integer and let v be a prime divisor of n Let
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T be a finite set consisting of 2 and odd primes p satisfying (n, p) = 1 and n*~' # 1 mod p>.
We set t = Il yerp. Let S be the set of primes q satisfying (n, q9) =1 and (¢ —1) | t. We set
s =l qesq. We assume there exists an integer ¢ such that c.L’i = — 1 mod »n, and

(q) = = X.(m) rhod n, where j = xq(¥ Dx? 0, foreveryp € T, q € SI and x, € F, with

order b. Then we have r = n' mod s for some 1<{t.

Proof. Weset n”™ —1= p* 8 with (£ p) = 1.Incase p #+ 2, k£ = 1 by the assumption. In
case p = 2, we can see 2" is a divisor of » — 1 since (¢')* = — 1 mod . In each case, p" is
a divisor of ' — 1. There exists an integer x with £x =1 mod p. Weset 6 = fx and a =

#-1 p—1

mx, where m =T >F L Then we have —'——p—_——l— b»:% a with b =1 mod p. -
Thus we have for x, € I/'“: with order p.

rte-1

(1) = 2= G 7 = (Gg " = x(n)* mod 7.

By virtue of Chinese remainder theorem, there exists { with 7 = ¢ mod p for every p and

a. Thus % (7) = x(n)’ = x,(n’) for every character x, of F,, Hence » = ' mod ¢ for every

g€ Sand » = »n' mod s.
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