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ON VALUES OF CYCLOTOMIC POLYNOMIALS. V!
Kaoru MOTOSE

In this paper, using properties of cyclotomic polynomial, we shall give
a new proof on some fundamental results in finite fields, a new method
of factorization of a number, and a suggestion about new cyclic codes.
Cyclotomic polynomials ®,,(x) of order n are defined by

(kmn)=1

where (, = cos(%*) + v/—1sin(%*) and the .product is extended over nat-
ural numbers k£ which are relatively prime to n with 1 < k£ < n.
The character p represents a prime. All Latin characters mean natural

numbers.

1. Basic results.

In this section, we shall give some basic results on ®,(x). First, we
give a theorem about the order of an element in a commutative ring R of
positive characteristic. '

Theorem 1. Let R be a commutative ring of characteristic £ > 0,
namely, containing a prime ring Z/¢Z. Assume ®,(a) =0 for a € R.
Then n = £¢|a|, where |a|, means the order of a and e > 0.

Proof. Since ®,(z) divides 2™ — 1, we have o™ = 1. Hence |a], is
a divisor of n and so we can write n = #¢|al|, - t where ¢ does not di-
vide t. We set s = ¢¢|a|, and assume ¢ > 1. Then o®* = 1 and noting
$,(z)9(z) = &=L = (2°)F 1+ -+ + (2°)? + 2° + 1 for some g(z) € Z[z],

we have a contradiction that £ divides ¢ from the next equation
0=2>a,(a)g(a) = () 1+ (@) 2+ - -+ (@2 +a’+1=t.

Example 1. In this theorem, it is an important case such that ¢ is
prime and R = F. Since ®13(2) = 3 - 19, we have 18 = 32 - |2|3 = [2|1o.
For the numbers 18 and 2, we can find a prime 19 with 18 = |2.

1This paper was financially supported by the Grant in-Aid for Scientific Research
from Japan Society for the Promotion of Science (Subject No. 1164003).
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From this result, we can prove a special case of Dirichlet theorem with
respect to arithmetic progressions, namely, the set A = {ns+ 1| s =
1,2,--- } contains infinite primes. Setting pg = 1, let px be a prime
divisor of ®,, n(pk-1n) for k = 1,2,--- and set Ry = Z/pxZ. Then it
follows from the above theorem that p € A for k=1,2,---.

- We have an easy estimation for values of cyclotomic polynomials (see
also [1, Lemma 1}).

Lemma 1. (a+ 1)*™ > ®,(a) > (a — 1)*™ forn > 2,a > 2 where
©(n) is the number of positive integers k < n with (k,n) = 1.

Proof. 1t is trivial that ®,(a) > 0 for a > 1 from the formula
®n(a) = [J(a* — D@
d|

where p is Mobius function. Thus we have for a > 1

(@)= I le—Gil

1<k<n,(kn)=1

Our result follows from drawing the unit circle and two concentric circles
with the same centre (a,0) and distinct radiuses a — 1,a + 1.

Example 2. (a +1)? > ®¢(a) =a?—a+1> (a—1)2for a > 2.

Lemma 2 follows from the above lemma and it is necessary for Bang'’s
theorem. For the numbers 18 and 2, we can find a prime 19 with 18 =
|2]10. But for number 6 and 2, we cannot find such a prime because
®6(2) = 3. Lemma 2 or Corollary 1 shows that this is the only exceptional
case in Theorem 2.

Lemma 2. Assume that a prime p is a divisor of n and p = ®,(a)
forn>2 and a > 2. Then we have n =6 and a = 2.

Proof. If a > 3, then we obtain a contradiction p > 2P~! from the
next inequality

p = ®,(a) > (a—1)¥™ > 2¢(M > op-1

"Thus we have a = 2 and p is odd because 2" = 1 mod p. If e > 2 where
n = pm and m = |2|, > 1, then p = &,(2) = &, (2* ') and 2°"" > 4.
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- We have the same contradiction as the above. Thus we have n = p|2|,
and p > 2. Moreover, we have 3p + 1 > 2P from the next inequality

®,,(2P) 2P — 1\¥(m) or 1
e = >
P = pm(2) B, (2) ( 2+ 1 ) =73

Thus p = 3 and we obtain an exceptional case n = 3|2|3 = 6.
The next corollary follows from the above lemma.

Corollary 1. If ®,(a) is a divisor of n forn > 3 and a > 2, then we
have n =6 and a = 2.

Proof. If p and ¢ are prime divisors of ®,(a), then p and ¢ are the
maximal prime divisor of n by Theorem 1 and little Fermat theorem.
Hence we'have p = ¢ and ®,(a) is a power of a prime p. On the other
hand, we set b =a?. Then b= lmodpincase p > 2 and b=1mod 4 in
case p = 2 because a is odd and n = 2¢ > 4 from Theorem 1. In any case,

®,(b) = =L has a divisor p but has not a divisor p?. Thus ®,(a) = p
because ®,(a) is a divisor of ﬁ;_;f?ll = p(ag) = ®,(b). Hence our result

follows from Lemma 2.

The following theorem is a basic result about value of cyclotomic poly-
nomials

Theorem 2 (Bang). Ifn > 3,a > 2 and (n,a) # (6,2), then there
erists a prime p with n = |a,.

Proof. There exists a prime divisor p of ®,(a) since ®,(a) > 1. We
may assume from Theorem 1 that p is a divisor of n and p is the maximal
divisor of n. Hence, p is the only prime divisor of ®,(a), equivalently,
®,,(a) is a power of p. Hence ®,(a) = p by the same method as in Corol-
lary 1. We have our result from Lemma 2.

2. Some fundamental resﬁlts on finite fields.

The next proposition shows that the multiplicative group of a finite
field is cyclic.

Proposition 1. Let G be a finite subgroup of the multiplicative group
of a field K. Then G is cyclic.
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Proof. We set m = |G|. Then G is contained in the set of roots of
z™ — 1 in K which has at most m elements. Thus, we obtain 2™ — 1 =
[Toce(z — a). Hence, ®,,(z) has a root § € G since ®,,(x) divides z™ — 1.
If K is of characteristic p > 0, then p is not a divisor of m because 2™ — 1
has no multiple roots, and so m = |3|, by Theorem 1. If K is of charac-
teristic zero, then our assertion is trivial.

The next theorem is well known. However, it is very fundamental for
cyclotomic polynomials and we shall show this for completeness.

Theorem 3. Let p be a prime and let ¢ be a power of a prime p.
If p is not divisor of n, then ®,(z) € F,[z] is the product of irreducible
polynomials of the same degree |q|,.

Proof. Let f(z) be an arbitrary irreducible factor of ®,(z) € F,|z]
and let ¢ be a root of f(z). Then ¢ is a root of ®,(z). Thus n = |{|, by
Theorem 1 and so we may assume ¢ € F' 4, from Proposition 1. Since
F,(¢) = F e 1) is a subfield of F a1, deg f(z) is a divisor of |¢|,. On
the other hand |g|, is a divisor of deg f(x) because ¢%°8f(®*) = 1 mod n by
¢ € Fy(C)" = Fiagsy- Thus we have deg f(z) = |gln

Concerning factorizations of cyclotomic polynomials modulo a prime,
we should be use Berlekamp and McEliece’s algorithm, and should pay
attention to results of G. Stein [see 3.

Example 3. If follows from 4 = |2|;5 that ®;5(z) mod 2 = 28 + 27 +
4tttz +1=(*+22+ D(@*+z4+1).

We shall give an alternative proof of the next well-known theorem.
This means that there exist finite fields of arbitrary prime power orders.

Proposition 2. Let p be a prime and let q be a power of p. For an
arbitrary n, There exists an irreducible polynomial of degree n in F,[z].

Proof 1. Tt follows from n = |g|;n-1 that ®;n_(z) € F,lz] has an
irreducible factor of degree n.

Proof 2. In case n > 3 and (n, q) # (6,2), then we can find a (prime)
divisor r of ®,(q) with n = |¢|,. Hence ®,(z) € F,[z] has an irreducible

Q5



factor of degree n. In case n = 2, ®,41(x) € Fylz] has an irreducible
factor of degree 2 because 2 = |¢|,+1. In case n = 6 and ¢ = 2, we obtain
Pg(z) = ®3(23) = 28 + 23 + 1 mod 2 is irreducible from 6 = |2[o.

In this proposition, the smallest prime divisor r of ®,(q) with r /n
is best. Unfortunately, if we can not find a proper divisor, then we set

r = ®,(q).

Example 4. Proof 1 is very simple and it is practical to find a prim-
itive polynomial. For example, ®3¢_;(z) = ®15(z) mod 2 = (z* + 23 +
1)(z* + z + 1) (see Example 3). These polynomial are primitive polyno-
mials of order 2% — 1 = 15. The class of z is a generator of Fys. However,
if we would like to find an irreducible polynomial of degree n, Proof 2 is
very useful. For example, ®5(z) mod 2 = z*+z3+2%+z+1 is irreducible
because 4 = |2|5 by $4(2) = 5.

3. A method of a factorization of a number

Let n be a number, let m be the product of distinct prime divisors of
n, let p be a fixed prime divisor of m and let m’ = %. We can see easily

- the next equation

®n(z) = Prm(z™) and P (z) = [ ®p(z?)H(0).
djm/
The above equation and next lemma show us that factorizations of cy-
clotomic numbers ®,(a), especially ®,(a) of a prime order p are essential
in factorizations of numbers.

Proposition 3. For a natural number n, let a and m be natural num-
bers such that (am,n) =1 and a™ =1 mod n. Then n = [1y,,(n, Pa(a)),
where (s,t) means the greatest common divisor of two numbers s and t.

Proof. We set sq = (n,®4(a)), where d is a divisor of m. If p is a
common prime divisor of sy and sy, then d = |a|, = d' from Theorem 1
because p is not a divisor of both d and d’. Thus we can see (sq4, sq¢) = 1
for distinct divisors d, d’ of m. Hence we have

n=(n,a" - 1) = (n, [] ®a(a)) = [[(n, Pu(a)).

dlm dlm
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Example 5. Proposition 3 can be used in factorization of small num-
bers. But a direct application is not so good because it is difficult to com-
pute m for numbers n and a. Considering that (n, ®4(a)) is a divisor of
(n,a?—1), my rough program in Appendix was constructed. The essential
part of this program is to compute (n, a®—1) from d = [log(n+1)/ log a]+1
to an integer d = ¢ at the end of factorizations of a number n.

By using this, a natural number is not factorized completely into prime
factors and its factorization differs by a base a. For example,
in case a = 7, we have n = 12345678987654321 = 3 * 3 % 9 % 37 * 37 *
333667 * 333667 for ¢ = 37074

and
in case a = 11, we have n = 12345678987654321 = 3 * 9 * 111 * 37 *

333667 * 333667 for £ = 24716.
An another example n = 73271718587 = 201281 * 364027 for a = 5 and

¢ =121342.

Lemma 3. Let n be a divisor of ®,,(a) and (m,n) = 1. If m > /n,
then n is prime. "

Proof. Let p be a minimum prime divisor of n. Then p is a divisor of
®,,(a) and so m = |a|, is a divisor of p — 1. Thus n = p is prime because

p> lal, =m > V/n.

Example 6. ®g(6) = ®5(2) = 31 and 6 > /31 implies that 31 is
prime by the above lemma but /31 > 5 shows that the converse of the
above lemma does not hold.

Pocklington’s theorem is easily proved using the values of cyclotomic
polynomials.

Proposition 4 (Pocklington). Let n, f and r be natural numbers
such that n — 1 = fr with (f,r) = 1, where the factorization of f is well
known, every divisor £ of r is larger than c and fc > \/n. If there exists
a number a > 1 such that

(1) a® ' =1 mod n and (2) (anT_1 -1,n)=1
for every prime divisor q of f, then n is prime.
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Proof. It follows from the condition (2) that n = []y(n, ®a(a™)) =
(n,®s(a")) and so n is a divisor of ®(a”). On the other hand n =
[1g-(n, @e(al)). Let p be the smallest divisor of n. Then f = |a7|, is
a divisor of p — 1 and ¢ = |af|, is a divisor of p — 1 for some £. Thus f¢
is a divisor of p—1 and p > f£ > fc > \/n.

Example 7. We can see n = $,7(976) is prime from this theorem and
program by Yuji Kida written in UBASIC. His program found numbers
a=2,f=2*x17%61 %73 %977 % 7177 * 12433 x 13049, and ¢ = 131071
and showed n = ®,7(976) is prime. '

4. A suggestion about cyclic codes

In this section, we consider cyclic codes like a Golay code. A generator
polynomial of the Golay code is one of two factors in ®o3(z) mod 2. We
choose one of two factors in cyclotomic polynomials over finite fields and
we use this as generator polynomials of cyclic codes. For this purpose,
we should find a pair (¢, 7) such that r is a power of a prime and £ is a
divisor of @, (7). If we find such a pair, $,(x) over F', is factorized into
two irreducible polynomials.

Example 8. We find a pair (¢, r) satisfying the above conditions where .
£ <50, r <10.

r=2 £="17,17, 23, 41, 47
r=3; £=11, 23, 37, 47
r=4; £=3,5 7 11, 13, 19, 23, 29, 37, 47
r=5 =4 11, 19, 21, 29, 41
r=7 £=236,8, 31,47
r=8; £=17, 23, 41, 47
r=9; £=45,7 10, 11, 17, 19, 23, 29, 31, 34, 43, 47

A special case of our consideration can be written in the quadratic
residues. This is showed in Lemma 4. We shall represent Legendre sym-

bol by ().

Lemma 4. Let p be an odd prime and let q,r be natural numbers such
that p=2q+1>r > 1. Then clearly |r|, > 1 and

98



(1) (:—)) =1 if and only if |r|, is a divisor of q.

(2) If q,r are odd primes, then (:rﬂ) =1 if and only if |r|, = q.
- In particular, if ¢ = —1 mod r, then |r|, = q.

(3) If q is an odd prime, then ¢ = —1 mod 4 if and only if |2|, = q.

Proof. The assertion (1) follows from r? = r’s = (g) mod p.
The assertion (2) is clear from

()

S (2)- o (2)- ()

The (3) follows from that (1) and the next equation

(1%) = ()% = (P = ().

It follows from this lemma that for a prime r, the cyclotomic poly-
nomial ®,(x) mod r factorizes two irreducible polynomials f(z), g(z) of
same degree ¢. This fact suggests that (p,q + 1,d) code over F, with
generator polynomial g(x) of degree ¢ where ¢ + 1 is the dimension of
code subspace C of the vector space F?, and d is the minimum distance

of C.
Example 9.
g p r d gz
3 7 23 24+z+1, 3+22+1
) 11 3 5 $5—$3+_’1;2—_’1;—1’ 1;5_*_:1:4_1;3_{__1’.2_1
11 23 2 7 W +2%+a"+25+25+2+1
11 23 2 7 W 4204286 445424 42241
23 47 2 11 zB 4+ 719 4 18 4 g4 4 13 4 212 4 410 4 29
+z"+ 28 S+ 22441
23 47 2 11 22 +22 + 22 42204 2" + 217 4 216 4 o
+$13+x11+$10+ $9+$5+$4+1
5. Appendix.

The following program is stated in Eample 5.
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10 print=print+"FF"
20 input "input ‘a number ";N
30 input "input a base ";A

40 T=0:L=0
50 print N
60 print " = ";

70  Na=gcd(N,A)
80 if Na>1 then print Na;"*";:inc T
90  :N=N\Na:if N=1 then goto 260 else goto 70
100  endif
110 N2=N:L=int (log(N+1)/log(A))+1
120 T=0
130  loop
140  Nl=gcd(N,L)
150 if N1>1 then print N1;"*";:inc T
160  :N=N\N1:if N=1 then goto 240
170  endif
180  Al=modpow(A,L,N)-1
190 Gal=gcd(N,Al)
200 if Gal>1 then print Gal;"*";:inc T
210  :N=N\Gal:if N=1 then goto 240

220 inc L

230 endloop

240 print:print "a = ";A;", L = ";L
250 :if T=1 then N=N2:goto 30

260 end

Concerning computations in this paper, we used some programs writ-
ten in UBASIC and a personal computer IBM Intellistation E Pro. The |
program language UBASIC was designed by Professor Yuji Kida, Rikkyo
University, Tokyo, Japan.
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