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On Gauss sums and Vandermonde matrices

Kaoru Motose

We set ( = e5 and w = e¥ for an odd prime p. Let x be a linear
character of the multiplicative group F* of a prime field F' of charac-
teristic p. We consider Gauss sums g(x) = Yier (*x(t), the following
Vandermonde matrices A and character vectors x defined by

¢ e x(1)
L e e g | x@
o : : : : X = :
Cp;l =D)LL (D)7 x(p—1)

The purpose of this paper is to show that discriminant |A|? of a cy-
clotomic polynomial zP~! + zP~2 + ... + z + 1 are essential in the proof
of quadratic reciprocity, and determinant |A| and trace of A are closely
related to the quadratic Gauss sums. We shall begin from the following
easy and important result.

Lemma 1.

1. Ax = g(x)X-

2. A2 =pJ — K and AA = pI — K where I is the identity matrix, A
is the complex conjugate of A,

0 1 1 ... 1
J= and K= |1 1
1 0 1 1

3. A%2x = px(—1)x and AAx = px. Hence, we obtain the usual
formulas g(x)g(x) = x(—1)p and |g(x)[* = p.

/70



Proof.
1. We have the assertion from x(k)(X7-; ¢¥x(t)) = g(x).

2. Since ¥~ (¥ = —1 or p — 1 according as k % 0 mod p or
k = 0 mod p, we can see our equations.

3. The equations Kx = 0 and Jx = x(—1)x follow from
Yoters x(t) = 0 and x(—1)x(p — k) = x(k), respectively. Thus we have
our assertions.

Remark.

1. Lemma 1 can be generalized for an odd integer p and a Dirichlet
character y with the conductor p.

2. The value |A|? is the discriminant of a cyclotomic polynomial
2Pl 4 ...+ + 1 and It plays an important role in Theorem 1.

3. We should remark that trace of A is g(n)—1. This fact is well known
but it will be proved in the proof of Theorem 2.

- The proof 1 in Theorem 1 is only depend on |A|?.

Theorem 1 (Quadratic reciprocity). Let p and q be distinct odd
primes and let (g) be a Legendre symbol. Then

(;2)) — (-1)%F% (g) .

Proof 1.
1 -1 - p—1

AP =4 =g —K|=| LT Ty
PR

Hence we have the next equation since p — 2 is odd.

AP = A = ()T T = ()T (§) mod g.
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Let A®) = (¢*%) be the matrix of k-th powers of all entries in A, let 7 be a
primitive root of p, and let o, be a cyclic odd permutation (1, ¢y, ..., cp—2)
where ¢; = ¥ mod p. Then we have

|AD| = sgn(o)|A] = —|A.

Thus, setting r* = ¢ mod p, we can see

4 = 149] = 14| = (1714 = (£ 14] mod aZ(()

We product |A| on both sides of the above equation and divide by the
integer |A|?> #Z 0 mod ¢q. Then we have

(E’) = A" = (-1)FF (l’) mod g.

p q
Proof 2. We set n(a) = (’9’) . We can see from A%n = n(—1)pn that
AT = (40 = (=0T = ()7 () 0 mod am

We have from the next equation that 7(¢) = g(n)?~! mod ¢ since g(n)? =
9(mg(m) =n(-1)p # 0 mod g.

n(g)am)? = n(q) (3 ¢n(t))? = n(g) 3 ¢Tn(t) = g(n) mod gZ[¢].

teF teF

Hence it follows from An = g(n)n that
ATIn = g(n)*'n = n(gn = (%) n mod ¢n.

Lemma 2. We set w = e%. Then we have

1. J[ o= (-D"=

p>s>t>1

= nk., Pl ork
2. {J[2sin(—)}? = [[2sin(—) =p

E=0m) _ =2

3. JI sin(

p>s>t>1 p
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Proof.
1. First, we shall show that

X s = pz_;z;(s—i—t)—Z{s(s——l 3(5_1)}
_ §”223 sy PP ;(p—2)

Thus we have the next equation since p is odd.

> Wt =W (1) = ()

p>s>t>1
2. Setting w = e? andr=1in2? 1 +27 2 +..-+1= _i(x —¢*)

we have the next equation because sin( @) = sin(%k).

p = ﬁ(l—ck>:"f[<1—w2'=>=:I:11w’°(w—'°—wk)

P(P 1)

- & 1)’*1H(w -'°>=<—1)"-5—‘le2z'sin<%)

pl k
= L1 ] 2sin(=
k=1

pl 7k ’z k
= ] 2sin(—) = (] 2sin(—))?
k=1 p k=1 p
3. Noting sin(@) = sin(’%‘), we can see from the assertion 2 that

(s—t)r

II  2sin(

p>s>t>1

= sin(Z)} - sinw... sin( Ty .
= {2 (p)} {2sin( p )2 (p)}

)

i 2_7r sinz . sinw--- sinE .
{2sm(p)2 (p)} {2sin( p )2 (p)}

o 23 o cin(” _Bflr o
{2sin( 5 JERE sm(;)}-{2sm( )---231n(;)}-

p—1

{283in( 2p )---ZSin(;)}
— p%\/;,
4
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Theorem 2. Let n be quadratic character of the multiplicative group
F* of a prime field F' of characteristic p. Then we have

g(n) = ZC’“2 %3,

k=0

Proof. Let €,1, x1,X1,- .- » Xe=3, Xezs be the all distinct linear charac-
ters of F** where € is the trivial character and n is the quadratic character.
Then Ae = —e, An = g(n)n and for a linear character x with x # ¥,

0 g(i))
gbx) O

by Ax = g(x)X. Considering the canonical form X 1AX by the character
table X = (67 n X1,71, st X%) Yr;_fi), we obtain

Mm®=ux(

i ,
ZC"Q = traceof A=—1+g(n) and

3

Al = —g(n)H( 90a)9(%x)) ——g(n)H( xx(—1)p)

= —(-1% (W”*%§¥wn
= (“)F ()T T () = T g )
— i g(n)
On the other hand, we have from the definition of A and Lemma 2.
Al = CC2...Cp—1H(Cs_Ct): H(wzs_ t

p(p r(p—1)

s>t s>t
~ e —t
= Lot -m ) = (7 [Taron 20T
s>t s>t
1)(p—2) s—t -~ —
T I[ 2sin ( » )7() = 2(p—22PP2—3\/15
s>t

Hence we have our assertion from

4] = "5

2 p:2 \/5

2_1 p-3
T p'E g(n) =
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