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Finite fields are very useful not only in pure mathematics but also in technology. For example,
coding theory, block design, linear modular system, etc. We have a natural question: Are there
algebraic systems like finite fields ?

Wedderburn proved that there are no finite non-commutative fields, namely, finite division
rings are fields. On the other hand, Dickson found some near fields named Dickson near fields,
namely, a class of non-commutative fields without one side distributive law.

Finite near fields was classified by H. Zassenhous (see [1] or [2]). In fact, these are Dickson
near fields and 7 exceptional near fields.

In this paper, we shall give mainly improvements of his proof to automorphisms of finite
Dickson near fields (see [2]).

t

| 1. Dickson pairs

The next lemma was fdund in the text book of elementary number theory.
Lemma 1. Let a>1 be a natural number, let p be a prime and a=1 .mod p-
(1) I p#2, then p || <=}

(2) If p=2 and a=1 mod 4 then 2 || ‘:L__Tl

(3) If p=2 and a=3 mod 4 then 4 | ‘;’—__11
Proof. We can set a=pk+1. In case (1),

p
ar—1 p -
m= = E (pk) -1=p# 0 mod p2 and m=0 mod p.
£=1 (ﬁ) : ,

a—1
In case (2), 2| a+1. In case (3), 4 | a+1.

A Dickson pair is a foundation of finite Dickson near fields.

Definition. A Dickson pair (D-pair) (g, n) is consist of two natural numbers g and n satisfying
the next conditions _ |
(1) 9=pP° where p is prime. ,
(2) every prime factor of »n is a divisor of g—1.
(3) If 4=3 mod 4 then n# 0 mod 4
It is easy to see that if (g, n) is a D-pair and m is a divisor of n, then (g, m) is a D-pair. We
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70 K. MOTOSE

shall denote by |a|, the order of ¢ mod n

The following theorem is fundamental to construct finite Dickson near fields.

Theorem 1. Let q be a power of a przme and n>1. The following are equivalent.
1) (q, n) is a D-pair

(2) =0 mod n and =10 mod n for 1<k<n

3) n= |q|n(q—l)

(4) The next map v of Z/nZ is injective.

£ _
v:[modn—>q llmodn

Proof. (1) = (2): We set m=s°/ where s is a prime, q=1 mod s and (¢, s) =1. Then we
can see from the next two equatlons and Lemma 1 that s JE = 1‘, in case s is odd or in case s=

2 and g=1 mod 4, and s**' | 2= in case s=2 and 9=—1 mod 4.

=" '¢ ... 4+94+1=¢#0 mod s

g"—1_q'—1 ¢"=1  q*—1
9—-1 4g9—1 4q*—1 g1

Thus setting n=m, we can see 71:—_0 mod n by usmg the only conditions (1) and (2) in the

definition of a D-pair.
Assume ———0 mod n and s/ || n with f>1. Then f <e in case s is odd or in case s= =2 and
g=1 mod 4. In case s=2 and ¢=3 mod 4, we have f=1 by the condition (3) in the definition

of a D—pair, and m is even by the next equation.

O_qq 11 9" '+ ... +94+1=m mod 2.

Thus we obtain n is a divisor of both m and f—_"}.

(2) > (1): We can write n=n,n, where every prime divisor of n, divides §—1 and
(n,, 9—1) =1. Since (g, n,) satisfies the conditions (1) and (2) in the definition of a D—pair, using
the above, we obtain 4, =9"=1 mod m(9—1). ,

Assume 4;=1 mod n,. Then 9"*=1 mod n, and 4"°=1 mod n, (§—1). Thus ¢"*=1 mod
n(@—1) by (n,, n,(@—1))=1. By the assumption, nyn, =n<n,s and so n,<s. Hence n; is the
order of 4, mod n, by 9,;°=9"=1 mod n,. Thus n, is a divisor of (n,) by the Euler’ s theorem.
This means n,=1 and every prime divisor of n=n, divides 4—1. ' '

Assume that 4=3 mod 4 and n=2°¢ where ¢>2 and ¢ is odd. Since (g, ¢) is a D-pair,
we have £=1=0 mod ¢. Thus |

971 471 a'=1_4 4 .
9—1 ¢'—1 q-1

On the other hand, we have % Il =0 mod 2° from the equations
q

w2 A 20 2°-14 — :
q_ lzq—l_ql—l...qz’_“_land 1_150 mod 4.
9-1 49-1 4'-1 ¢ 1 971
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On Finite Dickson Near Fields 71

Thus we obtain the next contradiction and so e <1

q”—1

7-1

=0 mod n

2©@B) and (2)<(4) are easy to prove.

The next needs later for automorphisms of finite Dickson near fields.

Proposition -1. Let (g, n) be a D-pair. We set m:?% and t=32;. Then

L (n 0= 2 in case 9=—1 mod 4 and n=2n, where n, is odd
"V YU in another case

2.n=lqliif (g W+ 2)

Proof We may assume 9>3 since (g, n) is a D-pair. We set n=rn, where r is prime,
(ny, r)=1 and e>1.
Proof of 1: Assume r is odd. Then we have.

41
rell =—-
q—1
Thus ¢ is not divided by 7.
Assume r=2.
In case g=1 mod 4,
e ._1
2412
q—1
Thus ¢ is odd.
In case 4=—1 mod 4 and n=2n,, where n, is odd, we have 4"=—1 mod 4 and so
. qun__l qu___l
4|1@™+1) - =
¢ ) q9—1 q9—1

This means ¢ is even.

Proof of 2: Next we shall prove n= | q/|, if (é, n) # (3, 2). Noting that 4"=1 mod ¢, we can
set n=sk, k>2 for s= |q|,. Since 4°=1 mod ¢, we have '
q"—1
9—1

for some ¢. Assume ¢>2. Then we have a contradiction s>3°"" from the next.

n@—-1)=4¢-

2 (ql)h_l l s\ k-1 s Z(k’_ 1) s—1 -1
> : >E (@) ) > 5 3
*2ra-n o1 kg @ > =

Hence ¢ =1 and

n— q"—l
@ -1)@-1
We set r¢||n. In case r is odd or in case r=2 and 4=1 mod 4, we have r|| q;—__ll contrary to
ret! ln(‘I’—l):‘;‘T‘f. Thus 9=3 mod 4 and so n=2 since (g, n) is a D-pair. Therefore
2(d—1)=%=L and so 4=3.
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72 K. MOTOSE

2. Dickson near fields

We shall give the definition of finite Dickson near fields in the next theorem.

Theorem 2. Let (g n) be a D-pair, let F,- be a finite field of order q", let p : x — x? be
an automorphism of F,- and let @) be a generator of the multiplicative group F*. We define p.= p*
for aEF}, whereqq—_—l—lEs mod n for a=w@'. Then we can construct a Dickson near field D, by the

sum and the next new product o in F-. For a, bEF,,

ap.(b) for a+0
aObZ{
0 Jor a=0

Proof. First, we shall prove
Pas= PaPs for a, DEFT.

:'_ t’__l
We set a=q*, b=0" and L=} =s, =t mod n. Then we have

._Q"—l qr'__l , q.t’+t'_1
+tg° = + S = m
A A

Thus we obtain p.»= p.p, from the next equation.

s+t

Pach = Pap.t) = Pabs*= Pur+g«r=— P° = Pas
For a, bED,*, we can see

(aob) oc=(aoh) pas(c) =-(apa (B)) p(0s(c)) =ap.(bps(c)) =ao (boc)

It is easy to prove the associative law for a=0 or 5=0.

For a€D,?, we can see
ao (b+c)=ap.(b+c) =é(p.. ) + p.(c) Zﬁp.(b) +ap.(c) =aob+aoc
It is easy to prove the left distributive law for g=0. We can see also
10ga=a0Ol=a for aCD,.

Thus D,. is a finite near ring with the identity 1.
On the other hand a o b=ap.(d) #0 for a+0 and b+0.

It is easy to prove D,f is a group and D,. is a near field.
The next lemma is very useful.

Lemma 2. Let p be prime, let 49=P" and let @ be a generator of the multiplicative group F,*.
Then F,.=F,(0").

Proof. Let p’ be the order of F,(w”). Then fis a divisor of /n. Since F,(w") contains ¢ ",

w"?~Y=1. Hence p”—1 is a divisor of n(p/—1) and so
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On Finite Dickson Near Fields 73

n(p’—1) > p"—1=(p®”?+1) (p®"?—1) > n(p*"*—1)
Thus p/ > p¥” and 2 >—’}—". Hence f = /n.
The center of D,. is determined by the above lemma.
Proposition 2. F, is the center of D,..
Proof. Let { be an element in the center of D,.. Then
Lo (0)=Co0"=0"0l=0"0.-(D)=0"C.
Thus p(w™) =w" By Lemma 2, D,.:P;,(w")v and p;=1. Hence we obtain
L=Co (@=Lo0=000=wo,(D) =00 (D=0l

n_ LS - ’
Hence [ &€F,. On the other hand let @ € F, =<(uq¢Tl1 > . Then a=szl‘ and so p,=1. Thus
we obtain for b=¢?’ ’

boa=bps(a)=bp"(a) =ba*=ab=ap.(b) =aob.

It is easy to see q00=0=00¢g. Therefore we have the conclusion.
3. Near fields and Sharply 2-transitive groups

In this sectibn, finite near fields are nothing but sharply 2-transitive groups on a finite sets.
Let K be a near field, and let G={x — ax+b|aEK* bEK}. Then G is a permutation group
on K. Let u, v. be elements in G such that ' '

U, * x — x+a, va 1 x — ax
Then ¢ =u,=v,;: x — x is the identity map. We set the subgroups
U={u.|lacK}, V={v.|lack*}

Then G=UV, G U, UNV={¢}. Itis easy to see that U consist of uy and fixed point-free permutations
and ¥=G,+# {¢}. Since G is transitive on K and G, is transitive on K*, we can see G is 2-transitive
on K. Gy#{¢} and G.,={¢} for a+b. '

Conversely, we assume that G is 2—transitivé on a finite set .
K={0,1,..., n—1}, Gy#{¢e} and G.,={¢} for a#bEK. Then we can set a structure of a

near field in a set K by the following method. |
It is easy to see that for € K*=K\{0}, there exists only one v, € V=G, with v,(1) =a. We

define sum and product of elements g, » in X by the above v, and the next u, defined in Lemma 3.

a+b :=u,(a), ab :=v.(b) for a+0 and 0b :=0
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74 - K. MOTOSE

The fbllowing lemma shows some properties of the above group G.

Lemma 3. Let G be a sharply 2-transitive group on K={0, 1,..., n—1} and let U be the
set consisting of the identity and fixed point-free permutations. Then

(1) U is a normal subgroup of G.
(2) Uis elementary abelian.

Proof (1) Itis easy to see pUp~1=U for all p&EG. First we shall prove, for k&EK*, there
exists only one u&U with u(0) =k, equivalently, the next map y from U to K is bijective.

y :u — u(0)

For 7 €U— {1}, there exists pEG, with p (7 (0)) =k since 7 (0) #0 and G, is transitive on K*.
We set ,=p 7 p~'. Then wEU and :(0)=k. Thus p is surjective. It follows from definition

of G and U that
v=6—U G.-1), (G.-1)NG—1)=0 for ab

a€EK
Using |G| = | G.a%| = |G.| K|, we can see |U|= |K|. Hence v is injective.
Assume ¢ 7 has a fixed point ¢ for ¢, 7 €U. Then we may assume ¢ =0 since G is transitive
on K. Thus 71 =¢"! follows from g~ '€U, 7 (0) =¢~!(0) and the above observation. This means

0 TEU. Hence U is a normal subgroup of G. N
(2) Let p be a prime factor of | U| and let 7 be an element of order p in the center of p-Sylow

subgroup of U. We set g €U~—{1}. Then there exists p EG, with p (7 (0)) =¢ (0). Thus p7p~!
=g follows from prp '&€U and prp~'(0)=¢ (0). Thus the order of every element in' U is
porl and so ¢ is in the center of a p-group U. Thus U is elementary abelian.

The next shows K is a near field.
Theorem 3. X is a near field by the above definition of sum and product.
Proof. First we shall prove the next equations:

Ualdy = Up+4, VaVs = Vab VattsVa ' =

These follow from

uats (0) =1a (b) =b+a=us+.(0), vavs (1) =va(b) =ab=va (1), aﬁd
vatsva~ ! (0) =vauy (0) =v. (b) =ab=u.,(0)

Next we shall prove the next from the first equation and U is commutative.

a+ (b+c) =up+(a) =ucs (a) =u.(a+b) = (a+b) +c
a+b=ua+,(0) =usta (0) =11 (0) =1, (b) =b+a
a+0=0+a=u.(0) =a

atu ' (0)=u."'(0) +a=u.(u."' (0)) =¢ (0) =0

36



On Finite Dickson Near Fields 75

We shall prove the next from the second equation for ¢, b&K*. For a=0 or b=0, it is easy to
prove our equations.

a (be) =va(be) =va(s () ) =vavs (c) =vas (c) = (ab)c

al=v,(1)=a=¢ (@) =v,(a) =1la

av. ' () =vs(v 1 (1)) =¢ (D) =1
For a€K*, v, ! (1) #0 follows from v,(0) =0+1 and we can see v,y =va ! by vt (1) =va 1 ().
Thus we have '

vo ' (Da=w., 10 (@ =v. (@) =v. 1 ((1) =1
The next follows from the third equation
a(b+c) =vi(b+c) =v.(u (b)) =varva ! (va (b)) =utac (ab) =ab+ac -

" Thus K is a near field by our deﬁniti/on of sum and product.
4. Structure of the multiplicative group of a Dickson near field
The next gives the structure of the multiplicative group of a Dickson near field.

Theorem 4. Let D,. be a Dickson near field. Then Dy is meta-cyclic with generators b= @,
a= " satisfying the next relations in D;* .
a"=1, b"=a' bab~'=a"', where m= g°—1 , =1
n 9—1
Proof. It follows from py= 0:p,that y : x — p,is a homomorphism from D,* to the automorphism

group of F,. over F,. It is easy to see Ker y =<gag> and the factor group D,'/Ker y is generated

by the class of @.
. It is easy to see from aox=ax for xED,. that m is the order of a. The second equation
b"=a71 follows from the next
n times : : .
b"=WwOowO---0@W=a*1E€ <a> and so b" O x=b"x for x € D,.
ba=wo w'=wps(w)=0p (@) =0""=a%

m

We set G=D*=<a, bla™=1, b"=a" bab~!=a?>, where (g, n) is a D—pair, m=ff—land =527
The next proposition is important in Proposition 4.

Proposition 3. The subgroup <a'> is the center of G.
Proof- 1t follows from ‘Proposition 2 that E} is the center of G. Since the order of a' is

9—1, we have <a'>=Ff.
Let G=G/<a'> and let g be an automorphism of G. Then

G=<a,b | a'=1, b"=1, bab '=a'>
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76 K. MOTOSE
and § is an automorphism of G defined by § (x)= ¢ (x) for x&G.
The next needs for automorphisms of finite Dickson near fields

Proposition 4. We set

{az in case 9=—1 mod 4 and n=2n, where n, is odd \

a in another case

Then the subgroup <a,> is characteristic in G.

Proof. If (g, n)=(3, 2), then =2 and <a?> is the center of G. So we may assume (g,
n)# (3, 2). Let g be an automorphism of G and let g (a)= a*b*. Then it follows from the next \
that /&€ <a>. ‘ \

’__
1= ( akB l)lz ak'ZTTl Btl

Hence a = b'?ab~"*= a?’. Thus 9'°=1 mod ¢ and hence by Proposition 1, 1¢ =0 mod n.
In case (n, ¥) =1, we have ¢ =ng,. Thus

7@ =a(a)=a‘b’

‘—zk( En))a: ‘—zk

i

Hence we have ¢ (a) € <a>.
In case (n, t) =2, we have ¢, / =0 mod n, and ¢=n, ¢,, where t=2¢, and n=2n,. Thus

m =g (Fz 2) — (‘—Ikl_) i)zz at(x+q’) b= ak(l+9’) ( En)lo: ak(1+q')

Hence we have g (a?) € <a?> since 1+9* and ¢ are even.
5. Automorphisms of Dickson near fields

The next lemma needs later.
Lemma 4. If F,.#*F,(a,), then (g n)=(, 2).

Proof. It follows from Lemma 2 and setting of a, (see Proposition 4) that a,=a? n=2n,,

(F,(a,) : Fl=n, and m=t(9—1) is even. Since a,EF,(a,) and the order of a, is my=72

z, we

have mo is a divisor of 4™—1.

dny=2n=@"+1) q",;:l

>9"4+1>3"+1
It follows from these inequalities that n,=1 and 9=3, namely, (g n) = (3, 2).
The following theorem characterizes automorphisms of finite Dickson near fields.

Theorem 5. Assume (g )+ @3, 2). We set 9=P° where p is a prime and h= |p|.. Let D,
be a Dickson near field and let v : x — x” be an automorphism of F,-. Then ¢ is an automorphism
of D, if and only if g =y’ for some s=(0 mod h. -

Proof. Let g be an automorphism of D,.. We saw in Lemma 4 that F,.=F,(a,) where @
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On Finite Dickson Near Fields 77

is a generator of F;*, a=@" and a, was defined in Proposition 4. If f1 (x) is the minimum polynomial
of a, over F, then f(x) is also the minimum polynomial of ¢ (a,) over F, because a,, ¢ (a;) E<@">
by Proposition 4 and so a, oy=a,y, ¢ (a,) 0z=¢ (a,)z. Hence ¢ is an automorphism of F,. and

g = y° for some s.
On the other hand, there exists d with ¢ (d) =c for an arbitrary cEF,..

0 (@) pe(c) = 0 () pu(0(@)=0(w)00eld=0(wps(d))
= g(wod)=0(w) oo = o(w)pn.)(a(d))

= g (w) pow (©)
Therefore
Po= Po(a)

We set
q@’—1
9—1 A .
p(’) = pow=pe=p. Thus (P')'’=1'mod n. By Theorem 1, we have P’=1 mod n. Thus s=0

mod A.

Conversely, we assume that ¢ = y* for some s=0 mod . We set ¢c=* where @ is a generator
of F¥. Then ¢ (c)= @* and by the condition, we have p*k=k mod n since P'=1 mod n. Thus
. gen _ 1
s T =pt= k_q; 1
4Thus (p‘k)""k' mod n by Theorem 1 and so Po=pPP'=p¥=p, for all cEF*. Hence we have

for cEF*

EP_’modn

0(cod) = glcp.d))=0() 0 (p(@d)=0(c)0p(d)
= 0@ pa(d=0()pswo @
= g() oo

It is easy to see the equation ¢ (0od) =0 (0)(50.((1).
The next proposition provides the automorphism group of Dz

Proposition 5. The automorphism group Aut(Ds) of Ds is isomorphic to the symmetric group
S3 of degree 3.

Proof We set Fp=F;[x]/(x*+1) and ;= x is the class of x. Let 7, g be automorphisms
of the additive group of Dz defined by ‘ '

r(a+Bi) :=a—Bi o(a+pi) :=a+p+pi for g+ Pi€Ds
where o, BEF; and i*=—1. Then it is easy see

<o, Tl0’=1, t*=1, to7r '=0">2=S

37



78 . K. MOTOSE

We set ¢ ;=1—i b :=qw, a:
definition of Dz,
wtx if k is even

Ox—
wrex {wkx3 if £ is odd
It follows from Theorem 4 and a®=—1 that

DE=<a b|b*=a’=—1, bab=a>

= @’=i. ‘Then ¢ is a generator of Ff and we can see from the

If y is an automorphism of Dy, then p fixes all elements of F5 and so y is determined by

v () =A1+ni where 1, nE€FE. It is easy to see p+0. Thus | Aut(Ds) | <6.

automorphisms of D=, then we have the conclusion
Aut (D) =8,
First we shall prove that 7 is an automorphism éf Ds.
t@=1t@=—i=—q @) =1 (1—i)=1+i=ab

Noting  a*= (ab)’=b*=—1, we have |

L@=16F=—1 1®)7 @1 () =ab(—a)ab=—a=1 (@)
Next we shall prove that ¢ is an alitomorphism of D=r.

o0@=0@=1+i=p’ow=ab, 0 B)=0(—i)=—i=—a
Noting (ab)’*=a?’=—1 and —ba=ab, we have

0@@*=0W)?*=—1, gb)g(aog® =(—a)ab(—a)=ab=g¢ (a)
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