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1. Definitions

Cyclotomic polynomials are defined by

®,(z) = 'H (z — ¥ e s day B
(k,n)=1 .

where ¢, = cos( ) + V- lsm( ) and the product is
extended over na,tural numbers k Wthh are relatively prime

'tonmthlgkgn.
- Example.

Oi(z) =z -1, By(z) =z +1, B3(z) =2+ +1,
By(z) =22+1, &5(x) =2t +2°+ 2%+ 2+ 1,
$g(z) = 2 —z+ 1, .

M&ébius’ function W is also defined by

4

1 ifn=1,
0 if p? | n for a prime p,
(=1)" if n = pyps...p. where p; are all
- distinct primes.

p(n) =

gl



Example.

p(1) =1, p(2) =-1, p@B)=-1, p4) =0,
u(5) = —1,u(6) =1, ...

Fundamental properties

We can now state fundamental properties of
cyclotomic polynomials. o |
4 : | ~
1. 2" — 1 = [l4}» P4(x) where d runs through

positive divisors of n. Thus n = Yam p(d).

2. &,(z) € Z [z] and the leading coefficient
of &,(z) is 1.

3. ®n(z) = Ma(z? — 1)*@. Thus p(n) = Tap dp(3).

4. ®,(x) is irréducible in Qlz]. D )

1. This formula is equivalent to the definition of
cyclotomic polynomials.

2. It is easy to see from the above that &, (a)-is an integer

for an integer a. It is important for us.

3. This formula is useful for calculations of cyclotomic

polynomials. For example,

(z° = 1)(z - 1) :$3+1___$2;x+1
(B—D(@*-1) z+1

Dg(z) =

92



4. This is essential for Gauss’ theorem which give neces-
sary and sufficient condition that Jegular polygon can

be constructed by using gnly ruler and compass. Galois
groups of cyclotomic fields are determined from this.

We provide an estimation of values of cyclotomic

polynomials.

(Theorem 1. &,(x) are strictly increasing functions for
z >'2 and

a1 > @,(a) > a?™1  forn,a>2.

where ((n) is the degree of ®,(z) which is the number
of positive integers k < n with (k,n) = 1. | J
N A .

Example. &¢(z) = 2 —z+1is strictly increasing forz > 1
‘anda®>a?—a+1>afora>2. | |
Fermat’s little Theorem. If p is a prime and a is a posi-
tive integer with p [ a, then a? ! = 1 mod p.

Example. 3% =1mod 7.

If p is a prime and a is a positive mteger Wlth p f a, then
the least positive integer s such that a* = 1 mod p is called
the order of @ modulo p. We dendte the order of a modulo
p by |a|p. It is easy to show that |a|, is a divisor of m if

= 1 mod p.

23
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Example. We have |27 = 3 from
21 =2 mod 7, 22=4mod 7, 22 =1mod 7

Let q be a prime divisor of a Mersenne number 2P — 1 where
p is prime. Then p = |2|, since p is prime. Thus p is a
divisor of ¢ — 1 and g > p. This shows that there exist
infinitely many prime numbers. In fact, starting from 2
we have 3, 7, 127,.... In this argument, p = |2|, is most
important. We can generalized this to the next theorem

which is easy to prove, but powerfu] for us.
[Theorem. 2. If p | $n(a), then n = p°al,. j

Example. Since $15(2) = 3-19, we have 18 = 32:|2|3 = |2|1o.
For the numbers 18 and 2, we can find a prime 19 with
18 = |2|19-. But for number 6 and 2, we cannot find such a
prime because ®¢(2) = 3. This is the only exceptional case

in the next theorem.
The next was known before one century more and was

found again by many mathematicians, but is not so pop-
ular for us. This follows from the above theorem and an

estimation cited before.

Theorem 3 (Bang). If n > 3,a > 2 and (n,a) # (6,2),
then there exists a prime p with n = |a,.
e
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4. Applications to algebra
Cyclotomic polynomials provide some important theorems

on algebra.

4 | )
1. The multiplicative group of a finite field is cyclic.

2. Artin’s theorem with respéct to the orders of finite

(linear) simple groups.

3. Wedderburn’s theorem: Finite division rings are

- commutative.

4. Special case of Dirichlet’s theorem: The next arith-
metic progression for a natural number d contains

infinitely many primes.

1, 1+d, 1+2d, ..., 1+nd,

5. There exists a Galois extensmn over the rational
number field such that a given finite abelian group
is the Galois group of this extension.

6. Prima]jty tests of big primes. ‘

1. It is easy to prove from Theorem 2 and the next equa-

tion for a prime field F,

I[1 @a(z)=2""—1= ] (z—a).

djp—1 . a€F;

Just a modification of Theorem 2 gives the same proof

in general. 8



" Pepin’s test.

2 For example, we set the next number N,(q) for a nat-
ural number n > 2 and a prime power ¢ = p” where
p is prime. This number is the order of the projective

special linear group PSL(n, q)

(¢"-1(¢" " =1)--- ("~ 1)

1 n(n—1)
Nn -

If Nn(q) = Nno(qo) for different pairs (n,q) # (o, do),
then N3(4) = Ny(2) = 20160, No(7) = N3(2) = 168,
and N»(5) = N»(4) = 60. | |

. In the last part of Witt’s proof, we have 'the equation
®,(g)|g—1. This contradicts to ®,(q) > g—1. However,

. % >
It is easy to see n = 1 from Theorem 2.

. It is a special case but is used fréquently.

. No comments.

. For example, the next is an extension of Licas’ or
}

Theorem 4. (1) p > 3 is prime if and only if there
exists an integer c such that (ﬁ) = —1and &, 4(c) =
0 mod p. |

(2) p > 3 is prime if and only if there exists an integer

¢ >1such that (¢* —¢,p) =1,7y=c+ V2 —1,

p p
O, is the ring of algebraic integers in Q(v)

6

(2c+2) (‘“'2 1) — —1 and <I>p+1('y). = 0 mod pO,, where |




5. Cipher
Pseudo primes are useful for a cipher.

Definition. A composite number 7 is a a-pseudo prime

if and only if a"! = 1 mod n

Roughly speaking, every a-pseudo primes is a product of
divisors of cyclotomic numbers ®,(a)’s for some n, and con-
versely. The next is a special case, but useful for a cipher.

Theorem 5. If d is a divisor of ®,(a) and (d, n) =1,
then a®1=1 mod d

We shall present a cipher using cyclotomic polynomials.
We shall represent by Z* the direct sum of the ring Z of
integets. Let 1, a, b, n be the elements of Z° such that
1=(1,1,...,1) is the identity of Z",

a= (ql, as,...,as),b=(by,bo,...,bs), and
n=(ny,ng,...,Ns)
We use the following notations.

a = b mod n if and only if a; = by mod n; for every k.
(a,b) = 1 if and only if (ax,bx) = 1 for every k.

a™ = (a, 0, ..., al).

£
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We can construct a 'cipher as follows: For a plain text
a, let k = (k1,ko,...,ks) and £ = (41,4s,...,¥¢;) be vectors
such that k; and ¢; are divisors of &, (a;) with (ki,si) =1
and ®; (a;) with (¢;,t;) = 1 where (s;,1;) = 1, respectively.

We set n = k€ and m = (k — 1)(£ — 1). Then we can see -

a™ =1 mod n.

We choose an enciphering key e with (e,m) = 1 and calcu-
late the deciphering key d with ed = 1 mod m. Then the
sender A encipher a with b = a® mod n and A sends b to
the receiver B. Then B decipher b using relationship

e = g&d =a moa n.
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Example To encipher a word "BULLETIN”, we first

translate "BULLETIN” into this numerical equivalence
a=(2,3,4,4,5,6,7,8). We choose the next vectors k, £ for

a.
ko= (®5(2), B5(3), B5(4), B5(4), B5(5), 105(6),
®5(7), P5(8)) -
£ = (B9(2), Be(3), 18o(4), 1g(4), 2o(5), Eo(6),
329(7), B9 (8))
Then we set |
n = ké, m = (k —1)(£— 1)
| Selectmg the enciphering key e = 291 with (m e) =1, we
calculate the deciphering key |
= (149, 56309, 48749, 48749 5507069 13528229,
60758069, 296710709) -

such that ed = 1 mod m. After this setting, we use the
- following sequences of steps. |
(B,U,L,L,E,T,1I,N)

(2,3,4,4,5,6,7, 8)

b a®modn

(1318, 72681, 302382, 302382, 11340745,
10593334, 96832971, 1191412216)

mod n (2,3,4,4,5,6,7,8)

a = (B,UL,LE,T,IN)
| 9
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