日本化学会第86春季年会(千葉), 3PA-099 (2006年3月)

ナフタレン環を有するデンドリマー誘導体の 蛍光を用いた金属イオン認識

(弘前大·理工)水口貴文,川上 淳,伊東俊司

	NMA	TG0	TG1	NG0	NG1
n ¹⁾	1	3	6	3	6
$A_{x,280}^{2)}$	0.04	0.11	0.26	0.13	0.23
$A_{x,280} / A_{NMA,280}$	1.0	2.8	6.5	3.3	5.8
³⁾	6.19	0.36	2.73	8.79	4.89
$\begin{bmatrix} \mathbf{I}_{x,340} \\ \hline \mathbf{A}_{x,280} \\ \hline \mathbf{A}_{\mathbf{NMA},280} \end{bmatrix} \cdot \mathbf{I}_{\mathbf{NMA},340}$	1.00	0.02	0.06	0.43	0.14

結論
本研究では、コアが枝の動きを制御できる剛直なペンゼン環(TG0, TG1)と柔軟な動 きが期待できる三級アミンの分子(NG0, NG1)を設計した。
TG0,TG1,NG0,NG1は、外殻末端のナフタレン環の数に対応したモル吸光係数の値の 増加が見とめられたが、蛍光強度は、逆に減少し、非常に弱いものであった。これは、 ナフタレン環の数が多くなることで、分子内エキシマーや分子内エキサイプレックスの ような分子内相互作用が促進され、消光がおこったためである。
TG0, NG0, TG1, NG1に Ag ⁺ , Al ³⁺ , Ba ²⁺ , Ca ²⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Fe ³⁺ , Mg ²⁺ , Ni ²⁺ , Zn ²⁺ の 11種の過塩素酸塩を添加したところ、 特に、Al ³⁺ , Cu ²⁺ , Fe ³⁺ , Zn ²⁺ を添加した場合に、選 択性的にモノマー蛍光(340nm)の増加が観測された。
これは、金属イオンが配位することにより、三級アミンからナフタレン環への電子移 動が禁制となることによって、分子内エキサイプレックスが形成できなくなったためで ある。また、配位に伴う立体配座の変化によって、ナフタレン環同士の相対配位置も変 化し、分子内エキシマーを形成しにくくなる場合もあるものと考えている。
金属塩を添加した際の蛍光強度のモル比プロットから、分子サイズが大きくなるほど、 多くの金属を捕捉できることがわかった。