NN -ビス(8-ヒドロキシ-2-キノリルメチル)-1,n-ジアミノアルカンの 溶液中での分子内相互作用と蛍光による金属イオン認識

研究の背景 C. J. Pedersen 金属イオンに対する選択性、分子内への内包による有機溶 剤への可溶化などの特性を有するクラウンエーテルの発見。 D. J. Cram 分子認識ユニットを分子内に組み込み、様々な分子システ ムに展開し、ホスト・ゲスト化学の分野を開拓。 J. M. Lehn 分子の自己集合体なども包括的に含んだ分子認識化学の重 要性について主張し、超分子化学を提唱した。 分子認識化学の分野において、金属イオン認識は、近年関心を 集めており、視覚的検出が可能である蛍光性化学センサーが合 成され、盛んに研究されている。

【吸収スペクトル】

- ・2QOH-n (n = 4, 5, 7, 8) は、基準物質の 8H2MQ の吸収スペクトル とは異なり、250 nm~280 nm に別の吸収バンドを示した。
- ・この吸収バンドは、メチレン鎖の長さにかかわらず観測され、スペー サーが長くなるほどが大きくなった。

【蛍光スペクトル】

- ・2QOH-n では 530 nm 付近に蛍光極大を持つ蛍光バンドが観測され、 スペーサーの長さによる規則的な変化は見られなかったが、発光極大波 長は異なることがわかった。
- ・この蛍光と同じ蛍光が、8H2MQ を濃い濃度で測定し、分子間相互作が 生じた時に得られた。

【蛍光励起スペクトル】

・2QOH-nの蛍光励起スペクトルは、観測波長に依存したスペクトルが得られた。

ー般的な分子内エキシマータイプではなく、基底状態においても2つの8-ヒドロキシキノリンが接近し、分子内相互作用が存在する。

スペーサーの長さの違いが、2つの8-ヒドロキシキノリンの相対配置 に影響を与える。

	Zn(II)	Cd(II)	Co(II)	Ni (II)	Cu(II)
2Q0H-4	6.0 (2.1)	7.8	5.7	5.7	5.6
2Q0H-5	6.0 (2.2)	8.2	6.9	6.8	6.3
2Q0H-7	6.0 (2.4)	8.1	8.8	7.8	6.0
2Q0H-8	5.8 (2.4)	8.7	9.6	9.6	6.0
2BQOH	8.4	8.4	9.0	8.8	9.0
BQOH	7.3	6.9	7.8	7.4	6.3
1:1錯体 つれ大きな 2:1錯体	を形成する金 値を示す。 を形成する虹	を属イオンに 亜鉛イオンに	こ対しては、 こ対しては、	スペーサー スペーサー	・が長くなる ・の長さによ ²

【吸収スペクトル】

・2QOH-n (n = 4, 5, 7, 8) は Cd²⁺, Co²⁺, Ni²⁺, Cu²⁺ に対して、1:1 錯 体を形成し、Zn²⁺ に対して、2:1 (Zn²⁺: 2QOH-n) 錯体を形成する。

【蛍光スペクトル】

- ・2QOH-n は Cd²⁺, Mg²⁺, Zn²⁺ に対して蛍光強度増加、Co²⁺, Ni²⁺, Cu²⁺ に対して蛍光強度減少を示す。
- · Zn²⁺ との1:1 錯体の蛍光極大波長は 570 nm 付近であるが、2:1 錯 体は 530 nm 付近と短波長側へシフトする。

【蛍光強度】

- ・金属塩との1:1錯体の蛍光強度は、Cd²⁺が最も大きな値を示すが、
- Zn²⁺とは2:1錯体を形成できるため、金属イオン濃度を高めていくと、
- Cd²⁺の1:1錯体の蛍光強度と同じかそれ以上の値を示す。
- ・Zn²⁺ との2:1 錯体の蛍光強度は、2QOH-5 が一番大きい。

【錯形成定数】

・金属イオンとの1:1 錯体の錯形成定数はスペーサーが長くなるほど、 より大きな値を示す。2:1 錯体の錯形成定数は、スペーサーの長さに よらず一定である。

結論	
• 2QOH-n はスペーサーでつなぐ事で、2つの8-ヒドロキシ≓ リンが接近した配座のものが基底状態でも存在する。その駆動力 子内水素結合と考えられる。	Fノ は分
• 2QOH-n は、カドミウムイオン及び亜鉛イオンと1:1 錯体 亜鉛イオンとは2:1 錯体を形成し蛍光強度が増大する。1:1 と2:1 錯体とは、発光極大波長が異なり、2:1 錯体は蛍光強 大きいため、カドミウムイオンと亜鉛イオンの識別が可能となる	、を、 錯体 渡も
 1:1 錯体は、スペーサーが長い程、錯形成定数が大きく、2 8-ヒドロキシキノリンの距離が錯体の安定性に影響する。 	2つの
 2:1錯体は、1つの8-ヒドロキシキノリンに対して1つの イオンが配位する為、スペーサーの長さの影響は少ない。 	金属