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PREFACE

A tensor category is a linear category with operation of tensor product. The
category of representations of a group and that of a Hopf algebra are major exam-
ples of tensor categories. By analogy with a module over a ring, a module over a
tensor category is defined to be a linear category with action of the tensor category.
The theme of Chapters I and II is a correspondence between modules over different
tensor categories. In Chapter 1 we relate the category of representations of a finite
dimensional semisimple Hopf algebra to the category of representations of its dual
Hopf algebra. We give a natural one-to-one correspondence between modules over
these two tensor categories. In Chapter II we consider a situation in which a finite
group acts on a tensor category. We then have the tensor category of invariant ob-
jects and the semi-direct product tensor category, as we make the invariant subring
and the skew group ring from a group action on a ring. Using the correspondence
of Chapter I, we give a one-to-one correspondence between modules over these two
tensor categories as well.

Independently of the first two chapters, Chapter III deals with a special case of
the problem of classifying semisimple tensor categories having a prescribed rule of
tensor product decomposition. We take the decomposition rule for representations
of the semi-direct product of the additive group and the multiplicative group of a
finite field. Although we have not reached a complete classification, we give a few
nontrivial examples of tensor categories having this rule.

Chapter I and Chapter II are extracted from my papers [1] and [2], respectively.
Chapter III is an expanded version of my report [3].

1. A duality for modules over monoidal categories of representations of semisimple

Hopf algebras, 1998, in submission.

2. Invariants and semi-direct products for finite group actions on tensor categories,

1999, in submission.
3. Deforming the categories of representations of some semi-direct product groups,
in the Proceedings of the 16th Algebraic Combinatorics Symposium, 1999,

Fukuoka.
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CHAPTER 1

DUALITY FOR REPRESENTATIONS OF HOPF ALGEBRAS

1. Summary

Let A be a finite dimensional semisimple cosemisimple involutory Hopf algebra
over a field k. Let A be the category of finite dimensional A-modules. As A4 is a
tensor category, we have a notion of A-modules: A right 4-module is a linear cate-
gory M equipped with a bilinear functor M x A — M and coherent isomorphisms
of associativity and unit.

Let B be the dual Hopf algebra of A, and B the category of finite dimensional B-
modules. The main result is that there exists a natural one-to-one correspondence
between right A-modules and right B-modules with direct summands.

This is related with the well-known duality theorem ({BM], [NT]) for Hopf alge-
bra actions on algebras.

The correspondence between A-modules and B-modules is given by categorical
analogues of Hom and ® functors for usual modules. Let V be the category of k-
modules. Then V becomes an (A4, B)-bimodule and also a (B, 4)-bimodule. For an
A-module M with direct summands, the corresponding B-module is the category
Hom 4(V, M) of A-linear functors V — M. Alternatively, this B-module is equiva-
lent to the B-module M®& 4V, which is obtained by firstly making the tensor product
M ®_4 V then adjoining direct summands. An equivalence M@ V&gV ~ M is
induced by an equivalence of (A, A4)-bimodules V&gV ~ A.

In addition, the equivalences V®gV ~ A, V@4V = B can be taken in a coherent
way so that the tensor categories A, B, the (A, B)-bimodule V, and the (B, A)-

bimodule V form a matrix tensor category ('{}1 ;)

2. Modules over tensor categories

A k-linear category is a category in which the Hom-sets are k-vector spaces, the
compositions are k-bilinear operations and finite direct sums exist. The notion of a
k-linear functor C — D, and a k-bilinear functor C x C’ — D for k-linear categories
C,C’, D will be obvious. Let Hom(C, D) denote the category of k-linear functors
C—D.

Tensor categories. A tensor category over & is a k-linear category A equipped
with a k-bilinear functor ©: A x A — A4, an object I, and natural isomorphisms

axyz: Xo0Y0Z)-(X0eY)eZ,
Ax: X - I0X, px: X—->X0oI1
satisfying the identities

(axy,zOW)axyezw(X Qayvzw) = axoy,zweX Y,2oW, (M1)
ax1y(XOAy)=px QY (M2)

1



for all objects X,Y, Z, W in A. See [EK] or [M] for details.

Modules over tensor categories. For a tensor category A, a left A-module
is a k-linear category M equipped with a k-bilinear functor ®: A x M — M and
natural isomorphisms

axym: XOYOM)—-(XOY)OM,
Ax M —-IoM

for XY € A, M € M, satisfying (M1) with (X,Y, Z, W) replaced by (X,Y, Z, M)
and (M2) with (X,Y) replaced by (X, M) for all X,Y,Z € A, M € M.

A right A-module is similarly defined.

For tensor categories A and B, an (A, B)-bimodule is a k-linear category M
equipped with k-bilinear functors ©: AXx M - M, ©®: M x B — M, and natural
isomorphisms

axym: XY oOoM)—-(XoY)oM,
axms: XOMoeS) - (XOoM)OS,
omsT- MOSET) - (M6 S)eT,
A M—-IOM, py:M->MOI

for X,)Y € A, M € M, §,T € B satistying (M1) with (X,Y,Z, W) replaced
by (X,Y, 2, M), (X,Y,M,S), (X,M,S,T), (M,S,T,U), and (M2) with (X,Y)
replaced by (X, M), (M,S) forall X, Y, Z € A, M e M, ST, UecB.

For left A-modules M and N, an A-linear functor (F, ¢): M — N consists of a
k-linear functor F: M — N and natural isomorphisms

dxpm: FIXOM)—> X0OFM)
satisfying the identities

dxoymFlaxym) = axyron(X © dym)dx youm.
d1,mF(Am) = Apa)

for all XY € A, M € M. We write (F, ¢) = F occasionally.
For A-linear functors (F,¢), (F',¢'): M — N, a morphism (F,¢) — (F',¢') is
a natural transformation o: F — F” satisfying

W% moxom = (X O om)bx m

forall X € A, M € M.

With this notion of morphisms, we have the category of .4-linear functors M —
N, denoted by Hom 4 (M, N).

For A-linear functors (F,¢): M — N and (G,v¥): N — P, their composite
(G,¥) o (F,¢) is defined to be the A-linear functor (G o F,8): M — P, where

Ox.m = Yx,pmy © G(dx,m).

2



Thus we have the composition functors
Hom 4 (N, P) x Hom (M, N) — Hom 4 (M, P),

which are strictly associative. Also we have the identity A-linear functors Id a4
in Hom 4(M, M), which are strictly unital for composition. So the categories
Hom 4 (M, N) for all A-modules M, A constitute a 2-category, denoted by A-Mod.

An A-linear functor F: M — N is called an equivalence if there are an 4-linear
functor G: N — M and isomorphisms F o G = 1 in Hom4(WN,N), Go F = 1 in
Hom 4 (M, M).

Let V be the tensor category of finite dimensional vector spaces over k. Any
k-linear category C becomes a left V-module by setting k" ® X = X", the n-fold

direct sum.
Let £ be a (B, A)-bimodule. If A/ is a left B-module, the category Homg(L£, N)

becomes a left A-module. The action is defined by
(X0 F)(L)=F(LOX)

for X € A, Le L, FeHomg(L,N).
Moreover we have a functor

S nv: Homg(N,N') — Hom 4(Homg(L,N), Homg(L,N"))
G— (F—GoF)

for B-modules A, N’. The functors ® - preserve horizontal compositions and

unit 1-cells.
The 2-functor Homg(L, —): B-Mod — .A-Mod consists of the assignment

B-module N — A-module Homg(L, N)

and the collection of the functors ® o~ for all B-modules N, .

Tensor product of modules. For a right A-module M, a left A-module N,
and a k-linear category £, an A-bilinear functor (F,a): M x N — L consists of a
k-bilinear functor F: M x N’ — £ and natural isomorphisms

omxn: FIM,XON)— F(M®X,N)
satisfying

Flam x,y, N)ay xor,NF(M,ax y,N) = aMoX,Y,NOM,X,YON,
aM,I,NF(va\N) = F(pM’N)

foralMe M, Ne N, X,Y € A

With an obvious definition of morphisms, we have the category of .A-bilinear
functors M x N' — L, denoted by BiHom_4 (M, N; L).

We will construct a k-linear category M ® 4 N and an A-bilinear functor M x
N — M ®4 N inducing an equivalence Hom(M ® 4 N, £) — BiHom 4 (M, N; £)
for any k-linear category L.



As a k-linear category, M® 4N has the following presentation by generators and
relations. Objects are finite direct sums of symbols [M, N] for M € M, N € N.
Generators for morphisms are symbols

[f.9): [M,N] — [M',N']
for morphisms f: M — M'in M and g: N — N’ in N, and symbols

amxn: [M,XON]—-[MoX,N]
apyxn: IMOX,N|—[M, X ON]

for objects M € M, X € A, N € N. Relations among them are
(i) (linearity)

f+ g =f.9l+1f9l, [f.a+91=1[f9l+1f.d]
laf,9] = alf, ] = [f,a9]

for morphisms f, f': M — M'in M, g,¢/: N> N inN,and a € k.
(i) (functoriality)
[f2, 921, 91] = [f2f1, 9201]

for morphisms fi: M; — My, fo: Ma — M3 in M and ¢1: N1 — Ny,
g2 NQ - N3 in N, and
1a, In] = 1ag, )

(iii) (isomorphism)
amx,NOyx N =1, ayxnomxN =1
(iv) (naturality)
am x N [fru® gl = [f Ou glamxn
for morphisms f: M - M'in M, u: X - X' 'in A, g: N - N in N.

(v) (pentagon and triangle)

lomx,y, Inlam xey,n v, oxy,N] = aMex,y NOM X, YON,
ay.1.n[1m, on] = [Aa, IN]).

The bilinear functor T: M x N — M ®4 N is defined by

T(M,N) = [M, N] for objects,
T(f,9) = [f, 4] for morphisms.

The isomorphisms ar, x v then give T' a structure of an A-bilinear functor.
From this construction, it will be obvious that for any k-linear category £, the

functor

Hom(M @4 N, L) — BiHom 4 (M, N; £)
G—GoT



is an equivalence.
Let £ be a (B, A)-bimodule. If M is a left A-module, £ ® 4 M becomes a left

B-module. The action is defined by
SO[L,M] =[SO L,M]

forSeB MeM,LeL.
Moreover we have a functor

W gm0 Homa(M, M) — Homp(L @ 4 M, L &4 M)
G+ (L, M] = [L,G(M)])

for .A-modules M, M’. The functors W aq ¢ preserve horizontal compositions and

unit 1-cells.
The 2-functor £ ® 4 —: A-Mod — B-Mod consists of the assignment

A-module M +— B-module £L ® 4 M

and the collection of the functors Wy rq for all A-modules M, M.
We have also an A-linear functor

M — Homg(L, L ® 4 M)
M s (L [L, M)

for an A-module M, and a B-linear functor

N®A Homg(ﬁ,/\/) — N
[N, F] = F(N)

for a B-module N. These are natural in M and A, respectively.
Furthermore we have an equivalence

Homg(L ® 4 M,N) — Hom 4(M,Homg(L,N))
F (M~ (L F(L,M))).

Bicategories. A bicategory £ consists of a set J, a collection of k-linear cate-
gories &;; for 4,7 € J, bilinear functors ©y;x: &5 X & — Ei for 4, 5,k € I, objects
I; € &; and natural isomorphisms

axyz: X ®ijl (Y @jkl Z) — (X @ijk Y) Oikl Z’
Ax: X = Lou X, px: X — X0y

for X € £;,Y € &, Z € &y satisfying identities analogous to (M1) and (M2).
See [B].

For a bicategory £, each category &;; becomes a tensor category and &;; becomes
an (&, &;;)-bimodule. Moreover ®;ji: £; X Ejx — & becomes an &;;-bilinear
functor, and hence induces a functor &; ®¢,; €5 — Eik. This in turn becomes an
(&is, Exk )-linear functor.



Idempotent splitting property. A category C is said to have direct sum-
mands if any idempotent endomorphism e: X — X in C has a factorization e = ip
with p: X - Y, 4:Y — X and 1y = pi. The envelope C of C is the category de-
fined as follows. An object of  is pair (X, e) of an object X € C and an idempotent
e € End X. A morphism (X, e) — (X', €’) is a morphism f: X — X’ in C such that
fe = f = ¢'f. Then C has direct summands and the functor C — C: X ~ (X, 1) has
the following universality: For any category D with direct summands, the induced

functor ~
Hom(C, D) — Hom(C, D)

is an equivalence.

For a tensor category A, A-Modk denotes the 2-category consisting of left A-
modules with direct summands. If M is an A-module, then M becomes naturally
an A-module. For a right 4-module' M and a left A-module N, the envelope of
M &4 N is denoted by M N

3. The bicategory associated with the dual pair (4, B)

Let A be a finite dimensional semisimple cosemisimple involutory Hopf algebra.
Let B = A* the dual Hopf algebra. Put A = A-Mod, B = B-Mod, V = k-Mod.
In this section we construct a bicategory £, in the sense of Section 2, with indexed

set J = {1,2} such that
En &2 _ (A VY
En &n) \V B)’

The canonical pairing between 4 and B is denoted by (—, —). After Sweedler’s
book [S], the left action — and the right action < of A on B are defined by

a—b=Y bi(a,by),
b—a=) (abi)b
fora € A, b€ B with A(b) = Y b, ® bz, so that

(a',a — b) = (d'a,b),

(a’,b+ a) = (ad’,b).
Then the left action — and the right action «— of A on B are defined by
a—b=b< S(a),
b+ a=S(a)—b.
We need to choose linear isomorphisms A — B, B — A in a special way.

PrROPOSITION. There exist linear isomorphisms ¢: A — B, ¢: B — A such that

¢(a'a) = a’ — ¢(a), $(aa’) = ¢(a) — o,
$(b' = a) = b'¢(a), ¢la < V') = ¢(a)t,

P(b'b) = b — (b), Y(bb') = p(b) — ¥,
¥(a’ = b) = a"p(b), Y(b— a') = y(b)a’



for alla,a’ € A, b,V € B, and that
Sy¢ =1, Sey = 1.
Such a pair (¢,1) is unique modulo relation (¢,) ~ (A, A1) for scalars A # 0.

We fix such a choice of ¢p: A — B, ¢: B — A.
For X € A, Y € B we have maps

Ax: X®A—-X®A
m@aHZa1$®02,
px:A®X - A®X
a®$'—>zal®021’1
Oxy: XQY - XQ®Y
.’E@ZjHZail“@yi:ZIj@bjy?
vw:ARY oY ®A
a®yHZyi®aai,
where
Afa) = Za1®a2, w(y) =Zyi®aiy w(z) = ij@bj

andw:Y = Y®A, w: X — X ®B are the right comodule structures coming from

the left module structures.
These are all bijections with inverses given by

Ay I®GHZS_I(01)-T®G27

p}lz a®z— Zal ® S(a2)z,
Bry z@y— Y Sa)e@y =)y z;®S(b)y,
wiy®ar Y aSa) @y

Replacing the roles of A and B, we have similar maps Ay, py, By, x, 7x for X € A,

Y eB.
Now we define the bicategory £ as follows. The index set is {1,2}. Let

En=A &=V,
Ea =V, Epn==B

The composition functors
Oijk: €ij X Ejk — Eik

for 1,7,k = 1,2 are given by

XomX =XeX, Y ©Y' =Y QY
X01m2V=XYV, YO V=Y®YV,
Vo X=VeX, VoY =V&Y,

VoV =VRAQV' VoV =V@BgV’
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for X, X' € A, Y,Y' € B, V,V’' € V. Here the module structuresof X @ X', Y @ Y’
are the usual ones. In X@V, V@ X, Y ®V,V®Y the module structures of X,Y are
forgotten. In V@ AQ V', VR B®V’, we regard A, B as the left regular modules.
The units I € €11, I € &3 are the trivial modules k.
Next we define the natural transformations of associativity

aijri: @igro(lg,; X Ojkt) — ikt © (Oijk X Lgy,)-

o111, 2222, 1112, G2111, (2221, Ci2g2 are the identity. airze, ani2i, a2, @1221,
(1912 are given by
(e 3
XoWVoy) 2 (XoV)eY

| |

XQVRY — XQVEY
(Bx.v)

XoWVov) 22, (XeoV)oV

| |

XQVeAQV’ — X@VeARV'
(A%

VoV'eX) 225 (VoV)eX

| H

VRAQV' X —— VRARQV'®X
(px)

Vo(Yov) 22, (VeY)oV

| H

Y

Vv 10 (V" ® V”) 1212 (V o) V’) ® v

| |

VeV BV —— VRAQV/ oV

)
for X €e A, Y € B,V, V' V" € V. Here (8x,v),(7x), ... stand for the maps induced
by Bx,y,¥x,--- in an obvious way. The remaining as211, ®2212, @2122, @2112, ®2121

are defined by replacing A and B, ¢ and 1.
Finally the natural isomorphisms for unit

Aiji ley, = IiOuj (=), pigt ley — (=) O I

are given by themapsz — 1®z,z— z® 1.

THEOREM. The data &5, Oijk, 1i, (viji, Aij, pij constitute a bicategory £.



4. The correspondence between A-modules and B-modules

We keep the notation and the assumptions in the preceding section. Let Modk-A
denote the 2-category of right A-modules with direct summands. We will construct
a 2-equivalence between the 2-categories Modk- A and Modk-B.

Since & is a bicategory, £12 naturally becomes an (&1, £22)-bimodules. That is,
V becomes an (A, B)-bimodule. And similarly V becomes a (B, A)-bimodule. The
composition ®121: £12 X £21 — €11 yields an (€11, £11)-linear functor £12®¢,, £21 —
&11, that is, an (A, A)-linear functor

P: VgV — A
Similarly, we obtain a (B, B)-linear functor
Q:V®4V - B
As A has direct summands , P extends to an (A, A)-linear functor
P: V&gV — A
And similarly we obtain a (B, B)-linear functor
Q: V@,V — B.

As V is an (A, B)-bimodule, if M is a right A-module, then M ® 4 V becomes
a right B-module, and its envelope M® 4V becomes a right B-module with direct
summands. Similarly, if N is a right B-module, then N ®gV becomes a right A-

module with direct summands. ~
For a right A-module M with direct summands, the functor P induces an A-

linear functor
Pyt (MB®aAV)®BY = MBA(VE5V) — MEaA =M,

and for a right B-module N with direct summands, Q similarly induces a B-linear
functor

QL (N@V)®AV — N.
THEOREM. For any right A-module M with direct summands, Pjﬁw 1S an equiv-
alence of A-modules.
And va is an equivalence of B-modules as well. To put it shortly, the 2-functors
-®aV
Modk-A4 — Modk-B
-®sV
are quasi-inverse to each other.
The theorem follows from

PROPOSITION. The functor P: V&gV — A is an equivalence of
(A, A)-bimodules.

By adjoint this implies also

PROPOSITION. For any right A-module M with direct summands, we have an
equivalence of right B-modules '

M®& 4V — Hom 4 (V, M).




5. Duality for Hopf algebra actions

In this section we relate the correspondence between category modules in Section
4 with the duality of Hopf algebra actions on algebras due to Blattner and Mont-
gomery ([BM)]). In the beginning we only assume that A is a finite dimensional
Hopf algebra and B is the dual of A. For a left A-module algebra R with action

written as
AxR— R:(a,r)—avr,

the smash product R#A is the algebra with underlying space R ® A and multipli-

cation
(re@a(r®ad) = Z r(a1o7’) @ axad’,

where A(a) = 3 a; ® az.
A left R# A-module is thought of as a vector space M with two structures of an
R-module and an A-module such that the R-module structure map R M — M

is A-linear.
Here are several facts whose verifications are straightforward.
(1) It is known that R#A has a structure of a B-module algebra. The action >

of B on R#A is given by

br(r®a) =r® (b — a).

(2) If R is a left A-module algebra, then the category R# A-Mod becomes a right
module over A-Mod. The action ©®: R#A-Mod x A-Mod — R#A-Mod is defined
as follows: For an R#A-module V and an A-module X, we set

VoX=VeX
on which R and A act by
rlv®z) =rv@x,
alver) = Zalv ® aox
for r € R, a € A. With this action V ® X becomes an R#A-module. The
associativity isomorphism VO(X®X') - (VOX)®X' is the identityon V@ X R X'

(3) If R is a left A-module algebra, then the category R-Mod becomes a right
module over B-Mod. Indeed, for an R-module V and a B-module Y, we set

VoY=VRY

on which R acts by
rlv@y) = Z(ai DTV Y;-

Here w(y) = Y y;®a; and w: Y — Y®A is the A-comodule structure corresponding
to the B-module structure on Y. The associativity isomorphism V ¢ (Y  Y') —
(VOY)eY is the identity mapon V@Y QY'.

(4) The action of A-Mod on R#A-Mod in (2) and the one in (3) with R#A
regarded as a B-module algebra as in (1) coincide.

Let R be a B-module algebra. Put 4 = A-Mod, B = B-Mod. By (2), R-Mod is
a right A-module.

10



Assume that A is semisimple, cosemisimple, and involutory. The 2-functor
Hom4(V, —): Modk-A — Modk-B
takes the A-module R-Mod to the B-module R# B-Mod. In view of (4), the quasi-

inverse
Homp(V, —): Modk-B — Modk-.A

takes R#B-Mod to (R# B)#A-Mod. Thus we have an equivalence of A-modules
R-Mod =~ (R#B)#A-Mod.

This explains the Morita equivalence between R and (R#B)#A in the duality
theorem for Hopf algebra actions.

11



CHAPTER 11

DUALITY FOR FINITE GROUP
ACTIONS ON TENSOR CATEGORIES

1. Summary

If a group G acts on a ring S, we have the ring of G-invariants S¢ and the skew
group ring S[G]. We are here concerned with analogous constructions for a tensor
category in place of a ring. Suppose that G acts on a tensor category C over a field
k. This means that for each o € G, a tensor functor o,: C — C is given and for
each 0,7 € G, a tensor isomorphism o, o7, & (07). is given in a coherent way. The
tensor category C consists of objects C of C equipped with isomorphisms 0,C 2 C
satisfying certain coherence conditions. The tensor category C|G] is just the product
D, C as a category, whose objects are expressed as @, (Cs,0) with C, € C,
and the tensor product in C[G] is defined by (C,0) ® (D,7) = (C® 0.D,07).

For a tensor category A, an A-module means a category with associative action
of A. We assume here categories have direct sums and direct summands.

Our result is that if G is finite and k[G] is semi-simple, then C¢-modules and
C[G}-modules are in one-to-one correspondence. It is given by assigning to a C|G]-
module X the C®-module XC of G-invariant objects of X.

This is a simple consequence of the one-to-one correspondence of Chapter 1
between modules over the tensor category of k[G]-modules and modules over the
tensor category of k[G]*-modules, where k[G]* is the dual of the group algebra.

2. Group actions on tensor categories

An action of a group G on a k-category X consists of data

— functors o,.: X - X forall 0 € G
— isomorphisms ¢{(c,7): (67)s 2 o, oTu forall o,7€ G
— an isomorphism v: 1, — Idx

which make the the following diagrams commutative for all o, 7,p € Gand X € X.
#(o7,p)x
(omp)X LN (gr) 0. X
¢(U,Tp)x1 J(ﬁ(aﬂ’)p*x (1)

O{TPlh X —————— 0. Tup. X
ou(@(1,p)x)

é(l:l)x

LX = L1LX (2)
L.(vx)
¢(1,1)

LX = LLX (3)
VieX
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Here commutativity of the last two diagrams means that the opposite arrows are
inverse to each other.
Let X, V) be categories with G-action. A G-linear functor X — ) consists of

— a k-linear functor L: X — Y
— isomorphisms n(c): Loo, —wo,o L forallo € G

making the following diagram commutative for all 0,7 € G and X € &

L((07),X) ar)x (07). L(X)
L(#(o,r)x) | I CoTHe (4)
L{o.1.X) — o L{nX) —  onlX)
n(a)r. x aun(T)x

Let X be a category with G-action. The category of G-invariants in X, denoted
by X, is a k-category defined as follows. An objects of X'C is a pair (X, ), where
X is an object of X and f is a family of isomorphisms f(o): 0.X — X for all
o € G making the following diagram commutative for all 0,7 € G.

(o7) X E LN
‘b(”,T)XJ' fo: (5)
T X —— 0, X
a.(f+)

A morphism (X, f) — (X', f') in X€ is a morphism u: X — X’ in X such that
fl(o)oo.u=wuo f(o)

for all 0 € G.

ExXAMPLE 1. Let G act on the category V of vector spaces trivially. This means
that all 0,, ¢(o, ), v are the identities. Then V¢ is the category of k[G]-modules.

Let C be a tensor category with tensor product (A, B) — A.B, unit object I,
associativity isomorphisms a4 g c: (A.B).C — A.(B.C), and unit isomorphisms
Al A— A pa: AT — A

An action of G on the tensor category C means an action of G on the k-category
C preserving the tensor structure. Namely it consists of data

— tensor functors 0,: C - Cforall o € G

~ isomorphisms ¢{o,7): (67)« — 0. o7, of tensor functors for all 0,7 € G

— an isomorphism v: 1, — Id¢ of tensor functors
making the diagrams (1), (2), (3) commutative with obvious change of letters. We
also use the word G-tensor category for tensor category with G-action.

By the definition of a tensor functor, the above o, consists of

— a functor g,: C — C
— natural isomorphisms ¥(0)a.5: 0. A0.B - 0, (A.B) forall A,BeC
— an isomorphism «(c): I — 0,1

13



making the following diagrams commutative for all A, B,C € C.

(0.A.0.B).0,C 2282 % 5 A (5,B.0,0)

1,5((’)/4.134(7.(3‘!L lJtA-lﬁ(O)B‘c
0.(A.B).o.C 0. A.0.(B.C) (6)
w(U)A,B,Cl lw(o)A,B.L'

7. (AB).C) ———  0,(A(B.C))

o.{oa,B,C)

II Ay I
L(O’).L(O‘)l lL(l’) (7)
o dod — o, (I.]) — 0,1
P(o)r,1 a. (A1)

The requirement that ¢(o,7) is a morphism of tensor functors means that the
following diagram is commutative for all A, B € C.

¢(G’T)f—f¢:>(o’f)8 o A0 B

l?l)(o)v.A,r.B

(7). A.(07).B

w(em)an ] o (T AT B) (8)
. lo-@(m)an)
(7). (A.B) — 0.7+ {A.B)
¢(U7T)AAB

In the presence of the commutativity of (3) and (8), v: 1, — Id¢ is antomatically
a morphism of tensor functors. Thus we could say that a G-action on the tensor
category C consists of the data o., ¢(o,7), v, ¥(0), t(c) making the diagrams of
(1), (2), (3), (6), (7), (8) commutative.

Let C be a G-tensor category. The category C¢ becomes a tensor category as
follows. The tensor product is defined by

(4, f).(B,g) = (A.B, k) (9)

where

h(o) = f(0).9(0) o ¥(0) 3 )p- (10)

The unit object is (I,.™!). The associativity and unit isomorphisms are inherited
from C. ’

We now construct another tensor category C[G] from a G-tensor category C. We
set C[G] = @, ¢ C as categories. So an object of C[G] is expressed as @, (4o, 0)
with A, € C, and a morphism from @, .;(4,,0) to @, c5(Bs,0) is expressed as
P, cc(fo,0) with f,: A, — B, a morphism in C. The tensor product operation
in C[G] is defined by

(A,0).(B,7) = (A.0.B,oT) for objects,
(f,0).(9,7) = (f.0.g9,07) for morphisms.

14



The unit object is (I,1). The associativity is given by

((A,0).(B,m).(C,p)=(A.0.B,o71).(C, p)=((A.0.B).(07).C,07p)
u(/l,a),(f},—r]:((,',p)l L(a(A,a,B,-r,C),a-rp)
(A,0).((B,7).(C,p))=(A,0).(B.1.C,1p)= (Ao, (B.7.C)),07p)

where a(A, o, B,7,C) is the composite
(A.0.B).(o7).C
l(A~0nB)~¢(0ﬂ)c
(A.o.B).o,.C
13A,a.8,0.7.c
Ao B.o.1.C)
|Ast@nre
A.c.(B.7,C).
The left unitality
Mao): I,1).(A0) = (1.1,A,0) — (A,0)

is given by

I1,A 22, 1A 24, 4
The right unitality

Paey: (A0).(1,1) = (Ao.],0) — (A,0)

is given by

A-L(U)_l pa
Ao ——— Al ——— A.
These data satisfy the axiom of a tensor category.

ExaMPLE 2. With respect to the trivial action of G on V, we have the tensor
category V[G]. Objects are of the form @ .;(V,,0) with V, € V. The tensor

product is given by
(V,0).(W,7) = (V@W,o7).

Thus V[G] is the category of G-graded vector spaces, or the category of k[G]*-
modules when G is finite.

EXAMPLE 3. Suppose G acts on a group A. Then the action of G on the tensor -
category V|[A] is induced. We have obviously V[4][G] = V[A x G].

Let C be a G-tensor category. We may view a C[G}-module as a category having
actions of C and G in a compatible way.

EXAMPLE 4. C itself is a C{G]-module: (C,0).C' = C.q,C".

ExaMPLE 5. A V[G]-module is nothing but a k-category with G-action:
(k,0).X =0.X.

If X is a C[G]-module, X© becomes a C®-module by a similar action to (9), (10).

15



3. V% modules and V|G]-modules

Hereafter we assume G is a finite group and the characteristic of ¥ does not
divide |G|. We denote the category of finite dimensional k[G]-modules by V€, and
the category of finite dimensional k[G]*-modules by V[G].

We make V into a (V]G], V¢)-bimodule. The action of objects are given by

YV=Y®V, VX=VX
for X € V¢, Y € V[G], V € V. The associativity of actions
YY)V - Y.(YV), (VX)X - V(XX
are the identity maps, while

(Y.V).X = Y.(V.X)

is the map ,
y,7)QvRz— (y,7) @V T ',

where z € X, v € V, 7 € G, and (y,7) is an element in the 7-component of the

G-graded space Y.
The duality theorem of Chapter I in the case of a group algebra is as follows.

THEOREM. The 2-functors

V@ —
VE-Modk = V[G]-Modk
: Homyig(V,-)

are quasi-inverse to each other through the adjunction.

In this situation we also say the pair (V®yc —, Homyg(V, —)) is a 2-equivalence.
The 2-equivalence amounts to the following:

(i) For every V%-module X with direct summands there exist a V[G]-module
Y with direct summands and an equivalence X — Homyg(V,Y) of Vé.
modules.

(i) For V[G]-modules Y, Y’ with direct summands, the functor
Homyg)(¥,Y’) — Homye (Homyg(V, ), Homyg (V, V')

is an equivalence.
Note that V[G]-modules are just k-categories with G-action. We have also

PROPOSITION. For any V[G]-module X, we have an equivalence of V& -modules

(YG >~ Homv{G](V, X)
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4. C%-modules and C[G]-modules
Let C be a tensor category with G-action.
THEOREM. The 2-functors
- C-Modk C%_ C[G]-Modk
are quasi-inverse to each other.

Here if X is a C[G]-module, then X¢ becomes a C°-module as noted in Section 3.
Also in the tensor product C®cc —, C is viewed as a (C[G],C%)-bimodule in which
the left action of C[G] on C is the standard one (Example 4), the right action of C¢
on C comes from the forgetful functor C¢ — C, and the associativity

((X,0).Y).(Z,f) = (X,0)(Y(Z, ]))
for (X,0) € C[G], Y €C, (Z, f) € CY is given by
—1 .
(X.0.Y).2°%23% X (0,v.2) YD X (0,Y.0.2) VO E X 0,(v.2).

5. Modules over group tensor categories

In this section we describe modules over a 3-cocycle deformation of V[G].

For o € G we write the object (k,0) of V[G] simply as 0. Let w: G3 — k* be a
3-cocycle. We have the tensor category V|G, w] whose underlying k-category, tensor
product and unit object are the same as those of V[G], and whose associativity and
unit isomorphisms are given by

Corp =w(o,T,0)l0rp
Ao = w(1,1,0)7 11,
po = w(o,1,1)1,
for 0,7, p € G. We call V|G, w] the group tensor category of the pair (G, w).
Analogously to the identification of a V[G]-module with a category with G-

action, a V[G, w]-module is thought of as a k-category equipped with o,, ¢(o,7), v
satisfying the commutativity of the diagrams

(o(rp)X "N ((01)p). X
Lotome)x

$lo7o)x | | (0T)upe X
letemx

0. (Tp)e X — OxTxpPs X
( p) o.(p(T,0)x) p

(instead of (1)), (2) and (3).
A k-category that is equivalent to a finite direct sum of V is called a 2-vector

space.
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All V|G, w]-modules that are 2-vector spaces as categories can be obtained as
follows. Let X be a finite G-set and v: G x G x X — k™ a map satisfying

v(oT, p;z)v(0, T; pT)
v(T, p; T)v{0, TP; T)

foro,7,p€ G,z € X. If vis viewed as a map G x G — Map(X, k*), the equations
read as

w(o, T, p) =

ia(w) = Ov?
in Map(G3, Map(X, kX)), where 0 is the coboundary operator for the group G and
1, is the map induced by the embedding i: k% — Map(X,k*). Let V[X] denote
., x V, the category of X-graded vector spaces. We may regard an element z € X
as a simple object of V[X]. The action of V|G, w] on V[X] is then defined by

O =0T
¢(077)z = 'U(Ufr;m)lo"r:c
1 1
Vp = -],
T,z T

for o,7 € G, x € X. We denote by V[X,v] the V|G, w]-module obtained in this
way. Given two pairs (X,v), (X’,v) as above, the V|G, w]-modules V|X,v] and
V[X',v'] are equivalent if and only if there exists an isomorphism f: X — X’ of
G-sets such that f*(v’) and v are cohomologue in the group Map(G?, Map(X, k*)).
Thus the equivalence class of a V|G, w|-module which is a 2-vector space bijectively
corresponds to the isomorphism class of a pair (X, [v]) of a finite G-set X and an
element [v] in the quotient set '

{v € Map(G?,Map(X, k™)) | Ov = i, (w)~!}
{0t | t € Map(G, Map(X, k*))}

Here the group in the denominator acts on the set in the numerator by translation.
Note that the quotient is either an empty set or a regular H2(G, Map(X, k*))-set.

Let w = 1. Then V|G, w]-modules are just k-categories with G-action. So we
know that the equivalence class of a 2-vector space X with G-action bijectively
corresponds to the isomorphism class of a pair (X, [v]) of a finite G-set X and a
cohomology class [v] in H2(G,Map(X, k*)).

The category V[X,v]¢ can be described as follows. An object of V[X,v]% is a
pair (V, f), where V is a family of vector spaces V. for z € X and f is a family of
linear maps f(o;z): V, — V, for 0 € G, z € X satisfying

floriz) = f(o;72) 0 f(7; 2)0(0,7; Z)

forallo, 7€ G,z € X.

Suppose X is a transitive G-set and let K be the stabilizer of an element zp € X.
The map vo: K? — k* defined by vy(o,7) = v(0,7;10) is a 2-cocycle on K.
And we have Shapiro’s isomorphism H?(G,Map(X,k*)) = H*(K,k*) in which
[v] corresponds to {vp]. The pair (V, f) above is determined by the pair (V,,, fo),
where fo: K — End V,, is defined by fo(o) = f(o;20). Such a pair (V,, fo) is just
a module over the skew group algebra kK, vg] relative to the 2-cocycle vg. Thus
V[X,v]€ is equivalent to the category of k[K, vg]-modules. Also V€ is the category
of k[G)-modules. The action of V¢ on V[X,v]¢ is given by the tensor product
through the restriction to the subgroup K.
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6. Group actions on group tensor categories

In this section we apply the 2-equivalence of Section 4 to a group tensor category
with G-action.
Any G-action on a group tensor category is obtained in the following way. Let
A be a group with G-action denoted by (o,a) — “a. Let
t:AxAxA— k>
UG x Ax A— kX
v:GxGxA— kX
be maps satisfying
_t(b,c,d)t(a,be,d)t(a, b, c)
- t(ab, c,d)t(a,b, cd)
t(a,b,c)  wu(o;b,c)u(o;a,bc)
t(°a,°b,7c)  u(o;ab,c)u(c;a,b)
u(o; "a, Tb)u(T;a,b) v(o, T; ab)

u(oT;a,b) - v(o,7;a)v{o, 7;b)

v(oT, p;a)v(o,7;Pa)

v(r, p;a)v(o, Tp;a)
for all o,7,p € G, a,b,c,d € A. The first equation says t is a 3-cocycle of A, so
we have the group tensor category V[A,t] of Section 5. A G-action on this tensor
category is defined by

o.(a)="7a

P(o,7)a = v(o,T;0) 10,
1

=1
va v(1,1;a) *
Y(0)ap = u(0;a,b)1o(ap)
1
-
o) u(o;1,1) !

foro,7€ G, a,be A
By the definition of C[G] in Section 2, we have V[A,t][G] = V[A % G, s], where s
is a 3-cocycle on the semi-direct product A x G given by

s({a,0),(b,7),(c,p)) = t{a,’b, " c)u(o; b, " c)v(o, T; ).
Our theorem applied to the G-tensor category V[A,t] says that the 2-functor
VI[A,t]°-Modk e V[A x G, s]-Modk

is a 2-equivalence. Assume k is algebraically closed. The property of being a 2-
vector space is preserved under the above 2-equivalence. We saw in Section 5 that
any V[A x G, s]-module which is a 2-vector space is of the form V[X,r] for a finite
AxG-set X and amap 7: (AxG)? x X — kX satisfying i.(s) = 9r~1. Hence any
V[A, t]®-module which is a 2-vector space is of the form V[X,r]¢.

As an application of this, we can show

PRroprosITION. If |A| and |G| are coprime and t is not a coboundary, then there
ezists no tensor functor V[A,t]¢ — V.
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7. Generalization to C[G, w]

In this section we generalize the 2-equivalence for C[G] to a 2-equivalence for a
3-cocycle deformation C[G,w].

We say that a tensor category A has a G-grading when A has a decomposition
A=@,cq As as a k-category such that (i) if A € A,,B € A,, then A.B € A,,,
(ii)) I € A;. If A has a G-grading, a 3-cocycle w on G gives rise to a tensor category
AY as follows. The underlying k-category, tensor product and unit object of 4%
are the same as those of A, but the associativity and unit isomorphisms of A% are
given by

aﬁ;,C = w(”? T, p)aﬁ,B,C
M =w(1,1,0)7 124
ph =w(o,1,1)p4

for Ac A,, Be A,,Ce A,

Let C be a G-tensor category. Then the tensor category C[G] has the obvious
G-grading. Hence the 3-cocycle w on G yields the tensor category C[G]™ which we
denote by C[G, w].

THEOREM. Let M be a C[G,w]-module with underlying C-module equivalent to
C™ for n > 0. Then the 2-functors

M@ (End ) M)OP
(Endejc w) M)°P-Modk o= C[G, w]-Modk
Homc[cyw] (M ,—)

are quasi-inverse to each other.
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CHAPTER III

CATEGORICAL DEFORMATIONS OF ONE-DIMENSIONAL
AFFINE TRANSFORMATION GROUPS

1. Summary

Let k be the complex field and G a finite group. We have the group algebra k(G|
and the function algebra k(G) := Map(G, k). Denote the category of k[G]-modules
by Rep(G) and the category of k(G)-modules by Vect[G]. We are concerned about
deformations of Rep(G) and Vect|G] as tensor categories.

Look at Vect[G] first. A k(G)-module is a G-graded vector space V = @, ¢ Vo,
and the tensor product W = U ® V of two modules U and V is graded as

W, =P U, eV,

o=Tp

Simple modules are one-dimensional. They are labeled as [o] for o € G so that

k ifo=r,
[U]T: -
0 ifo#T.

Then 0] ® [7] = [o7].

Ifa: Gx G xG — k* is a 3-cocycle, Vect|G] is deformed to a tensor category
Vect[G, . This has the same objects, morphisms, and tensor products as Vect|G].
The only difference is in the associativity isomorphisms (X ®Y)®Z — X®(Y ® Z),
which are a part of the structure of a tensor category. In Vect[G], the associativity
([el®@[7]) ® [p] — [0] @ ([7] ® [p]) is the identity map on [o7p], while in Vect[G, o]
it is multiplication by the scalar a(o, 7, p). The pentagon axiom for associativity
isomorphisms amounts to the cocycle condition for a.

Conversely, any tensor category with the same underlying category and the same
tensor product operation as Vect[G] is of the form Vect[G, a]. Thus deformations
of Vect|G] in such a sense are classified by the group H3(G, k).

In contrast with this, any general procedure of deforming Rep(G) does not seem
to be known. We will give some examples of deformations for small groups.

Central extensions. If K is a central subgroup of G, the set of irreducible char-
acters of G is partitioned according to their restrictions to K. So the category
C = Rep(G) has a decomposition

c=heo,

AeK

where K = Hom(K, k*) and for A € K, Cy is the category of G-modules on which
K acts through A. If X € C) and Y € Cy, then X ® Y € C),. Thus we may say C

has a K-grading.
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If a: K3 — kX is a 3-cocycle, C is deformed to a tensor category C® in a similar
manner to the case of Vect|G]. Namely, we let the associativity isomorphism (X ®
YV@Z - X®@ (Y ®Z)inC* for X € C5, Y € C,, Z € C, to be the scalar
multiplication by a(A, u,v).

ExaMPLE 1. Let G = Dg, the dihedral group of order 8, and K = Z(G) = Z».
Then H3(K,k*) = Z,. Take a non-coboundary 3-cocycle a of K. Then it turns
out that C* = Rep(Qs).

EXAMPLE 2. Let G = SL(2,q) with ¢ odd and K = Z(G) = {£1}. Let a be
as above. Then it can be shown that the twisted category C* is equivalent to the
module category for a Hopf algebra different from group algebras. '

Semi-direct products. Next we consider a situation in which a group G acts on
a group L. Form the semi-direct product LG. Let p be a 3-cocycle of LG which
restricts to a coboundary of G. Put # = p|L. We have the category Vect[L, 8] and
p gives rise to an action of G on Vect|L, §] (Chapter 11, Section 7). Then we have
the tensor category Vect[L,6]¢ of G-invariant objects in Vect[L,§]. If L is abelian
and |L|, |G| are coprime, Vect|L, 8] is a deformation of Rep(LG).

EXAMPLE 3. Let L = Z3, G = Zy and LG = S3. We have Ker(H3(LG) —
H3(G)) = H3(L)® = Z;. Correspondingly three deformations of Rep(S3) (includ-
ing itself) are obtained. The two nontrivial ones are not representable as module
categories over Hopf algebras. Moreover these are the only deformations of Rep(S3).

EXAMPLE 4. Let L = Zy x Zy, G = Z3 and LG = A4. Then Ker(H*(LG) —
H3(G)) = Z5. We have one nontrivial deformation of Rep(A4). This does not come
from a Hopf algebra and is the unique nontrivial deformation.

Extraspecial 2-groups. An extraspecial 2-group has a unique irreducible non-
linear character m. Let A be the group of linear characters. Then

m? e E a.
acA

Semi-simple tensor categories with fusion rule of this type were classified in
[TY]. They are parameterized by pairs of nondegenerate symmetric bicharacter
A x A — k* and signs +. The signs correspond to the two types of extraspecial
2-groups. '

One-dimensional affine transformation groups. The group Fy x Fy also has a
unique non-linear character m and

mQ:(q-Q)m—FZa
a€A

with A = Hom(F ), k). With a slight generalization we pose the problem: Classify
semi-simple tensor categories of which the set of simple objects is a disjoint union
AU {m} of a group A and a one-point set {m}, and the fusion rule is

a®b=ab,

a@m=m, m®®a=m

mem=ma---omodPa
SR —
N acCA
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for a,b € A with N € N.

At present we have a few results for small values of V.

e If N = 1, there are just three such categories. They are Rep(F3 x F}) =
Rep(93) and its twists in Example 3.

e If N = 2, there are just two such categories. They are Rep(F4 x Fj) =
Rep(A4) and its twist in Example 4.

e If N =6, there is such a category other than Rep(Fs x Fg).

In this chapter we outline our attempt to solve the problem.

2. Structure constants

Our aim is to classify semi-simple tensor category having the set A U {m} of
simple objects, with A a finite group, and fusion rule

a®b=ab
a@m=m, m@a=m

m®mEVm®@a
acA

for a,b € A, where V is a vector space. Here Vm means the direct sum of dimV
copy of m. (In general for a vector space U and an object z of a k-linear category
C, an object Uz of C is defined and it behaves naturally in U and z.)

Choose isomorphisms of the above fusion rule and name them and their compo-

nents as

[a,b]: a®b— ab
[a,ml:a®@m —m
[m,a]: m®a —>m

[m,m,m]: m@m — Vm

[m,m,a]: m®@m — a.
We use the following notation for monoidal structures:

ary.: (Z®Y)®z— z®(y®z) associativity isomorphism
L:z®I -z left unit isomorphism

N
r;: I®xr—x right unit isomorphism.

We describe the associativity a in terms of scalars and linear maps.
e (a,b,c): For a,b,c € A, consider the composites

[ab,c] o ([a,b] -¢): (a-b)-c— ab-c— abe
[a,bc)o (a-[b,c]):a-(b-c) — a-bc— abe.
The isomorphism a, 3 c: (a-b)-¢ — a-(b-c) determines a nonzero scalar a(a, b,c) € k
so that
[a,bc] o (a-[b,c]) = a(a,b,c)lapc o [ab, c] o ([a,b] - ¢).
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For brevity we write this situation as

(a-b) - c—ab- c—abc DI
a-(b-c)—a-be—abc Dr

pra = O(a7 b1 C)pl-

e (a,b,m):
(a-b) - m—ab-m—m [
a-(b-m)—a-m—-m  p,
pra = as(a, b)p
with az(a,b) € k.
e (a,m,b):
(a-m)-b—m-b—m m
a-(m-b)—a -m—m Dr
pra= &2((1, b)p[
with ag(a,b) € k.
e (m,a,b):
(m-a)-b—m-b—-m D
m-(a-b)—m-ab—-m  p,
Pra = 0y (a) b)pl
with a;(a,b) € k.

e (a,m,m): For a,b € A, consider the composites

[m, m,m] o ([a, m] (a-m)-m-—->m-m—Vm
m

] .

-m):

m):

Via,m]o (a-[m,m,m]):
):

[m,m,b] o (]a, (a-m)-m—=m-m—b
a-{m-m)—>Va-m—Vm

[a,b]o(a-[m,m,b]): a-(m-m) —a-b— ab.

The isomorphism a, ;n m» determines a linear isomorphism 3y (a,m): V — V and a
nonzero scalar 3;(a, ab) so that
Via,m]o (a-[m,m,m]oagmm = OGi(a,m)m o [m,m,m]o ([a,m]-m)

[a,b] o (a- [m,m,b]) 0 agmm = B1(a,ab)lap © [m, m,ab) o ([a,m] - m).
We write this situation as

(a-m)-m—-m-m—Vm  p(m,m)
N
b pi(m, b)

a-{m-m)—-Va -m—Vm pr(m,m)
N
a-b —ab pr(b, ab)
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pr(m’ m)a =5 (a7 m)pl (m7 m)
pr(b,ab)a = B1(a, ab)p;(m, ab)

where
,61 (a, m): V-V
Bi(a,ab): k — k.
e (m,a,m):
(m-a) - m—m-m—Vm pi(m,m)
N
b Dl (’ITL, b)
m-(a-m)>m-m—-Vm pr(m,m)
N\
b pr(m,b)
p‘l‘(m7 m)a - 162 (a7 m)pl (my m)
pr(m, b)a = ﬁ? (a‘v b)pl(m7 b)
where
B2la,m): VoV
O2(a,b): k — k.
o (m,m,a):
(m-m)-a—»Vm-a—Vm  p(m,m)
N\
b-a — ba pi(b, ba)
m-(m-a)-»m-m—-Vm pr(m, m)
N
b pr(m,b)
pr(m7 m)a = :63(0‘7 m)pl (m7 m)
pr(m,ba)a = P3(a, ba)pi(b, ba)
where

ﬁg(a,m): V-V
Bs(a,ba): k — k.

e (m,m, m):
(m-m) -m—=Vm -m->VVm pi(m, m)

_ N
\‘ Va Y2l (m7 a)

bom = m plb,m)
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m-(m-m)—=Vm-m—-VVm pr(m,m)
N
N Va pr(m,a)

m-b — m pr(b,m)

pr(m,m)a = y(m, m)p;(m,m) + Z'y(m, b )pi (b, m)
b

v(a)pi(m, a)

p,-(b, m)a = 7(b» m)pl (ma m) + Z 7(b7 bl)pl(blvm)
b/

3
3
£
o
I

where

y(m,m): VV - VV
y(m,b'): k> VV
¥(b,m): VV - k
v(b,V): k—k

Y(a): V - V.

In summary, the associativity isomorphisms are specified by the following data:

o(a,b,c) € k
a1 (a,b), ax(a,b), 03(a,b) € k
Bi(a,b), B2(a,b), B3(a,b) € k
Bi{a,m), B2(a,m),B3(a,m): V -V
y(m,m): VV - VV
y(m,b'): k- VV
y(b,m): VV — k
y(b,b') € k
y(a): V - V.

3. Triangle equations

The unit object is 1 € A. Choose (1, a], [a, 1], [1, m], [m, 1] so that

l,a]=1:1®a— a, [a,1]=r,:a®1— a,

A,ml=1,:1@m—->m, m,1l]=r,:m®1 - m.
Then the triangle equations
axy(X®ly)=rxQ®Y
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for (a,1,c),(m,1,b),(a,1,m),(m,1, m) yield

ala,1,c) =1,
al(l,b) = 1,
as(a,1) =1,

ﬁ?(lvm) = 1V7 ﬂ?(lab) =1
The triangle equations

(X®ly)oaxyr = lxgy

rxgyoarxy =rxQ®Y

for (1,b,¢), (a,b,1), (m,a,1), (a,m,1), (1,m,b), (1,b,m), (1,m,m), (m, m,1) yield

a(1,b,¢) =1,
afa,b,1) =1,
a(a,1) =1,
as(a,1) =1,
az(1,b) =1,
a3(1,b) =1,

131(17m):1V7 ﬁl(lvb)zlv
ﬂ3(17m) = 1V7 /63(1717) = 1.
4. Change of bases

We next examine how the structural constants depend on the choice of isomor-
phisms in the fusion rule. Let
[a,b]': a®b — ab
[a,m]":a®@m —>m
[m,a]: m®a—m
fm,m,m|": m@m — Vm
[m,m,a]: m®m —a
be another choice with the normalization condition of Section 3. Then there exist
6(a,b), 61(a),b2(a), p(a) € k>
¢(m) € GL(V)
such that
[a,b]" = 6(a, b)[a, b]
la,m]" = 62(a)[a, m]
[m,a]’ = 61(a)[m, q]
[m, m,m]" = ¢(m)[m,m,m]

[m,m,a]’ = ¢(a)[m, m,a]
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The normalization conditions for the both choices imply

0(1,0) = 6(a,1) =1, 6,(1) =1, 6(1)=1.

The new choice will yield new structural constants o’(a, b, c), a}(a,b), ...

are related to old ones as follows.

e (a,b,c)
a'(a, b, ¢)8(a,b)f(ab, c) = 0(b, c)8(a, bc)a(a, b, c)

s (a,b,m)

ay(a,b)f(a, b)bz(ab) = 02(b)02(a)as(a,b)
e (a,m,b)

a(a, b)82(a)61(b) = 61(b)62(a)az(a,b)

* (m,a,b)

of(a,b)6,(a)f1(b) = 8(a,b)b:1(ab)a;(a,b)
e {a,m,m)

pB1(a,m) o 62(a)d(m) = (m)b2(a) o f1(a, m)

Bi{a,ab)fz(a)p(ab) = ¢(b)b(a,b)B1(a,ad)

hd (m7 a'7m)

By(a,m) o B1(a)p(m) = b2(a)p(m) o f2(a, m)
B(a,b)81(a)p(b) = O2(a)g(b)B2(a, b)

o (m,m,a)

Bs(a, m) o p(m)b:1(a) = 01(a)p(m) o B3(a, m)
B3(a, ba)p(b)6(b, a) = 61(a)p(ba)Bs(a, ba)

e (m, m,m)

7' (m,m) o g(m)g(m) = p(m)d(m) o v(m, m)
7' (m, b') 0 $(6)82(b') = p(m)(m) o y(m, V')
7' (b,m) o d(m)$(m) = ¢(b)61(b) o (b, m)
7' (b, b) 0 p(b")02(b') = ¢(b)61(b) 0 (b, V')
Y (a) 0 g(m)¢(a) = ¢(m)$(a) o v(a)

5. Structure constants for the one-dimensional affine groups

k)

which

Let F =Fy, F* = F — {0}. Let G be the semi-direct product F' x F*. Namely

G = {(a,b) | a € F,b € F*} with multiplication
(a,b)(a’,b") = (a + ba’,bb’).
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The simple G-modules are named as Ly for A € FX and M. The module Ly is one
dimensional with

basis:  (A)
action: (a,b){A) = A(b)(N).

Fix1#x: € F'. The module M is g — 1 dimensional with

basis [a] for a € F*
action (a, 1)[c] = x1(ac)|d],
(0,b)[c] = [b7'c].

Let V' be the vector space with basis (z) for x € F — {0,1}. We have G-maps

Ly ®L“ —->L,\u
(A) @ (u) = (Aw)

LyeM—M
(A) ® [a] = A(a)la]

MM->VM
(-8)®a+b ifa+b#£0

[d®wbﬂ{o ' ifa+b=0

MM — L

[a] ® [b] = darb0M(a) " (N).

With this choice of maps, the structure constants of Section 2 are given as follows.

a(Ly, Ly, L)) =1,
ay(Lx, Ly) = 1,a2(Lx, Ly) = Laz(Ly, Ly) =1
ﬂl(LA7L[J) = lyﬂ?(L)nLu) = 17ﬁ3(L)\7Lu) =1

VoV
Bu(Lx, M): (z) = A(1 - z)(z)
Ba(Lx, M): (z) — Mz)(z)
Bs(La, M): (2) — A(

)(z)

L) (@) = ML= 2)(1 - 2)

r—1
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YM,M): VeV -VeV
)@ {((1~-§-)y)®(w+y—zy) if L+ #1
T y) >

ol 1
0 1f;+5_ ..... 1

YLy, M) VeV -k

YM,Ly): k- VRV

1 _iT 3 Aw) W @ (1-w)
q us#0,1

Y(Ly,Ly): k—k
1

1= —

g—1
6. Writing down pentagon equations

‘We now return to the general case. The pentagon equation
(axyz@W)oaxygzw o (X Qayzw) = axgy,z,w ©aX,Y,ZaW

for each quadruple (X, Y, Z, W) of simple objects is expressed in terms of the struc-
tural constants as follows.

e (a,b,c,d)
a(b, ¢, d)ala, be, d)ala, b, ¢) = ala,b, cd)a(ab, ¢, d)

e (a,b,e,m)
az(b, c)asz(a, be)a(a, b, ¢) = as(a, b)as(ab, )

e (a,b,m,c)
' an(b, c)as(a, c)as(a,b) = as(a, b)az(ab, c)

e (a,m,b,c)
a1(b, c)az(a, c)az(a,b) = az(a, be)a (b, o

e (m,a,b,c)
ala, b, c)a;(ab, c)ai(a,b) = ai(a,be)a; (b, c)

e {a,b,m,m)
B1(b,m) o B1(a,m) o az(a,b)V = Vas(a,b) o B1(ab, m)
B1(b,be) o B1(a, abc) o az(a,b) = ala,b,c) o F1(ab, abc)
e (a,m,b,m)
B2(b, m) o B1(a,m) o az(a,b)V = Bi(a, m) o B2(b,m)
B2(b,c) o B1(a,ac) ¢ az(a,b) = Pi{a,ac) o B2(b,ac)
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e (a,m,m,b)

/63(1)7 m) o Va?(aa b) o ﬂl (a: m) = ﬁl (0,, m) o ﬁ3(b: m)
B3(b, cb) o afa, ¢, b) o fr{a,ac) = Bi(a, ach) o B3(b, ach)

e (m,m,a,b)

a1(a,b)V o f3(b,m) o fz(a, m) = fz(ab,m) o Vay(a,b)
a1 (a,b) o B3(b, cab) o Bz(a, ca) = Ps(ab, cab) o a{c,a,b)

s (m,a,m,b)

83 (CI,, b)V o /63(67 7”) © )62(0’7 m) = 162 (a5 m) © ﬂ3(b1 m)
aq(a,b) o B3(b, cb) o Ba{a, c) = Ba(a,ch) o B3(b, cb)

e (m,a,b,m)

as(a,b)V o fBa(ab,m) o ai(a,b)V = Bz(a,m) o Ba2(b, m)
a3(a,b) o fa(ab, ) o ay(a,b) = Ba(a,c) o Ba(b,¢)

e (a,m,m,m)

~v(m, m) o VBi(a,m) o B1(a,m)V = Vpi(a,m) oy(m,m)
v(m,c') o az(a,c’) o fi(a,ac’) = VB1(a, m) o y(m,ac’)
~(b) o V351(a, ab) o B1{a,m) = VBi(a, ab) o y(ab)
y(e,m) o VBi(a,m) o fi{a,m)V = az(a,c) o y(c,m)

(e, ') o azla,c') o Bi(a,ac’) = as(a,c) o y(c,ac’)

e (m,a,m,m)

Bi(a,m)V ovy(m,m) o fa(a,m)V = Va{a,m) o y(m, m)
B1(a,m)V oy(m,c) o Ba(a, ') = VBa(a,m) o y(m, )
Pi(a,m) oy(b) o Ba(a, m) = VB2(a,b) o ¥(b)
Bi(a, ac) o y(ac,m) o Ba(a,m)V = a;(a,c) o y(c,m)

Bila,ac) oy(ac,c’) o Bz(a, ) = ay{a,c) o y(e, ')

e (m,m,a,m)

B2(a, m)V ovy(m,m) o B3(a,m)V = ~v(m,m) o V(a,m)
Ba(a, m)V oy(m,c'a) o B3(a,c'a) = y(m,c') 0 az(c, a)
B2(a,m) o y(b) o B3(a, m) = v(b) o VB2(a,b)
Ba(a, ) o y(c,m) o B3(a,m)V = v(c,m) oV fa(a,m)

Ba2(a,c)ov(c,c'a) o B3(a,c'a) = v(c,c') o az(c,a)
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* (m,m,m,a)

I

Ba(a,m)V o Vfs(a,m)oy(m,m m) o VBs(a, m)
Bs(a, m)V o VB3(a,m)ovy(m,c

) =~(m

) =~(m
B3(a,m) o V[3(a,ba) oy(b) = (ba) o V33(a,ba)

) =(

) =

H

c)oay(c a)

|

Bs(a,ca) o (e, a) o y(e,m) = ¥{ca,m) o VPB3(a, m)

Bs(a, ca) o ay(c, a) o y(c, ¢

y(ca,c’) o az(c’, a)

hd (m7 m7 m7 m)

¥(m, m)V o Vy(m,m) o y(m,m)V + Z'y(m, YV o Ba(c',m) oy(c',m)V

=Vy(m,m)oTV oV~y(m, m)
y(m,m)V o Vy(m,b') o y(b') = Vy(m,m) o TV o Vy(m,b')

y(m,m)V o Vy(m,m) o y(m,c") V+Z'ymc)V0ﬂg(c m)ovy(c, ")V

c

=Vy(m,c") o Bi(c”,m)

y(m,m) o Vy(a) o y(m,m) + 3 (m, ) o (¢, a) 0 7(c,m)

¢!

=T or(a)y(a)

y(m,m) o Vy(a) oy(m, ") + Y y(m,c) o fa(¢,a) 0 7(¢, ") = 0

v(b) o Vy(b,m) 0 y(m, m)V = Vy(b,m) o TV o Vry(m, m)
Y(b) 0 Vy(b,m) 0 y(m, )V = Vy(b,c') o B1(c/,m)
v(b) 0 Vy(b,b') 0 y(b') = Vy(b,m) o TV o Vy(m, b')

y(c,m)V o Vy(m,m) o y(m,m)V + Z ¥(e, )V o fafc',m) o y(c',m)V
= ﬂ3(c7 m) © V7(C7 m)
A{em)V o Va(m,¥) 0 4(b) = fs(e,m) o Vy(e,b)
¥(e,m)V o Vy(m,m) oy(m,c")V + Z'y (e, )V o Ba(c',m)oy(c,")V =0

c’

Y(e;m) 0 V(d) oy(m,m) + (e, ') o B, d) 0 y(c/,m) = 0

¥(e,m) o Vy(d) o y(m,c") + Y y(e,¢) 0 Ba(¢' d) 0 (e, &)

= 6c”,dc‘1ﬂ3(c7 dc_l) ° [31 (dc_la d)
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7. Solving pentagon equations

1. First reduction. With the choice of 6(a,b), 8:(a),02(b), p(a) € k* such
that

9(0'7 b) = Q’a(a,b),
92(0,) =1,
01(‘1) = /62(‘1: 1)

pla™l) —1y— -1
“-“q‘b‘m‘— = H(G,(l ) lﬁ] (a,l) y

we have

as(a,b) =1,65(a, 1) =1, 81(a,1) = 1.
So we may assume

asla,b) =1, 0z(a,1) = 1,5 (a,1) = 1.

We assume furthermore 7(1,1) # 0. Then the equations of Section 6 reduce to
the following.

ala,b,c) =1
ay(a,b) = 1,az(a,b) =1
az(ab,c) = az(a, c)ay(b,c)
ag(b,a) = ag(a,b)
Bila,b) =1,08s3(a,b) =1
B2(a,b) = az(a,b)

_ y(1,1)
e G

B1(b,m) o B1(a, m) = B1(ab,m)
Pz(a,m) o B2(b, m) = Bz(ab,m)
B3(b,m) o B3{a, m) = fBz(ab,m)
Bi(a,m) o Ba(b,m) = az(a, b)Ba2(b,m) o f1{a,m)
B2(a,m) o Ba(b,m) = aa(a,b)Bs(b,m) o B2(a, m)
Bi(a,m) o B3(b,m) = az(a,b)Bs3(b,m) o fr(a,m)

y(a) = ¥(1) o B1(a,m)
= ﬁ3(a3 m) o 7(1)

Br(a,m)~ ! = y(1) 0 By(a,m) o y(1)~}
Ba(a,m)™t =~(1)7" o Bz(a,m) o (1)
Br(a,m) =~(1)"" o Bz(a,m) o (1)
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'Y(ma a) = ,32(0,., m)*lv o 7(m7 1)
= Vpi(a,m)"! oy(m, 1)
y(a,m) = ¥(1,m) 0 Ba(a,m)™'V

= v(1,m) o Vs(a, m)"1

v(1,m) o B1(a,m)B1(a,m) = y(1,m)
v(1,m) o f3(a,m) ™ fa(a, m) = (1, m)
v(1,m) o Bz(a, m)B3(a,m)”" = v(1,m)
B3(a, m)Bs(a,m)oy(m,1) = y(m,1)
Bi(a,m)~ Ba(a,m) 0 y(m, 1) = v(m,1)
Bz(a,m)Bi(a,m)”" oy(m, 1) = 7(m, 1)

v(m,m) o f1(a,m)B1(a,m) =
Ba(a,m)B3(a, m) oy(m,m) =

v(m,m) o fBy(a,m)V =
P2(a,m)V oy(m,m) =

VBi(a,m) o y(m,m)

v(m,m) o V3(a, m)
fi(a,m)" Ba(a,m) 0 y(m,m)
v¥(m,m) o Bz(a,m)"Ba(a,m)

y{(m,m)V o Vy(m, m) o y(m,m)V
+ 37 [Ba(¢,m) TV o x(m, 1) 0 4(1,m) © Ba(¢/,m) "1V] fa(,m)

C
=V~y(m,m)oTV o Vy(m,m)

Y(m,m)V oVy(m,1) oy(1) = Vy(m,m) o TV o Vy(m, 1)

y(1) o Vy(1,m) o y(m,m)V = V~(1,m) o TV o Vy(m, m)

A, m)V o Vam,m) 09 (m DV +9(0,1)| 3 e’ )V 3a(e' )| 07t 1)V

= Vy(m,1)

(L, m)V o Vy(m,m) o y(m,m)V +v(1,1)y(L,m)V 0 Y Ba(c’,m) 'V Ba(c/,m)

=Vy(1,m)
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A(m,m) 0 V(1) o y(m,m) + 3 a(c,m) IV 0 4(m, 1) o 4(1,m) 0 Ba(c,m) "V

=T o~(1)y(1)
¥(m,m) o V[y(1) o fi(a,m)} o y(m,1)

+~(1,1)V {:Z (e, m) tan(c, a.)} oy(m,1) =0

v(1,m) o V[B3(d,m) o y(1)] o y(m,m)

+(1, )y(1,m) eV {Z a(c, d)ﬁe.(c',m)‘lJ =0

Vy(1,m)oy(m, 1)V = (1, 1)y(1) !
Y(1,m)V o Vy(m,1) = v(1,1)y(1) !
Vy(1,m) o TV o Vy(m,1) = v(1,1)y(1)*

AL, m)V o fa(e,m)~ y(m, m) o y(m, 1)V
+(1,1)2 Zaz(c, ) 1By(c/,m) =0

¥(1,m) 0 V[Bs(d, m) o y(1)] o y(m, 1) +7(1,1)* Y aa(c’, d) = ba,1

2. Possible change of bases. The base change given by

[a,b]" = 6(a,b){a,b]
[a,m])" = 62(a)]a,m]
[m, a]

[m,m,m]" = ¢(m)[m, m, m]

b]
m|
[m,a]’ = 6:(a)
]
|'=

[m,m,a}’ = ¢(a)lm,m,a)

6(a,b), 8;(a), 82(a), ¢(a) € k*
¢(m) € GL(V)

respects the assumption
as(a,b) = 1,,52(0,,1) = 1,,81(0,,1) =1

if and only if

IPRC)

91(0’) - 92( ) ¢(a)
_ $(a)o(b)

Ha,b) = $(1)p(ab)’
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3. Second reduction. We make here additional assumptions:
(i) aa(a,b) =1foralla,be A.
(i1) The representation of A on V given by a — fB2(a,m) is a sum of distinct
one-dimensional representations, not including the trivial representation.
These are satisfied in the case of the one-dimensional affine transformation groups
as we saw in Section 5.
(ii) means that V has a basis {l; | z € X'} indexed by a subset X of the character
group A = Hom(A4, £*) with 1 ¢ X so that
Bala,m): Iy — z(a)ly
for all a € A.
Then v(1): V — V should be of the form
Y(1): by lea(:c)
where s, € k¥ and ¢: X — X is a bijection.
Using the basis {l,}, we write
y(m,m): lz; ® 1y, — Zpﬁ:;lu ®l,
u,v

F(m,1): 1 — un,vlu ® 1,

u,v

YA,m): lz ®ly > Ty

with scalars py'y, Qu v, Tz,y-
Then the equations of Section 7.1 reduce to the following (i)—(xi):

(i) A is abelian.
(i) X = 4 - {1}.
(iii)
=1
oz He Y (z) =1
olz)y =u e z= o u)w
o @)o T (y) = 07 (v) o(y) = o(u)o(v)

(iv)
Bila,m): lp — o~ (z)(a M),
Ba(a,m): I — z(a)l,
Bala,m): lg o(:z:)(a_l)lac
)

yim,m): le @ ly = D piil®l,

Y(1,m): l; @l — T,
Ym,1): 1 Y quoly ® Ly
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with

(vi)

(vii)

(viii)

oo s o(ay = u r =0 uo
Po o (@) W) =0 w) | o) = ou)a(v)
Tey 70 & o@)y=1 &> zo(y) =1 < o ()07 (y

)=1
Guo 70 &= o wr =1 <= uwl(v)=1 <= a(u)o(v) =1

€
1,1) = —
€= =1

')’(1): Iy — leo(a:)

$¢85(z)So2(z) = €

Ay = €Qzy

Tyx = Ty

do-1(z),yTz,y = mm

do(z)y _ Sz
dz,0(y) Sy
Tx,0(y) _ Sz

To(z)y Sy

(x) Write 7(z) =z~ ! for z € X.

uw _ L oT(y)u Qor(v)v
pz,y T FPo(x),or(v) :IQUT(';;),y
pu,v - U(U),TO(I)_I-T.’L‘,TO'(QI)

ik .o (v) Sy Tu,ro(v)

1 Qv,07(v)

Yo Gz, (a)

L Tyro()
p:’; = To(u),z
v,7a(y)
1 S28y
“@e@ s,
u,0(v)
1 €  Trro(x)

To(x),v

UV
pa:,'y -

Tu,ro(u)

UV
Poy =

pu,v .
Ty
Y Sor(u) Tu,70(u)
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(xi)

tt et 1y 7
z'z1 4" 2
pI,Zl

T ol T
pz,y py z p:r',y" pyv
In (ix), (x) and (xi) it is understood that all p, g, r involved are nonzero.
Put

o(z)y = w07 (z)o 7 (y) = 07 (v) }

Z = YU, X4
{(‘T y,u,v) € z =0 "(uv,o(y) = o(u)o(v)

Then the symmetric group Sy acts on Z as follows:
(3, 550,0) = (o(z), a7 (v); 07(y), )
(@,9;u,v) = (y,70(v);0(u), To(z))
(z,y;u,v) = (07(x), u;y,07(v))
(2, 3:,) > (4, 70(y); 7 (1), 2)
(z,y;%,v) = (u,0(v);9(y), 0(2))
(z,y;u,v) — (1o(x),v;07(u), y).
The equations in (x) are compatible with this action.
Put
o(z)y #1
W =< (z,y,2) € X3 o(y)z #1
o™ z)o T y)o T (z) # 1
Then we have a bijection
(x,y,2",y) € Z
W,zy", ) ez
(x,y,z,2" 4", 2 2’ vy z) € XV (& v 2" W) eZ 3} - W,
(y,2,2",21) € Z
(z,21,y",2") e Z
(392,54, 2, oy 21) — (2,9, 2).
So we have one equation (xi) for each (z,y,2) € W,.
4. Change of bases. We examine how the base change given by
[a,b]’ = 6(a,b)a, b]
[a,m]" = 62(a) a, m]
[m,a]’ = 61(a)[m, q]
V=
| =

[m, m,m ¢{m)[m, m,m]
[m,m,a] = ¢(a){m,m,a]
with
, _ $(a)p(b)
o8 = S aab)
#(1)

01(0) = 92(0,) =

p(a) € k™
¢(m) € GL(V)

¢(a)
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modifies the parameters o, $z, 7'y, Qu.v, Tz,y

Let (I, )z x+ be a diagonalizing basis for the representations 85(—, m) of Aon V.
The map ¢(m): V — V is an isomorphism between the representations f(—, m)
and B5(—,m). So X’ = X and ¢(m) is of the form

d(m): Iy — Al forze X

with A; € k* . It turns out that

X' =X
7
o =0
U,V ’\U)‘U u,U
Pey= z0y
Az Ay
gy = 220
w = () e
#(1)
T:I:,y = j\::\';rar,y
Ao(z)
S;c = )‘: Sz
€ =€

8. Recovery of a finite field

THEOREM. Let B be a finite abelian group, X = B — {1}. Ifamapo: X —» X
has the properties

and
o(z)y=u z=0"'(u)v

o z)o T (y) =07 (v) a(y) = o(u)o(v)

forallz,y,u,v € X, then B is the multiplicative group of a field F and o(z) = 1—7
forallz e X.

Therefore we will identify A = F* with F a finite field, and o(z) =1~ % Then

—1 1
7 (x)_l—x
T(Z)Z%
or(z) =1~z
To(z) = —

We have o7(z) = z iff 2z = 1. So o7 has a fixed point iff char(F) # 2. If
o7(z) = z, the equation q; r(z) = €Gyr(z),c Yields € = 1. Thus

char(F) #2 = e=1.
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After a suitable change of bases we may assume

s =¢ forallze X.
The base change given by (\;). respects this assumption iff

Ao(z) = Az-
Equation (ix) now becomes

Qy,x = €4z ,y
’ryyl' = erx:y
€
Go-1(z)yTz,y = 4]
Go(z),y = Gz,0(y)
To(z)y = Tz,0(y)-

From now on we assume char(F) = 2. Let X, be a representative system of
{o, 7)-orbits in X. Since 7 has no fixed point in X, 7 leaves no (o)-orbit invariant.
Put

X():(U)-X*, XI:T'XD‘

Then
X =XoUX; (disjoint).

Make the base change given by

#(a) =1,
P { T:t,ra(:t) for z € X()
¥ 1 for z € X;.
Then
, 1 for x € Xp
's =
z,ro(z) € for € X
/ _ T%T for z € Xg
zom(z) ﬁ for z € X;.

Thus we may assume

1 for z € Xy
Trro(z) =

€ for z € X,
Georioy = T/fi—! for z € Xg
z,or{z) =

T%T for z € X;.

The base change given by (\;) respects this assumption iff

Az = ’\a(z)
)‘x’\r(x) = ¢(1)
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9. Small finite fields
1. Case of Fg. Here we let
A= (Fg)~
X =A"- {1} =Fs — {0,1}
o(z)=1~ %
We have Fg = Fa(a) with @® +a +1 =0, " = 1. Then F§ = (a) and X = {a* |
1=1,...,6}. The cycle presentation of ¢ is

(a'a?a?)(aPa’ad).

(o, T) acts transitively on X. Put
Xo = {a},0?,a'}, X;=71(Xo) = {ab a® a%}.

Then
X = XU X,.
As in the previous section we may assume
z =€
1 for z € X,
Tz, 7o(z)
€ for z € X,

TiT for xr € X,
dz,07(z) =

T:lﬂ for z E‘Xl.

The base change by ¢{a), (A;). respects this assumption iff

Ag = /\a(n:)
/\m/\'r(x) = ¢(1)'

The set Z consists of 30 elements

(a',a';a’,0?), (a',e%a% 0%, (a),a0o’a’),
(a*,a*;a8,a%), (o', afa?,a?), (a2,a1;a5,a6),
(@?,0%a% %), (% a%al,a®), (a2 a%a?al),
(o®,a% 0% %), (a®a'a%a®), (o a0l af),
(@®,a%a?a?), (a®a%a?a?), (a®a%a’al),
(e*,a'a?%,a®), (a',0%0%a%), (a* a%a? a?),
(a4,a4;cx5,a1), (04,a5;a5,a6), (a5,a ;al,al),
(a® 0% a?a?), (a°,a%a?a®), (o a%al a?),
(GS,aﬁ;asjaQ)’ (aﬁ’al;ad’ QA)’ (a67a2;a5,aa‘)’
(QG,QB;aﬁ,al), (QS,QS;aI’a2), (a(i’aﬁ;a?,af))
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Name them z1,..., z3g in this order.
S4 acts on the set Z and 7 is divided to two Ss-orbits By, Bs.
Bl = {zlv 29,23, 25,27, 28,29, 210, £11, 212, 213, 214,
216, %18, £19, 220, 221, £23, 224, 225, 226, 227775287230}1
By = {24, 26, 215, 217, 222, 220}
A representative system of Sy-orbits in Z is given by {z1,24}.
We write pyy = p(x,y;u,v) as well. By (x) of the preceding section, p(z) for

z' € Z —{z1, 24} are expressed by p(z1), p(za).
We have 120 equations (xi) corresponding to (z,y, z) € W.

[l ot

4 ot r o
T,y LY 52 T Y X 21, 42
pl‘:y p‘y’,z px’,y“ o p’y,z px,z; :

After substitution of the expressions of p(z) by p(z1), p(z4), they reduce to a
single equation
p(zs) = p(z1)*.

Recall that {o,7) acts regularly on X. So, for any nonzero scalar [ we have a
unique function A: X — kX with property

Aot =1
Ao(z) = Az = ,\:(lx) forall z € X.

The base transformation given by ¢(a) = 1 and (A;), has the effect
P(z2) = plea)i™
P'(zs) = plza)l™

1
2

So taking [ = p(z1)?, we may assume
p(z1) = 1.
Thus p(z) = 1 for
% = 21,22, 24,26, 27, 28, 12, 214, 216, 175 Z19; 224, £25, 228, 230,
while p(z) = € for

Z == 23, %5, 29, 210, 211, £13, 215, £18, 220, 221, £22, 223, 226, 227, 229-

Thus after a suitable base transformation, the pentagon equations have the two
solutions depending on the values of € = +1:

Sy == €
7‘01’&5 = 7‘052,&3 = Ta«x’ae =1
TaS,al = Tad a2 = Tabat = €
p— — - €
9al,a® = Ga?,a8 = Qat,a® = TA]
3 ol = Gob o = God ab = ToT
dad,a! = 4ub,02 = as,a% = TAT
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p(z) = 1 for

z=(a',a',a?,a?), (a},a?atab), (o}, ataf o),
(@0, 0% ab), (% o208 a%), (% at al,ad),
(a13,037alvaﬁ)7 (03,05,03,04), ((14,01,02,(13),
(a4,a27as7a5)7 (a47a 7as7al)’ (a57a ’a47a3)7
(a® a8 0 a?), (af a? abal), (ab af a? ab).
p(z) = € for
z =(a', a3, 0% a®), (Ozl,oz'”’,al,a‘l)7 (a2,a5,a2,al),
(a2’a67a3’a3)’ (a3,a17067a5)’ (03704,a2’a2)’
(03,05, 0%, aY), (a%,0d,a%a2), (a*, o’ ab,ab),

(a57a2,al,al)7 (aS’QB’a2’a4)’ (05,04,03,(16),

(@b at,at, o), (a6,a2,a ,a), (aﬁ,as,a
2. Case of F4. Let
A= (F7)”
X =A"-{1} =F4 - {0,1}
o(z) =1-1.

We have Fy = {0,1,0,0%} witha®?+a+1 =0, a® = 1. Then X = {a,0?},

=1, and
Z = {(a, q; a?,a?), (a2,a2;a, a)}.

We may assume

Sy =€
Taa2 = 1
Taz,a =€

Qo,0?2 = ‘peﬂ
_ 1

do?,a = TA]
Then equation (x) reduce to

2 2
oo’ a0
pa,a pa2 ’02 = €.

This time
Wi ={(z,y,2) € X® |2y # 1,yz # L,zyz # 1} = 0,

so there is no equation (xi).

Base transformation
¢'(1) = 17)‘0 = la /\a2 = l-l
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yields

10?0 -4_a?,a”
p o, = l pg,cxu
So we can take [ so that
2
Pad =1

Thus the pentagon equation have two solutions depending on € = +1.

Sz =
’:‘“a’ag =

Ta?,a

i
[ ™ —_ ™
-

=

Go,02 =

-

Qo200 =

=

2

!
i

2
o o

Pa,a
a,a

Ppz o2

o

It can be checked that when the assumptions made in Sections 7.1 and 7.3 are
not satisfied, there is no solution. Thus the above solution with ¢ = —1 is the
unique nontrivial deformation of Rep(F4 % F).
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