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0. introduction

For a tensor category A over a field k, the category 4B(A, A)4 of functors
A°P @ A — {vector spaces} with two-sided tensor actions is defined. When A is
semi-simple, 4B(.A, A) 4 is equivalent to the center of A. As an interesting example
of non semi-simple tensor categories, we take A to be the Mackey category M of
a finite group G. The category of G-sets is a subcategory of M and the category
of permutation G-modules is a quotient of M. Our result is that the category
MmB(M, M) is equivalent to the category of Mackey functors on the category of
connected G-sets equipped with automorphisms. (Theorem 12.6).

The following notations are used. V is the category of vector spaces over k. § is
the category of finite G-sets. For a k-linear categories X and Y, Hom(X', )) denotes
the category of k-linear functors X — ).

1. categories B(X,)), AB(X,)), AB(X,)Y)a

For k-categories X and Y, we denote by B(X,)) the category of k-bilinear
functors X°P x Y — V. Namely an object of B(X,)) consists of k-spaces ¢(X,Y)
for all objects X in X and Y in Y, and k-linear maps [f, g]: #(X',Y) — ¢(X,Y”)
for all morphisms f: X — X’ in X and ¢g: Y — Y’ in Y satisfying the following
conditions. :

(1.1.i) For morphisms f: X’ — X, f/: X” - X’ in X and g: Y — Y’ and
g:Y —Y"” we have

[fof'.g ogl=Ifg1°[f gl

(1.1.ii)

[1,1] =1

(1.1.ii) [f, g] is bilinear in f and g.
Easy consequences of these conditions are

(figl=1f,1lo1,9] =[1,9] o [f,1]

and

¢)(X1 @XZJY) = ¢(X17Y) ®¢(X27Y)
(X, Y1 ®Y2) = ¢(X, Y1) ® ¢(X, Y2)

Let A be a tensor category. We assume that A is strict. The tensor product of
X and Y is denoted by XY. The tensor product of morphisms f: X — X’ and
9:Y — Y’ is denoted by fg: XY — X'Y’, while the composition of f: X — Y
and g: Y — Z is denoted by go f: X — Z. The unit object of A is denoted by I.

We have a notion of A-modules. See [2] for the definition. Let X, Y left A-
modules. We define the category 4B(X,Y) as follows. An object of 4B(X,)) is
an object ¢ in B(X,Y) equipped with linear maps

A o(X)Y) — ¢(AX, AY)
for all objects A in A, X in X, and Y in Y, satisfying the following conditions.
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(1.2.1) For morphisms f: X’ - X in X and g: Y — Y’ in ), we have a commu-

tative diagram

$(X,Y) —=

F.9] l 1[Af,Ag}
H(X'Y') —— G(AX, AY")
A.

— ¢(AX, AY)

(1.2.i1) For a morphism h: A — A’ in A, we have a commutative diagram

G(X,Y) —2o ¢(AX,AY)

A’.l [y

HAX,AY) s G(AX, AY)

(1.2.iii) For objects A, A’ in A, we have a commutative diagram

H(X,Y) 25 $(AX,AY)

(A’ A). \, la
Pp(A’AX, A'AY)

(1.2.iv) For the unit object I, I.: ¢(X,Y) — ¢(X,Y) is the identity.

Let X, Y be (A, A)-bimodules. The category 4B(X,))4 is defined as follows.
An object of 4B(X,Y).4 is an object ¢ in B(X,)) equipped with linear maps

A ¢(X,Y) — ¢(AX, AY)
A: ¢(X,Y) - ¢(XA, Y A)

satisfying the following conditions.
(1.3.1) same as (1.2.1).
(1.3.i1) same as (1.2.ii).
(1.3.iii) same as (1.2.iii).
(1.3.iv) same as (1.2.iv).
(1.3.v) The analogue of (1.2.i) for .A.
(1.3.vi) The analogue of (1.2.ii) for .A.
(1.3.vii) The analogue of (1.2.iii) for .A.
(1.3.viii) The analogue of (1.2.iv) for .1.
(1.3.ix) For objects A, B in A and X in X and Y in Y, the diagram

H(X,Y) —2  $(AX, AY)

5 s

#(XB,YB) —— $(AXB, AXB)

1s commutative.



2. category 4B(A, X)

We call a quadruple (A, A’, ¢, n) a duality if A, A’ are objectsin Aand e: AA” —
I, n: I — A’A are morphisms in A such that the following diagrams commute.

A M oaaa oA A qan
1N\, fea 1\, Lave
A, A

It is well-known that a duality (A, A’, €,77) gives rise to the adjoint isomorphisms
Hom(AB,C) = Hom(A, A'C)

for B,C in A, and vice versa.
We will show that such an isomorphism holds also for any object ¢ in 4B(X, ).

Proposition 2.1. Let ¢ be an object in 4B(X,Y), and (A, A',€,n) a duality in A.
Then we have natural isomorphisms

$(AX,Y) = ¢(X, A'Y)
forall X e X,Y €.

Proof. Define the maps o, 7 to be the composites

nX,1]

o: p(AX,Y) 2o p(AAX, AY) 25 4(X, ATY)
7o $(X, A'Y) 25 p(AX, AA'Y) B g ax, Y)
We will show they are inverse to each other.
We have a commutative diagram
HAX)Y) 25 G(AAX, AY) 25 G(AAAX,AAY)
o\, hx1] L1anxy
$X,AY)  — $(AX, AA'Y)
N\ J ey
?(AX,Y)
Hence
S(AX,Y) ) paaAx, AAY)
roo N\ L1anx.ev]
P(AX,Y)
But we have
SAXY) ) pAAAX, AXY)
1] feAx,) L ey
H(AX,Y) {A:)?,n HAAAX,Y)



Hence oo = 1.
We have a commutative diagram

OX,AY) 25 9(AX,AA'Y) A5 G(ATAX, AAATY)
N\, vl Liamy)
HAXY)  —  YAAX,AY)
o\, l[eX,l}
(X, A'Y)
Hence
S(X, AY) A gaAX, A ALY
gor \, [ mx,a%ey]
P(X,A'Y)
But
o(X,AY) Y gaax, aAAY)
1] Aty \ Llexn
BXAY) (X, AALY)

Hence o o 7 = 1. This proves the proposition.
Proposition 2.2. The following diagram is commutative.
¢(X,Y)
Al \\ [1,€Y]
d(AX, AY) — o(X,A’AY)

Proof. This follows from the diagram
#(X,Y)

A/ Lara). N\, [1,eY]
HAX,AY) — $(A'AX, A'AY) bt H(X, A'AY)

We say A is rigid if for every object A in A there is a duality (A4, A4’ € 7).
Hereafter A is assumed to be rigid and we choose a duality (A, A*,€4,n4) for each
A. Especially for the unit object I we choose the duality (1,1,1,1).

For a morphism f: A — B in A, define the morphism f*: B* — A* by the
commutative diagram

B L &

nAB*lv TA'eB

A*AB* — A*BB*
A*fB*
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Then the assignments A — A* and f + f* form a funtor A% — A.
For a morphism f: A — B in A, the following diagrams are commutative.

I 4, A*A AB* A Aar
")BJ' lA*f fB*l lCA
B*B — A*B BB —

f«B €RB

For objects A and B in A, we have an isomorphism x4,5: (AB)* — B*A* such
that the following diagrams are commutative.

I ", B*B ABB*A* APXAE AB(AB)
"’IABJ/ lB*nAB AEBA*l lCAB
(AB)*AB B*A*AB AA* NN I

Xa,BAB €A

Now we consider 4B(X,Y) for X = A regarded as the left A-module by left
tensor product.

Theorem 2.3. For any left A-module Y, we have an equivalence

AB(A,Y) ~ Hom(Y, V).

Proof. We give only the construction of functors. Define the functor
S: AB(A,Y) — Hom(),V)

by
S(@)(Y) = ¢(1,Y).

Define the functor
T: Hom(Y, V) — 4B(A,))

as follows. For 1 € Hdm(y, V), ¢ = T() is given by
$(A,Y) = 4(AY)
for objects A in A and Y in ). For morphisms f: A’ - Aand g: Y — Y’, define
[f.91 = ¥(f"9).
For objects A, Bin A and Y in Y, define
B.: ¢(A,Y) — ¢(BA, BY)
to be the composite

. Y(xg 4 BY
P(AY) Py 4 g gy ) Ve 4 ((BAY BY).

Then one can verify that S and T are inverse to each other.



3. Mackey category

Let G be a finite group. Let S be the category of finite G-sets. The direct
product of G-sets X and Y is denoted by XY. The direct product of G-maps
f: X —> X and g: Y — Y’ is denoted by fg: XY — X'Y’. 1 denotes a one-point

G-set.

Let us review the definition of Mackey functors ([1], [3]). A Mackey functor 1) for
G consists of vector spaces (X ) for all G-sets X and linear maps f,: ¥(X) — ¥(Y)
and f*: Y(Y) — ¥(X) for all G-maps f: X — Y. They should satisfy the following
conditions.

(3.1.1) ¥(X) and f, form a functor & — V.

(3.1.i1) ¥(X) and f* form a functor S°P — V.

(3.1.iii) For a pull-back diagram

x —r , x/

| |7

Yy — Y’
q

the diagram
P(X) —F— P(X)

| K

YY) — YY)

is commutative.
(3.1.iv) Let ¢y: Uy — Uy + Uz and i5: Us — Uy + Uz the inclusion maps. Then

the maps

(i1x,92.) s Y(U1) @Y (Uz) — (U + Uz)
(41,13): Y(Ur + Uz) — ¢(Uy) ® ¥(Uz)

are inverse to each other.
(3.1.v) ¥(@) =0

We denote by M(S) the category of Mackey functors.

Let us review the definition of the Mackey category for G ([3]). The Mackey
category M is defined as follows. An object of M is a finite G-set. For G-sets X
and Y, the hom-space Homas(X,Y) is the vector space defined by generators and
relations as follows. The generators are symbols called ”span”

(X —U-—>Y]
for G-maps U — X and U — Y. The relations are
X—Ui+U;»Y]=[X—U =Y]|+[X «<U;—Y]
The composition of spans is given by

Y~V osZoX—U->Y]=[XW-=17Z,
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where W U

Lo

V —— Y

is a pull-back diagram.
A basic fact is

Theorem 3.2. We have an equivalence
M(S) ~ Hom(M, V).

The equivalence is given as follows. For a Mackey functor 1, define y~: M — V
by

for G-sets X and
Y (X U -5Y]) = b, oa”: 9(X) — p(Y).

Then the aSsignment 1+ 1" yields the equivalence.
The Mackey category M is a tensor category: The tensor product of G-sets X
and Y is just the direct product X x Y = XY . The tensor product of spans are

given by
(X «U->Y][X «U ->Y]=[XX"—<UU -YY'].

The unit object is the one-point set 1.
The Mackey category is rigid. Indeed, for a G-set X,

(X, X, [ XX —« X —-1],1 — X - XX])

is a duality, where X — X X is the diagonal map. This choice of duality yields the
functor (—)*: M — M given by

X=X, X —U->Y]"=[]Y «U — X]
The isomorphism xx y: (XY)* — Y*X * is just the transposition XY — Y X.

4. categories M(S, S), sM(S,S), sM(S,S)s

In view of the equivalence Hom(M,V) ~ M(S) of Theorem 3.2, the categories
B(M, M), yB(M, M), pB(M, M) are respectively equivalent to the categories
M(S,S), sM(S,S), sM(S,S)s defined below.

The category M(S, S) is defined as follows. An object ¢ in M(S,S) consists of
k-modules ¢(X,Y) for all G-sets X and Y, and k-linear maps

(f:9)+: $(X,Y) — $(X",Y")
(f,9)": ¢(X',Y') = $(X,Y)

for all G-maps f: X — X’ and ¢g: Y — Y’, which should satisfy the following
conditions.



(4.1.1) The collection of ¢(X,Y) and (f,g). for G-sets X,Y and G-maps f,g

forms a functor § x § — V.
(4.1.i1) The collection of ¢(X,Y) and (f,g)" for G-sets X,Y and G-maps f,g

forms a functor S°P x S§°P — V.
(4.1.111) For G-maps f: X — X’ and g: Y — Y/, the diagrams

(£,
P —

s(x,y) L0 a(x Yy 4(x,Y) B(X"Y)

(1,9)’T T(l,g),‘ (1,9)*1 l(l,g)*

H(X,Y') — H(X",Y) HX,Y') —— ¢(X",Y)
(fit)« (f:1)*

are commutative.
(4.1.iv) If

is a pull-back diagram, then

(f1,1).
¢(X1,Y) — ¢(X1,Y)

<p,1)'I T(P':l)*

H(X2,Y) —— #(X3,Y)
(f2,1).

1s commutative.
(41.v) If

)/l N Yll

92

is a pull-back diagram, then

#(X, Y1) 224X, vy)

(1,.,>'I T(l,q')*

¢(X,Yz2) —— #(X,Y7)
(1,92}~

is commutative.
(4.1.vi) Let i1: X; — X1+ X3, 12: X2 — X3 + X, denote the inclusion maps.

Then

(GG, )", (i, 1)) &( Xy + X2, Y) = d(X1,Y) @ ¢(X2,Y)
((ilrm*’ <i2= 1>*): ¢(X17Y) @¢(X27Y) - (b(Xl + XZ,Y)
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are inverse to each other.
(4.1vii) Let i1: Y1 — 11 +Y5,i5: Yo — Y7+ Y5 denote the inclusion maps. Then

((17i1>*1 (17i2>*): ¢(X, YI + }/2) - ¢(‘X7 YI) @@(X, YZ’)
(<lvi1>*7 (1>i2>*): ¢}(X7 Yl) @'QS(X:Y?) - g’b(X,le + YQ)

are inverse to each other.

(4.1.viii) ¢(0,Y) =0

(4.1.ix) ¢(X,0) =0

A morphism o: ¢ — ¢’ in M(S,S) consists of k-linear maps ox y: ¢(X,Y) —
¢'(X,Y) for all G-sets X and Y, which commute with (f,g). and (f, g)* for all

G-maps f and g.
This ends the definition of M(S, S).
We have the equivalence B(M, M) ~ M(S, S).

The category sM(S,S) is defined as follows. An object in sM(S,S) consists of
an object ¢ in M(S,S) together with maps
Z.: §(X,Y) > $(ZX,ZY)

for all G-sets Z, which satisfy the following conditions.
(4.2.1) For any G-maps f: X — X’ and ¢g: Y — Y’, the diagrams

p(x,Y) L2 gxr v

2 |

H(ZX,ZY) —— $(ZX',ZY")
(vazg)*

and .
p(x,Y) L pxr v

2| |»

$(ZX,2ZY) $(ZX', ZY")

(Zf,Zg)
are commutative.
(4.2.i1) For any G-map h: Z — Z’, the diagrams

d(X,Y) —Z #(ZX,ZY)

z’.l l(LhY).

H(Z'X,2'Y) ST HZX,2'Y)

and
H(X,Y) —Z $(ZX,ZY)

z’l l(hx,l),

HZ'X,Z'Y) HNZ'X,ZY)

(1,hY)*

9



commute.

(4.2.iii)
o(X,Y) 25 $(ZX,2Y)
(2'7). \, 1z
HZ'ZX,Z'ZY)
(4.2.iv)

1.: $(X,Y) — ¢(1X,1Y)

coincides with the isomorphism
(p2,p2)": ¢(X,Y) — ¢(1X,1Y)

where po: 1X — X, po: 1Y — Y are the second projections.
A morphism ¢ — ¢’ in sM(S,S) is a morphism ¢ — ¢’ in M(S,S) making the
diagrams
IX.Y

¢(Xa Y) —_— ¢’(X7 Y)

2| B

HZX,2Y) —— ¢'(ZX,ZY)

OZX,ZY

commutative for all X, Y, Z.
This ends the definition of sM(S,S).
We have the equivalence pB(M, M) ~ sM(S,S).

The category sM(S, S)s is defined as follows. An object of this category is an
object ¢ of M(S,S) together with the maps

Z.: $(X,Y) — §(ZX,ZY)
Z: )(X,Y) > §(XZ,YZ)

for all G-sets X, Y, Z satisfying the following conditions.
(4.3.4), (4.3.ii), (4.3.ii), (4.3.iv) : the same as (4.2.i), (4.2.ii), (4.2.iii), (4.2.iv).
(4.3.v), (4.3.vi), (4.3.vii), (4.3.viii): conditions for .Z analogous to (4.2.1), (4.2.ii),
(4.2.ii), (4.2.iv).
(4.3.ix) The diagmram

dX,Y) —Z  $(ZX,2ZY)

wl [ w

HXW,YW) —— G(ZXW, ZY W)

is commutative.

A morphism ¢ — ¢’ in sM(S,S)s is a morphism ¢ — ¢ in M(S,S) which
commutes with Z. and .Z for all Z.

This ends the definition of sM(S,S)s.

We have the equivalence pB(M, M) =~ sM(S,S)s.
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5. equivalence sM(S,S) ~ M(S)

By Theorem 2.3 we have an equivalence
MB(M, M) ~ Hom(M, V).
Since mB(M, M) ~ sM(S,S) and Hom(M, V) ~ M(S), we obtain
M(S, §) ~ M(S).
The equivalence is given by the functor
S: sM(S,S8) — M(S)
defined as follows. Let ¢ € sM(S,S) and S(¢) = 9. Then
$(X) = $(1, X)

for a G-set X and
f*:<17f)*a f*:<17f>*

for a G-map f.

The inverse

M(S) — sM(S, S)
of S is given as follows. Let ¢ € sM(S,S) and T(¢) = ¢. Then
(X, Y) =9(XY)
for G-sets X, Y, and
(f,9)0« =(f9), (f9)" =(fg)"

for G-maps f, g. The operation

Z.:p(X,Y)— ¢(ZX,ZY)
is the composite
B(XY) P2 g(zxY) PR (2 X 2Y)

where p;; are the projections.
Proposition 2.1 for ¢ € sM(S,S) takes the following form. The composite

(a.

ox: (X, Y) 5 p(X X, XY) 2 p(X, xv) P 91, XY)

1s an isomorphism and its inverse is given by

(1L,AY)"

(1, XY) S 6(X, XXY) o(X, xY) P g(x,Y).
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6. categories K and N(K)

The category K is defined as follows. An object is a diagram
XUty
of G-sets such that (a,b): U — X x Y is injective. A morphism
(X2 U-by) o (x &y y

is a triple (f,h,g) of G-maps f: X — X' h:U — U’, g: Y — Y’ satisfying the
obivious commutativity.
K has finite limits, taken componentwise. In particular we cay speak about

pull-back diagrams in K.
The category N(K) is defined as follows. An object € consists of k-modules (X)

for all objects X in K and linear maps

f.: 0(X) — 0(X')
f.: 0(X’) - 0(X)

for all morphisms f: X — X’ in K, satisfying the following conditions
(6.1.1) 6(X) and f. form a functor K — V.
(6.1.ii)) §(X) and f* form a functor K°P — V.

(6.1 .iii) If
fi

is a pull-back diagram in X, then

0(X1) — 6(X4)

o T

.
0(X2) —— 6(X3)

is commutative.

(6.1.iv) Suppose X = (X « Uy + Uz — Y) is an object of K. Let X; = (X «
Uy - YY), Xo=(X «Uy; —Y)and i;: Xy — X, iy: X3 — X the obvious
injections. Then

(i1,i3): 6(X) — 0(X,) © 6(Xs)
(ins i) 0(X1) ® 0(X5) — 0(X)

are inverse to each other.
(6.1v) (X —0—Y)=0

12



(6.1.vi) Let X1 = (X1 « U = Y), X5 = (Xp « Uz — Y) be objects in K
and put X = (X1 +Xo «~ Uy + Uz = Y), j1: X1 — X, j2: Xy — X the obvious
injections. Then

(57,32): 0(X) — 0(%1) ®0(X2)
(J1x,J2a) : 0(Xq) @ 6(X2) — 6(X)
are inverse to each other.

(6.1.vii) The right-sided analogue of (6.1.vi).

(6.1.viii) Let X = (X «— U ~2,Y) be an object of K. Put U = U——U-1)
and a = (a,1,b): U — X. Then

a.: (U) — 6(X)
a’: (X)) — 6(U)
are inverse to each other.

A morphism 6 — & in N(K) consists of linear maps §(X) — ¢'(X) for all objects
X in K satisfying the commutativity with f, and f* for all morphisms f in X.

This ends the definition of N(K).
We have an equivalence

N(K) ~ M(S)
by the functor sending ¢ € M(S) to ¢ € N(K) defined by
HX —U—=Y)=9({U)

7. idempotent operation ¢(X « U — Y) on ¢(X,Y)

Let ¢ be an object in sM(S,S).
For diagrams
zEEUSXx, zAEAv iy

of G-sets, define the. map

(ZEU-S5X, 24V 57} ¢6(X,Y) - ¢(X,Y)

to be the composite

i c,a),(d,b))* a,b).
$(X,Y) 2o p(zX, 2Y) LG vy @0 50X y).

Properties of this map are given below.

(7.1)
H(X,Y) {p2,p) HZX,ZY)
z.| /{ZQZX;ZX,Z£LZY—I~ZY}
HZX,ZY)

where p;, py are the projections.
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Proof.
s(x,Y) "2 gzx,zv)

z.] lz

HZX,2Y) — $(ZZX,2ZY)

(p13,p13)*
Let A: Z — ZZ denote the diagonal map. Then the composite
o(2X,2Y) PP wzzx, 22y) A A wzx, zY)

is the identity, and the composite

d2X,2Y) 2 922X, 22Y) BB w2z x, Zy)
is
(z&2zx Lzx, z2 zvy L zy)
as (p1,1zx) = AX. Hence the conclusion follows.
(7.2) Let
VA (i'._ UI VA
el Lo el N
z — U — X Z +— V — Y
c a d b
be commutative diagrams in which the left square is pull-back. Then
(zUSx 2zt vy =zl UvSx 2L vy

Proof. We have the commutative diagram

o(x,Y) L ¢(zx,2Y)

7] (a) laerys N @by
2’X,72'Y : ZX,72'Y X
( ) X #( ) e HZX,V)
(a0 | (b) L temny” | tteany”
U, z'Yy — U,z'y — U,v
4 ) (£,1) # ) (1,(d",b))* AV
(L) N\ () ./ L tan).
oY) o HXY)

(a) is commutative by (4.2.i1). (b) is commutative because the diagram

v —L U

(6',a’)l l(c,a)

72’ —— 7X
eX
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is pull-back. (c) is commutative by (4.1.iii).

The composition of the upper path from ¢(X,Y) to ¢(X,Y) yields {Z «— U —
X,Z «— V — Y}, while the composition of the lower path yields {Z' «— U’ —
X, 7' —V — Y}. Hence the conclusion follows.

(7.3)
Zl Zl L Vl

AN el Lo Y

7z — U — X Z +«— V — Y
c a d b

the square in the right diagram is pull-back. Then

’

zevSxzivhyy={z<lvu-Sx 2L vy

(7.4) Let

w — U

AR

|4 — Z

be a pull-back diagram. Then
(zev-Sxzltv by ={x Lt x Lxxeewlyy
—{vLwesxy Ly Ly
Proof.
(22U 5X24V 5y ={UEU-SX,UEW2LY) by (7.3)
=xExbLxxeewlyr by (72

The second equality is proved similarly.

(7.5) Suppose the diagrams

7 VA
9/ TJe /o T
Ut . U v L,ov

g/ e Na]a VA NN
z — U — X Z — V' — Y
< a’ d’ b
are commutative and the squares are pull-back. Then
(7 v Sx, 2 vy o{Z U5 X, 22V Ly

22Dy L x g WPy ¥y

15



Proof. We will show the following diagram is commutative.

o(X, V)2 g(zx,zy)  O29D swvy @Y sxy)
(Z'Z). "\, lz'. lZ’. lz’.
o2 ZX, Z'ZY)<Z/<c,a),_zf(d,b)>~¢(Z/U’ Z'V)(Z/m—zib%qﬁ(z'x, 2'Y)
((g,g,a"), (b Bb"))™ N\ (1) L (e an @ by
p(U", V") (U, V')
(@ 5"y N\, e’ b1,
$(X,Y)

The composition of the horizontal path is
(zU-SXx, 24848 v- 5y,
the composition of the vertical path is

bl

(< v x, 7L v Yy,

and the composition of the oblique path is
{ZIZ ((g’_7g) UII ‘a_") X, ZIZ (M) VII b_") Y}

Hence the conclusion will follow from the commutativity.

The small triangle and the two squares in the diagram are commutative by
(4.2.ii1) and (4.2.1). It remains to show the commutativity of (I). We have the
commutative diagram

¢(Z,ZX, _) (2 (c,_a)),l)" gb(ZIU,—‘) (Z‘a_,l)‘), (ﬁ(Z’X,‘)
((9',9,0"),1)" "\, Lt e, 0" (1T) L anny
s, ) g,
(@”,1). "\, L@’ .
¢(X: ")

The commutativity of (II) follows from the pull-back diagram

U" (g',e) Z/U

/| |

U —— 7'X

(¢',a’)

16



We have a similar commutative diagram

o(-z2v) V- zv) M2 g, zY)
(L(h R N law.m: L@y
f’
(= V") = (=, V)
(1,72 N L.
¢(_7Y)

Combing the two diagrams, we know the commutativity of (I).

(7.6) Suppose the diagram

U = X
c’,/ lg lf
zZ — U — X

is commutative, where the square is pull-back. Suppose
zL vty
is given. Then the following diagrams are commutative.

{Z2U'>X",Z+V Y}

H(X',Y) d(X",Y)
(f’”'l l(f,l)*

o(X,Y XY

4 ) {Z—U—X,Z—V—-Y)} ¢( )

and

p(x,y) LTIV, Xy
<f=1>*T Iu,n*

#(X,Y) #(X,Y)

{Z+U—-X,ZV-—-Y}

Proof. The first one follows from the commutative diagram

((C”al))(d:b))* (a',b)‘
———————— [

(X, Y) —Zs $(ZX', ZY) (U, V) H(X',Y)

lu,m l(zm* l@’”* lu,n*

PX,Y) —— $(Z2X,2Y) ——— $UV) —— ¢(X,Y)
Z. {(c,a),(d,b))* (a,b).

17



where commutativity of the middle square is assured by the pull-back

(c",a”)

¢ U’
Zfl lg
ZX —— U

(c,a)
The second one follows from the commutative diagram

H(X'Y) —Zs p(ZX',2Y) pU', V) 105 p(x7 Y

]<f,1>* T(zmr T(g,n* T(f,n*

¢(X,Y) —— #(ZX,2Y) o(U, V) —— ¢(X,Y)
Z. {{c,a),(d,b))* {a,b} .

{(',a),(d,b))"

where the commutativity of the right most square is assured by the pull-back

U'__,"_'__.,X'

(7.7) The right-sided version of (7.6).
(7.8) For G-maps f: X — X’ and g: Y — Y’, we have

(.90 0{Z U -5 X, 22V Y} o (£, g)*
—{zEUv X 28 v Sy
Proof. 'This follows from the commutative diagram

((c,a),(d,b))" (a,b).
ey ey

$(X,Y) —Z s $(2X,2Y) H(U,V) (X, V)

(f,g)"I T("Zf,zw “ l(f,g% "

HNXY') —— d(ZX',Z2Y) H(U, V) — ¢(X',Y")
Z. ((c.fa),(d,gb))~ (fa,gb).

(7.9) For any diagram
X2ty
the following diagram commutes.

HX,Y) Z5 ¢(1,XY)

L (e
(XXX, XeU=Y}| #(1,U)
L@@
HX,Y) — ¢(1,XY)

agx

18



Proof. By the commutative diagram

sX,Y) 5 exx,xy) SN sxoxy) B s, xY)

(1,(a,b))" | [RENCRONY L@y
s(xx,u) 2N axovy P 4,0
(1,(a,b)). | L @) L @by,
HXX,XY) —  ¢(X,XY) -— $(1,XY)
(8,1) (p,1)x
(1,(a, b))« o (1,(a, b)) 0 0x is equal to the composite
H(X,Y)
x.|
H(XX,XY)
(1(a,b))" |
H(XX,U)
(1,(a,b)). |
H(X X, XY) a1 (X, XY) o LXY) *)
On the other hand, by the commutative diagram
(X,Y)
X.| N\, (X X).
HXX,XY) X5 (XXX, XXY)
(A (ab)" | l(xaXx@p)y
s(x,U) X sxx,xv)y YN sx,xu)
(o). | laxe., Laxe).
HXY)  — XX XY) e H(X,XY) — $(1,XY)

and XAoA =AXoA,weseethat cx o{X « X - X, X «— U — Y} is eaual to
the composite
P(X,Y)
(XX).l
HXXX,XXY)
(AX,X(a.b)" |
HXX, XU)
<1’Xb>*l

XX, XY) —  $(X, XY 1. XY
#( ) (51" 9 ) o #( )
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Moreover
H(X,Y) XX HXXX, XXY)

x.] 1) Laxy
o(xX, xy) 2N 4xx, xxY)
(1,(ab))" | (I1) Lax @by

pxx, Uy eV gxx, xU)

(L(ab) N\ Laxe).
(XX, XY)
Here the commutativity of (I) is assured by (4.2.ii) and the commutativity of (II)
by the pull-back

(a,b)l JAY

XY —— XXY
X (a,b)

Hence ox o {X « X — X, X « U — Y} is equal to the composite (*) as well.
This proves (7.9).

If (a,b): U - X x Y is injective, put

X2 ULy)={x 2 XxLxx2Uu->Yy}
= {y L uv-%xy+vy-Ly)

which is an endomorphism of ¢(X,Y).
(7.10) Let f: X' — X, g: Y’ — Y be G-maps. Let

yr L, Xy

| [

U — XxY
(a,b)

be a pull-back diagram. Then the following diagrams are commutative.

’ ’
e(X“i-U—bﬂ*Y')

H(X",Y') — $(X',Y)
<f,g)*l ' l(f,gh
P(X,Y) H(X,Y)

e(X —U—Y)
b

a
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’ a’ b’, 7
e(X' Eou vy

(X', Y) H(X',Y')
(f.90" T(f,g)"
#(X,Y) (X,Y)

e(X<-—U———~Y)
a b

Proof. Tt is enought to show the commutativity in the case where f =1 and the
case where g = 1. We will consider only the latter case.

By (7.7) ’ ,
d)(X/’Y) {X+—X —-+X Xe—U—-Y} ¢(X,7Y)
<f,1>.l l(f,l)*
#(X,Y) H(X,Y)
(XXX, X—U-Y)
By (7.3)

{X«—X’—>X’,XHU—*Y}:{X'«-X'—)X’,X'«—U'—-—>_Y}_
The proof for (f, g)* is similar.

(7.11)
e(X 2 Xy By) =1.

Proof. This is clear from (7.9). Or

(X—X-X,XZ Xy BY}={1«X > X,1<Y >Y} by (7.3)
=1.

(7.12)

UH U!

! !

: U — XY
be a pull-back. Then

e(Xt——U—+Y)oe(X<——U'——)Y):e(Xé—U”—*)Y)-
Proof. 'This is clear from (7.9). Or, let

W — U’

Lo

U —— Y
be a pull-back. Then we have a pull-back diagram

UI/ —_— W

l l

X — XX
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Hence

(X=X - X, XU—>Y}o{X - X->XXU-Y}

“{XXE X5 X, XX —W Y} by (75)
={X=X->X,X<U"-Y} by(73)

(7.13)
e(X—U1+U;=Y)=e(X Uy -»Y)+e(X Uz »Y).
Proof. This is clear from the definition.

8. equivalence sM(S,S) ~ N(K)

We already know by Theorem 2.3 that sM(S,S) ~ M(S), and hence sM(S, S) =~
N(K). In this section we construct the equivalence in another way.

Suppose given ¢ € sM(S,S). We will construct an object 6 € N(K).

For an object X = (X « U — Y) of K, we have the idempotent

e(X): ¢(X,Y) — ¢(X,Y).

Let
0(X) = Ime(X)

and
inx: 8(X) — ¢(X,Y), prx: ¢(X,Y) — 6(X)

the inclusion and the projection.
Let f: X — X’ be a a morphism in K with X = (X «— U - Y), X' = (X' «
U —-Y"), f=/(f h,g). Define the map f. by :

HX,Y) «2X_ 9(X)

(1,9). l if.

(X", Y) —— 6(X')

Pry:

and f* by

(X, Y) X 9(X)

<f,g)*T Tf*

(X", Y') e—— 0(X')

iny/

We will show that §(X), f,, f* satisfy the conditions of Section 6 so that 6 is an
object of N(K).
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Lemma8.1l. LetX = (X « U —=Y)andX' = (X' U - Y'). Let f: X — X',
.Y — Y’ be G-maps. Suppose U — XY and U’' — X'Y' are the inclusion maps

fw‘zd UN(fxg) Y(U')=0. Then

prxr o (f,g)« o inx =0
prx o {f,g)" oinx: = 0.

Proof. Put Uy = (f x g)7*(U’) and put Xy = (X « U; = Y). Then

ex oex, = 0.

Also by (7.10)
(f7g>* © e(Xl) = C(X,) © <f~g>*
e(X1)o (f,9)" = (f,9)" o e(X').

Hence
€xr © <f7g>* oex = <f>g>* oe(Xl) cEeEx = 0

and
€x ©° <f) g>* oeExsr = ex o G(Xl) (¢] <f,g>* = 0.

(6.1.i, ii) For morphisms f: X — X’ and f': X’ — X",

(f of), =f of,
(fof) =f of"

Proof. Write
X=(X«U—-Y), X=X«U>Y"), X'=(X«U"->Y")

and

f=(fhg), £=(.14)
We may assume that U — XY and U’ — X'Y’ are the inclusion maps. Let Uj
be the complement of U’ in X’ x Y’ and put X = (X’ «~ Uj; — Y’). Since
X'Y' = U’ +U{, we have 1 = e(X’) + (X)) Since U N (f x g)~*(U}]) = 0, we have
by lemma
prx; o (f, g}« oinx =0 (1)
prx o (f,g)" oinx, =0 (2)

(f'of,h oh,g' og).

=prxr o (f' o f, g 0 g). 0inx

=prxr o (f', g}« o (f, )+ o inx

= prx» o (f’ ')*°(€X'+6x') o (f,g)« oinx
(f

=prxr o (f’,9"). o exs o (f, g)« oinx + prxr o (f', g')x 0 ex; o (f,g). 0 inx
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The second term vanishes by (1) and the first term equals (f',h’,¢"). o (f, h, g)..
This proves the identity (f' of), = f, of,.

(f'of,h oh,g og).

=prx o (f o f,g og)" oinx~

=prx o (f,9)" o (f',¢")" o inx~

=prx o (f,g)" o (ex +ex;)o(f’,g’)" oinxn

=prxo(f,9)" oex o(f,¢")" oinx» +prx o (f,9)" cex; o (f',g')" oinx»

The second term vanishes by (2). This prove the identity (f' o f)* = f* o f'".

(6.1.iii) If
X, —2 X/

|

Xo =/ — %
2

is a pull-back diagram in X, then

0(X1) —2 0(X})

S

0(Xz) —— 6(X3)

2%

is commutative.

Proof. Write

fori=1,2 and
f'i = (fi)hh gi): | (p7 T, Q)r p, - (pffr/’ Q’)
We may assume U; — X,Y;, U/ — XY/ are the inclusion maps. Put

Vi=(X1+ (A xq) ' (U]) — 1),
Ve = (X2 (f2 X g2) 1 (U3) = Ya),
W = (X, — (px q) ' (Uz) = Y1)

By (7.10),
8(X;)0<f],g1>* - (flan)*Oe(Vl) (1)
e(X5) 0 (f2,92)x = (f2,92)x 0 e(V2) (2)
(p,q)" 0 e(Xz) = e(W) o (p,q)” (3)
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Since (f1 x g1) "' (U{) N (p x ¢) ' (U2) = Ux, we have

e(Vy)oe(W) = e(X;) (4)

Since Us C (f2 x g2) 1 (U3), we have

e(Vz) o e(Xz) = e(Xz) (5)

p* ofy, = prx; o (p/,¢)" oinx; oprx; o (f2,92). 0 inx,
= prx; o (p',4')" 0 e(X3) o (f2, g2). 0 inx,
=prx; o (p,q)" o (f2,92)« 0 e(V2) oinx, by (2)
= prx; o (p,¢')" o (f2,92). oinx, by (5) (6)

On the other hand

fi. op* = prx; o (f1,91)+ 0 inx, o prx, o (p,q)" o inx,
= prx; © (f1,91)» 0 e(X1) o (p,q)" 0 inx,
= prx; © (f1,91)» 0 e(V1) 0 e(W) o (p,q)" oinx,
= prx; o e(X}) o (f1,91)« 0 (p,q)" 0 e(X2) oinx, by (1), (3)
=prx; ° (f1,91)x 0 (p,q)" 0 inx, (7)

By (4.1.iv), (4.1.v)
®,d')" 0 {f2,92) = (fr,q1)x 0 (P, @) (8)
It follows from (6), (7), and (8)

p,* o f2* = fl* op*.

(6.1.iv) Suppose X = (X « Uy + Uz — Y) is an object of K. Let X; = (X «
Uy - Y), Xy =(X « Uz »Y)and iy: Xy — X, iz: Xy — X the obvious

injections. Then
(il*, iz*)Z H(Xl) &) Q(Xz) - B(X)

1S an isomorphism.

Proof. We know by (7.13) that the idempotent e(X) is the sum of the mutually-
orthogonal idempotents ¢(X;) and e(X5), so

0(X) = 6(X1) ® 0(Xz)
and the inclusion maps 6(X;) — #(X) for i = 1,2 coincide with the maps
prx oinx, = prx o (lx, ly)« oinx, = iz.
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(6.1.v) Let Xy = (X7 « U; - Y), Xp = (Xo « Uy — Y) be objects in K
andput X = (X1 +Xo U1 +U; - Y), j1: X1 — X, j2: X2 — X the obvious

injections. Then
(J1x,J2s): 0(X1) @ 0(X2) — 0(X)

is an isomorphism.

Proof. We know that
(G, D, (2, 1)4) 1 (X1, Y) @ (X2, Y) — ¢(X,Y) (*)

is an isomorphism. Since
Ui —_— XY

Uu,+U; —— (X1 -+ _XQ)Y

is pull-back, we have
(7i, 1)x 0 e(X) = e(X;) o (4, 1).

It follows that the isomorphism (*) restricts to the required isomorphism.

(6.1.viii) Let X = (X «~U —-9——>Y) be an object of K. Put U= U —U-5U)
and a = (a,1,b): U — X. Then

a,: (U) — 0(X)
is an isomorphism.
Proof. By (7.9) we have an isomorphism
™ 8(X) — ¢(1,U)
so that the diagrams

HX,Y) == ¢(1,XY)  $(X,Y) —*— ¢(1,XY)

ian T(l,(a,b)), P‘”Xl l(l,(a,b))'

0X) —— H(LU)  6X) —— 4L

X
are commutative. For the object U we have a similar isomorphism
Tu: 0(U) — (1, V).

We know .

(a,th T{l,axb),

d(U,U) —22— ¢(1,UU)
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Hence r

) 0X) —X- ¢(1,U)
prx T (apy
H(X,)Y) »(1,XY)
(a,b),/ A(l,axb),
o(UU) $(1,UU)
inU’ ’}(I,A),.

9(U) —_— ¢(1,U)

But
(1,(a,b))" o (1,a x b), o (1,A), = (1,(a,b))* o (1,(a,b)). =1

as (a,b): U — XY is injective. Hence

0(X) S SN #(1,U)

.| [

o(U) —— $(1,0)

So a, is an isomorphism.

9. catregories H and N(H)
The catregory H is defined as follows. An object of H is a diagram

U

7N
X Y

~N 7
14

of G-sets such that the maps U — X x Y and V — X X Y are injective.

A morphism
U U’

in H is a quadruple

()

of G-maps f: X - X', g:Y - Y',h: U = U’, k: V — V' making the four squares
commutative.
The category H has finite inverse limits given by componentwise.
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The category N(H) is defined as follows. An object 8 consists of k-modules (X))
for all objects X in H and linear maps

f.: 9(X) — 0(X")
f.: 0(X’) — 0(X)
for all morphisms f: X — X’ in H, satisfying the following conditions
(9.1.1) (X) and f, form a functor H — V.

(9.1.i1) 6(X) and f* form a functor HP — V.
(9.1.iii) If

X, — X
fa

is a pull-back diagram in H, then
0(X1) —— (X))
p*T Tp"
6(Xz) —2 0(X})

is commutative.
(9.1.iv) Suppose

U, + U,
v .
X=1X Y
AN /
Vv
is an object of H. Put
U1 Uz
7N 7N
Xi=1]X Y, Xo=1X Y
NS N S
|4 vV

and let iy: X; — X, i2: X; — X the obvious injections. Then
(if,i3): 0(X) — 0(X1) @ 0(X2)
(114,124 ) 0(X1) B 0(X2) — 6(X)

are inverse to each other.
(9.1.v)



(9.1.vi) The V-version of (9.1.iv).
(9.1.vii) The V-version of (9.1.iv).

(9.1.viii) Let

Uy Us
SN 7N
X, =1X3 Y, Xo=1]X, Y
N S NS
Vl V2
be objects in H. Put
Ui + U,
vd N\
X=|X14+ X, Y
AN /!
Vi+ Vs

and let j;: X3 — X, j2: X2 — X be the obvious injections. Then

(01,33): 0(X) — 0(X4) @ 0(X2)
(G1s,d20): O(X1) @ O(X3) — 0(X)

are inverse to each other.
(9.1.ix) The right-sided analogue of (9.1.viii).

(9.1.x) Let
U
f /N9
X=X Y
AN
v
be an object in H. Let
Vl M—'—'-‘)(hhkl) UxU

L e

V —— X xY

(h,k)
be a pull-back. Put
U
1 / \ 1
U=\|U U
MmNk
Wi

and

1
f:(f g):U——«aX
v



a morphism in H. Then
f,: Q(U) —s Q(X)
f*: 0(X) — 6(U)
are inverse to each other.

(9.1.xi) The V-version of (9.1.x).
A morphism 0 — ¢’ in N(H) consists of linear maps 6(X) — 6’(X) for all objects

X in H satisfying the commutativity with f, and f* for all morphisms f in H.
This ends the definition of N(H).

10. idempotents e“(X « U — Y) and e®(X « V —Y)

Let ¢ be an object of sM(S,S)s. As defined in Section 7, the left-sided op-
erations Z. for ¢ yield idempotents e(X «— U — Y) € End¢(X,Y), which we
now denote by e“(X « U — Y). Similarly the right-sided operation .Z yield

idempotents e®(X « V — Y).

Proposition 10.1. e*(X « U - Y) and e®(X « V — Y) commute with each
other.

Proof. e"(X «—U —»b—-+Y) = {X<—1——X—i+X,X<~a— U Ji—>Y} is the composite

BX,Y) 25 (XX, XY) T g(X,0) B2 g(X,Y)

and eR(X V-d—+Y) = {Yé—‘—i- V- XYY ——l—+Y} is the composite

$(X,Y) -5 o(XY, YY) D gy vy gx v,

So e’(X «— V —Y)oel(X « U — Y) is the composite of the upper-right path of
the commutative diagram

sxY) X pxx,xy) YT exyy B g(xy)

v v Y]

HXXY,XYY) o (XY, vy) 2 s(xv,vy)
{(c,d), )" |

¢(V,Y)
(o) |

(X,Y)

Now we have commutative diagrams

xxy & xy

ced . Td
|4
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(a,b)Y bY
(__._.‘

XYY Uy 5 YY
@bb) "\ (@b Ta
u — Y

b

with the square pull-back. Hence eR(X —V —-Y)o eL(X — U —Y) is equal to
the composite

BX,Y) 5 (XX, XY) -5 $(XXY,XYY)

((e,esd)(ab,b)) |
o(V,U)

On the other hand, e“(X «+ U — Y) 0 eR(X « V — Y) is the composite of the
upper-right path of the commutative diagram

Y {(e,d),0)"
AN

$(X,Y) -5 p(XY,YY) s(v,Y) 2 sxy)
x.l x.l x.l
(Xe,1).
PXXY,XYY) | o G(XV,XY) T g(XX, XY)
(A(a,0))" |
H(X,V)
(b,1).
#(X,Y)

We have commutative diagrams

xXyy &2 xy

(@bb) . T(a.b)

U
xxy &9 oxy X xx
(c,c,d) \ T(Cv]) TA

Vv = X
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Hence e*(X « U — Y) o e®(X « V — Y) is equal to the composite

HX,Y) 5 p(XX,XY) X5 (XXY,XYY)

((c,c,d),(a,b,b))" |
(V. U)
(e.0)s |
(X, Y)

By the commutativity of X. and .Y it follows that

X —VoY)oe! X —U-Y)=e" (X «U - Y)oe (X -~V - Y).

11. equivalence sM(S,S)s ~ N(H)

We will construct an equivalence sM(S,S)s ~ N(H). Let ¢ be an object of

sM(S, S)s. For an object
U

7N
X=|Xx Y

ANIVS
| 4

in H, let
e(X)=e"(X U —=Y)oeR(X —V -Y)

By Proposition 10.1, e(X) is an idempotent endomorphism on ¢(X,Y'). Define
0(X) = Im e(X).
For a morphism f: X — X’ in H, define the maps

f.: 0(X) — 6(X")
f*: 0(X’) — 6(X)
in a similar way to Section 8.
We can verify € is an object of N(H).
Theorem 11.1. The functor ¢ — 0 gives an equivalence sM(S,S)s — N(H)

12. category Ho and equivalence N(H) ~ M(H,)
A G-set is said to be connected if it consists of a single orbit. Let H, be the full

subcategory of H consisting of objects which are direct sums of objects

U

7N
X Y

NS
1%

such that all arrows are isomorphisms and X is connected.
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Theorem 12.1. The inclusion functor Ho — H has a right adjoint R.

Proof is omitted. Let px: R(X) — X be the canonical morphism of adjoint.

Corollary 12.2. Ho has finite projective limits.

Define a category 7 as follows. An object is a pair (X,a) of a G-set X and
an automorphism a: X — X. Morphisms are defined naturally. Let 73 be a full
subcategory of 7 consisting of objects which are direct sums of objects (X, a) such

that X is connected.

Proposition 12.3. We have an equivalence Hg ~ Ly

Proposition 12.4. If ¢ € N(H), then

pxx: (R(X)) — #(X)

are isomorphisms for all X € 'H.
Since Hg has pull-backs, we cay speak about Mackey functors on Hy. Let M(Hy)
denote the category of Mackey functors on Hp.

Theorem 12.5. We have an equivalence
N(H) >~ M(Ho)-
Combining this with the equivalences

MBM, M) = sM(S, S)s =~ N(H)

and
M(Ho) ~ M(7o),

we obtain

Theorem 12.6.
MB(M, M) pt ~ M(T).
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