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Abstract

The gravitational lensing effects in the weak gravitational field by exotic
lenses have been investigated to probe non-luminous exotic objects. Gravi-
tational lenses in a strong gravitational field also are important since they are
one of tests for general relativity, black holes and exotic objects. For instance,
it is known that the light rays passing just outside the photon sphere make
faint images in the Schwarzschild spacetime and in wormhole spacetimes.

First, We examine a gravitational lens model inspired by modified gravity
theories, exotic matter and energy. We study an asymptotically flat, static
and spherically symmetric spacetime that is assumed in such a way that the
spacetime metric depends on the inverse distance to the power of positive n in
the weak field approximation. It is shown analytically and numerically that
there is a lower limit on the source angular displacement from the lens ob-
ject to get demagnification. Demagnifying gravitational lenses could appear,
provided the source position β and the power n satisfy β > 2/(n+ 1) in the
units of the Einstein ring radius under a large n approximation. Unusually,
the total amplification of the lensed images, though they are caused by the
gravitational pull, could be less than the unity. Therefore, time-symmetric
demagnification parts in numerical light curves by gravitational microlensing
(Abe, Astrophys. J. 725, 787, 2010) may be an evidence of an Ellis wormhole
(being an example of traversable wormholes) but they do not always prove it.
Such a gravitational demagnification of the light might be used for hunting
a clue of exotic matter and energy that are described by an equation of state
more general than the Ellis wormhole case. Numerical calculations for n = 3
and 10 cases show maximally ∼ 10 and ∼ 60 percent depletion of the light,
when the source position is β ∼ 1.1 and β ∼ 0.7, respectively.

Next, we consider gravitational lensing shear by the demagnifying lens
models and other models such as negative-mass compact objects causing
the gravitational repulsion on light rays like a concave lens. It is shown
that images by the lens models for the gravitational pull are tangentially
elongated, whereas those by the repulsive ones are radially distorted. This
feature of lensed image shapes may be used for searching (or constraining)
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localized exotic matter or energy with gravitational lensing surveys. It is
suggested also that an underdense region such as a cosmic void might produce
radially elongated images of background galaxies rather than tangential ones.

Next we consider microlensed image centroid motions by the exotic lens
models. Numerical calculations show that, for large n cases in the convex-
type models, the centroid shift from the source position might move on a
multiply-connected curve like a bow tie, while it is known to move on an
ellipse for n = 1 case and to move on an oval curve for n = 2. The dis-
tinctive feature of the microlensed image centroid may be used for searching
(or constraining) localized exotic matter or energy with astrometric obser-
vations. It is shown also that the centroid shift trajectory for concave-type
repulsive models might be elongated vertically to the source motion direc-
tion like a prolate spheroid, whereas that for convex-type models such as the
Schwarzschild one is tangentially elongated like an oblate spheroid.

Finally, we investigate the gravitational lensing effects in the Tangherlini
spacetime in the weak gravitational field and the strong field limit. The
gravitational lens model in the Tangherlini spacetime would work as a wide-
range toy model for exotic lens models with the photon sphere since it is the
all-dimensional solution of the Einstein equation. We study the deflection
angle of the light and the magnifications of images in the weak approximation
and in the strong field limit. We derive the divergent part of the deflection
angle in all dimensions and the regular part of the deflection angle in 4, 5 and
7 dimensions in the strong field limit, the deflection angle in all dimensions
under the weak gravitational approximation and the relation between the
size of the Einstein ring and the ones of the rings in the strong gravitational
field. We also show that the images in the strong gravitational field are
always fainter than the images in the weak gravitational field. We conclude
that the images in the strong gravitational field have little effect on the total
light curve and that the characteristic demagnification of the light curve will
appear after considering the images in the strong gravitational field in higher
dimensions. The gravitational lensing in the strong field limit in higher
dimension would be related to the nature of the higher dimensional black
hole.
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Chapter 1

Introduction

The bending of light is among the first experimental confirmations of the
theory of general relativity. As one of the important tools in modern astron-
omy and cosmology, the gravitational lensing is widely used for investigating
extrasolar planets, dark matter and dark energy.

The light bending is also of theoretical importance, in particular for study-
ing a null structure of a spacetime. A rigorous form of the bending angle
plays an important role in understanding properly a strong gravitational
field [1, 2, 4, 6, 3, 5, 8, 9]. For example, strong gravitational lensing in
a Schwarzschild black hole was considered by Frittelli, Kling and Newman
[1], by Virbhadra and Ellis [2] and more comprehensively by Virbhadra [4];
Virbhadra, Narasimha and Chitre [6] studied distinctive lensing features of
naked singularities. Virbhadra and Ellis [3] and Virbhadra and Keeton [5]
later described the strong gravitational lensing by naked singularities; De-
Andrea and Alexander [7] discussed the lensing by naked singularities to
test the cosmic censorship hypothesis; Eiroa, Romero and Torres [8] treated
Reissner-Nordström black hole lensing; Perlick [9] discussed the lensing by a
Barriola-Vilenkin monopole and also that by an Ellis wormhole.

One of peculiar features of general relativity is that the theory admits a
nontrivial topology of a spacetime, for instance a wormhole. An Ellis worm-
hole is a particular example of the Morris-Thorne traversable wormhole class
[10, 11, 12]. Furthermore, wormholes are inevitably related with violations
of some energy conditions in physics [28]. For instance, dark energy is intro-
duced to explain the observed accelerated expansion of the universe by means
of an additional energy-momentum component in the right-hand side of the
Einstein equation. Furthermore, the left-hand side of the Einstein equation,
equivalently the Einstein-Hilbert action, could be modified in various ways
(nonlinear curvature terms, higher dimensions, and so on) inspired by string
theory, loop quantum gravity and so on. Because of the nonlinear nature of
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gravity, modifications to one (or both) side of the Einstein equation might ad-
mit spacetimes significantly different from the standard Schwarzschild space-
time metric, even if the spacetime is assumed to be asymptotically flat, static
and spherically symmetric. One example is an Ellis wormhole (being an ex-
ample of traversable wormholes).

Many years ago, scattering problems in wormhole spacetimes were dis-
cussed (for instance, [13, 14]). Interestingly, the Ellis wormhole has a zero
mass at the spatial infinity but it causes the light deflection [13, 14]. More-
over, the gravitational lensing by wormholes has been recently investigated
as an observational probe of such an exotic spacetime [15, 16, 9, 17, 18, 19,
20, 21, 23]. Several forms of the deflection angle by the Ellis wormhole have
been recently derived and often used [9, 17, 24, 25, 18, 19, 20]. A reason
for such differences has been clarified by several authors [26, 27]. Especially
among these study, According to numerical calculations by Abe [18] and Toki
[19], time-symmetric demagnification parts in light curves could appear by
gravitational microlensing effects of the Ellis wormhole, and The astrometric
image centroid trajectory by the Ellis wormhole is different from the stan-
dard one by a spherical lensing object that is expressed by the Schwarzschild
metric respectively. Is the time-symmetric demagnification or the anoma-
lous shift of the image centroid an evidence for the Ellis wormhole? It is very
interesting to address this question.

Small changes in gravitational lensing in modified gravity theories such
as f(R) and fourth-order gravity have been studied (e.g. [29, 30, 31, 32]).
Furthermore, Horvath, Gergely, and Hobill [34] studied lensing effects with
negative convergence by so-called tidal charges in the Dadhich et al. solution,
where, for a brane world black hole, the tidal charge arises from tidal forces
acting at the brane-bulk boundary [35]. A point is that negative convergence
in this case does not require any exotic matter. It comes from the Weyl
curvature in higher dimensions.

Inspired by a huge number of modified theories, this paper assumes, in
a phenomenological sense, that an asymptotically flat, static and spherically
symmetric modified spacetime could depend on the inverse distance to the
power of positive n in the weak field approximation. The Schwarzschild
spacetime and the Ellis wormhole correspond to n = 1 and n = 2, respec-
tively. Note that Birkhoff’s theorem could say that cases n ̸= 1 might be
non-vacuum, if the models were interpreted in the framework of the standard
Einstein equation.

The slightly modified gravitational lensing in modified gravity theories
such as a fourth order f(R) gravity theory has attracted interests (e.g. [29,
30, 31]). It has been shown that the total magnification of the lensed images is
stable and always larger than the unity against a small spherical perturbation
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of the Schwarzschild lens [32]. This suggests that demagnifying gravitational
lenses would need a significantly modified structure of the spacetime. In
Chapter 2, We discuss demagnifying gravitational lenses due to significantly
modified spacetimes referring to Kitamura et al.[36]

Kitamura et al. [36] have shown that demagnification could occur for
n > 1 including the Ellis wormhole case (n = 2). They have also shown that
time-symmetric demagnification parts might appear in light curves due to
gravitational microlensing effects by such exotic models, where light curves
are useful in microlensing observations in our galaxy. For cosmological situa-
tions, however, the Einstein ring size becomes so large and hence the typical
time scale is so long that light curves cannot be observable in cosmology. On
the other hand, the image separation angle becomes sufficiently large, so that
it can be practically measured. By using the latest result in the Sloan Digi-
tal Sky Survey Quasar Lens Search, Takahashi and Asada have recently set
the first upper bound on the cosmic abundances of Ellis wormholes and also
negative-mass compact objects [37]. In theoretical physics, negative mass
is a hypothetical concept of matter whose mass is of opposite sign to the
mass of normal matter. Although possible negative mass ideas have been
often discussed since the 19th century, there has been no evidence for them
[38, 39, 40, 41]. The negative masses might attract each other to form a
negative massive clump, so that such clumps could reside in cosmological
voids (e.g. [42]). Gibbons and Kodama [43] have shown that curvature-
regular asymptotically flat solitons with negative mass are contained in the
Myers-Perry family, though the soliton solutions in the odd spacetime dimen-
sions might not express real astrophysical objects. However, the information
on the image separation angle is not sufficient for distinguishing exotic lens
models. In Chapter 3, we study shapes of lensed images due to significantly
modified spacetimes with negative convergence or negative mass referring
Izumi et al.[44] We show that images by the lens models for the gravitational
pull (like a convex lens in optics) are tangentially elongated, whereas those
by the repulsive ones (like a concave lens) are radially distorted. This study
might concern the strong (or weak) lensing surveys at the extra-galactic or
cosmological distance.

And, in Chapter 4, we investigate microlensed image centroid motions
by such exotic gravitational lens models. The image centroid position gives
us an additional information, so that the parameter degeneracy existing in
photometric microlensing can be partially broken. Here, we focus on the
astrometric microlensing in our galaxy. Studies of centroid displacements of
lensed images have been often done for the Schwarzschild lens [45, 46, 47,
48, 49, 50, 51, 52]. Virbhadra and Keeton [5] have investigated the centroid
displacement for naked singularities by using the Janis-Newman-Winicour
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solution. Toki et al. [19] have studied the centroid motion by Ellis wormhole.
The main results of Chapter4 are: (1) For certain exotic lens models, the
centroid shift from the source position might move on a multiply-connected
curve like a bow tie for large n cases, while it is known to move on an ellipse
for n = 1 case [45, 49] and to move on an oval curve for n = 2 [19]. (2)For
concave-type repulsive lens models, the centroid displacement might move
on a simply-connected curve but might be elongated vertically to the source
velocity, while it is tangentially elongated for Schwarzschild case.

However, these Chapters 2-4 concentrated on the weak gravitational field
and do not cover the gravitational lensing effects in the strong gravitational
field.

About half a century ago, the images in the strong gravitational field
were found by Darwin [61, 62]. Darwin pointed out the existence of the
relativistic images which are a series of faint images lying just outside the
photon sphere [61] in the Schwarzschild spacetime. The countably infinite
relativistic images are generally formed in spherically symmetric static space-
times [63, 64, 9]. The gravitational lensing in the strong gravitational field
by various black holes and wormholes has been investigated eagerly in the
recent decade (see [2, 5, 4, 65, 66] and references therein).

In Chapter 5, we investigate the gravitational lensing effects in the weak
field approximation and in the strong field limit of the Tangherlini space-
time [67]. The Tangherlini lens model would work as a wide-range toy model
for the exotic lens objects with strong gravitational field since the Tangher-
lini spacetime is a solution of the Einstein equations in all dimensions. The
Tangherlini lens model is expected to show the general features of the grav-
itational lensing effects by exotic gravitational objects in both the weak and
strong gravitational field.

The gravitational lens in the strong field limit is related to the other
phenomena such as the quasi-normal modes of a black hole [68, 69] and the
high-energy absorption cross section [70] which are caused by the nature of
the null geodesic near the photon sphere. Thus, the investigation of gravi-
tational lensing effects of the all-dimensional black hole in the strong field
limit would give us a new perspective on the intrinsic property of the all-
dimensional black hole.

In this paper we use the units in which the light speed c = 1 and Newton’s
constant G = 1.
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Figure 1.1: Source and image trajectories in the sky from the position of the
observer.[19]
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Figure 1.2: Source and image trajectories in the sky from the position of the
observer.[19]

11



Figure 1.3: Sketch of the relation between the source trajectory and the lens
(wormhole) in the sky. All quantities are normalized by the angular Einstein
radius θE.[19]
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Chapter 2

Gravitational microlensing by
modified spacetime

2.1 The modified spacetime model and de-

flection angle

Magnification of the apparent brightness of a distant star by the gravitational
lensing effect of another star was predicted by [83]. This kind of lensing effect
is called ”microlensing” because the images produced by the gravitational
lensing are very close to each other and are difficult for the observer to resolve.
The brightness changing effect was discovered in 1993 [77, 78, 82] and has
been used to detect astronomical objects that do not emit observable signals
(such as visible light, radio waves, and X rays) or are too faint to observe.
Microlensing has successfully been applied to detect extrasolar planets [85,
84] and brown dwarfs [86, 91]. Microlensing is also used to search for unseen
black holes [81, 87, 90] and massive compact halo objects [80, 89, 88], a
candidate for dark matter.

This paper assumes that an asymptotically flat, static and spherically
symmetric modified spacetime could depend on the inverse distance to the
power of positive n in the weak field approximation. We consider the light
propagating through a four-dimensional spacetime, though the whole space-
time may be higher dimensional. The four-dimensional spacetime metric is
expressed as

ds2 = −
(

1 − ε1
rn

)
dt2 +

(
1 +

ε2
rn

)
dr2 + r2(dθ2 + sin2 θdϕ2) +O(ε21, ε

2
2, ε1ε2),

(2.1)
where r is the circumference radius and ε1 and ε2 are small book-keeping pa-
rameters in the following iterative calculations. Here, ε1 and ε2 may be either
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positive or negative, respectively. Negative ε1 and ε2 for n = 1 correspond
to a negative mass (in the linearized Schwarzschild metric).

For investigating the light propagation, it is useful below to make a con-
formal transformation with a factor as (1−ε1/rn)1/2. The null structure such
as the light propagation is not affected by the conformal transformation. At
the linear order of ε1 and ε2, the spacetime metric takes a simpler form as

ds̄2 = −dt2 +
(

1 +
ε

Rn

)
dR2 +R2(dθ2 + sin2 θdϕ2) +O(ε2), (2.2)

where ε ≡ nε1 + ε2 and

R2 ≡ r2(
1 − ε1

rn

) . (2.3)

Note that the only one parameter ε enters the conformally transformed met-
ric.

For this metric, one can find the Lagrangian for a massless particle. With-
out loss of generality, we focus on the equatorial plane θ = π/2, since the
spacetime is spherically symmetric. By using the constants of motion asso-
ciated with the timelike and rotational Killing vectors, the deflection angle
of light is calculated at the linear order as

α = 2

∫ ∞

R0

dϕ(R)

dR
dR− π

=
ε

bn

∫ π
2

0

cosn ψdψ +O(ε2), (2.4)

where R0 and b denote the closest approach and the impact parameter of
the light ray, respectively. This deflection angle recovers the Schwarzschild
(n = 1) and Ellis wormhole (n = 2) cases. For particular cases, the above
(always positive) integral factor becomes∫ π

2

0

cosn ψdψ =
(n− 1)!!

n!!

π

2
(even n),

=
(n− 1)!!

n!!
(odd n),

=

√
π

2

Γ
(
n+1
2

)
Γ
(
n+2
2

) (real n > 0), (2.5)

Henceforth, the deflection angle is denoted simply as α(b) = ε̄/bn by absorb-
ing the numerical constant into ε̄ parameter.

14



2.2 Modified lens equation and its solutions

Under the thin lens approximation, we consider the lens configuration which
is given in Figure 1.1,1.3. It is useful to consider the lens equation as [33]

β =
b

DL

− DLS

DS

α(b), (2.6)

where β denotes the angular position of the source and DL, DS, DLS are
the distances from the observer to the lens, from the observer to the source,
and from the lens to the source, respectively. We wish to consider significant
magnification (or demagnification), which could occur for a source in (or
near) the Einstein ring. The Einstein ring is defined for β = 0 [33]. If ε < 0,
Eq. (2.6) has no positive roots for β = 0, because of the repulsive force in
the particular gravity model. For ε > 0, on the other hand, there is always
a positive root corresponding to the Einstein ring. The negative ε case has
of less astronomical relevance. Therefore, let us consider the positive ε case
(causing the gravitational pull) in the following.

In the units of the Einstein ring radius, Eq. (2.6) is rewritten as

β̂ = θ̂ − 1

θ̂n
(θ̂ > 0), (2.7)

β̂ = θ̂ +
1

(−θ̂)n
(θ̂ < 0), (2.8)

where β̂ ≡ β/θE and θ̂ ≡ θ/θE for the angular position of the image θ ≡
b/DL.

Let us consider two lines defined by Y = 1/θ̂n and Y = θ̂−β in the θ̂−Y
plane. For θ̂ > 0, therefore, we have the only one intersection of the two lines
that is corresponding to one image position. Similarly, the only one image
appears for θ̂ < 0.

For a general positive n (e.g. n = 5), it is impossible to find the exact
solutions for the modified lens equation. For clarifying parameter depen-
dence, we employ analytic but approximate methods rather than numerical
calculations. In astronomy, furthermore, only the significantly amplified im-
ages become detectable in gravitational microlensing. Such events occur only
when a source such as a distant star crosses the Einstein ring. We thus focus
on such an Einstein ring-crossing case as β̂ < 1 in the units of the Einstein
ring, for which Eqs. (2.7) and (2.8) are solved in the Taylor series form with
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respect to β̂. We obtain

θ̂+ = 1 +
1

n+ 1
β̂ +

1

2

n

(n+ 1)2
β̂2 +O(β̂3) (θ̂ > 0), (2.9)

θ̂− = −1 +
1

n+ 1
β̂ − 1

2

n

(n+ 1)2
β̂2 +O(β̂3) (θ̂ < 0), (2.10)

2.3 Demagnification condition

The amplification factor denoted as A is |(β/θ)(dβ/dθ)|−1, namely the inverse
Jacobian of the gravitational lens mapping between the source and image
position vectors [33]. By using Eqs. (2.9) and (2.10), the amplification
factor of each image which is denoted by A+ and A−, respectively becomes

A± =
1

β̂(n+ 1)
+O(β̂0), (2.11)

where a difference between A+ and A− appears at the next order in β̂. The
total amplification is thus

Atot ≡ A+ + A−

=
2

β̂(n+ 1)
+O(β̂0), (2.12)

For the Schwarzschild case (n = 1), Atot = 1/β̂. This is always larger
than the unity for β̂ < 1, in concordance with the well-known fact. Demag-
nification of the total lensed images could occur, however, if

β̂ >
2

n+ 1
. (2.13)

The larger the power n, the more likely the demagnification. One might guess
that demagnification could be caused for a smaller β̂, especially β̂ = 0. How-
ever, this is not the case. Eq. (2.13) suggests that the total demagnification
could occur, only when β̂ is small but larger than the critical value 2/(n+ 1)
under a large n approximation. Note that compatibility of the assumption
β̂ < 1 and Eq. (2.13) implies n > 1. Namely, Eq. (2.13) becomes a better
approximation as n is larger than the unity.

The above argument is based on the near zone approximation (β̂ < 1).
For a test of the analytic result, we perform numerical calculations. We
consider n = 10, which might be one of higher dimensional models inspired
by string theory. Eq. (2.13) suggests that demagnification of the total lensed
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images could occur only for β̂ > 2/11 = 0.182. Figure 2.1 shows numerical
results for n = 1, 2, 3 and 10.

In the case of n = 10,
the analytic result for the critical value as β̂ = 2/11 = 0.182 is in good

agreement with the numerical one β̂ = 0.187.
Figure 2.2 shows numerical light curves for n = 1, 2, 3, 10. As the power

n is larger, time-symmetric demagnification parts in the light curves become
longer in time and larger in depth. Cases of n = 3 and 10 show maximally
∼ 10 and ∼ 60 percent depletion of the light,

when the source position is β̂ ∼ 1.1 and β̂ ∼ 0.7, respectively.
Before closing this section, we briefly mention an effective mass. A simple

application of the standard lens theory [33] suggests that the deflection (α =
ε̄/bn) and magnification studied here correspond to a convergence (scaled
surface mass density) of the form as

κ(b) =
ε̄(1 − n)

2

1

bn+1
. (2.14)

For n > 1, therefore, the effective surface mass density of the lens object is
interpreted as negative in the framework of the standard lens theory. This
means that the matter (and energy) need to be exotic if n > 1.
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Figure 2.1: Total amplification factor of the lensed images as a function of
the source position β̂ for n = 1, 2, 3 and 10. Top left, top right, bottom left
and bottom right panels are corresponding to n = 1, 2, 3 and 10, respectively.
In the case of n = 10, the total amplification factor is larger than the unity
for β̂ < 0.187, whereas it is smaller for β̂ > 0.187. For convenience, a thin
(red in colors) line denotes Atot = 1. [36]

18



Figure 2.2: Numerical light curves for the same minimum impact parameter
of the light trajectory β̂0 = 0.1. The source star moves at constant speed and
the source position changes as β̂(t) = (β̂2

0 + t2)1/2, where time is normalized
by the Einstein ring radius crossing time. Top left, top right, bottom left
and bottom right panels are corresponding to n = 1, 2, 3 and 10, respectively.
For convenience, a thin (red in colors) line denotes Atot = 1. [36]
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2.4 Summary of this chapter

We examined a gravitational lens model inspired by modified gravity theo-
ries, exotic matter and energy. By using an asymptotically flat, static and
spherically symmetric spacetime model of which metric depends on the in-
verse distance to the power of positive n, it was shown in the weak field
and thin lens approximations that demagnifying gravitational lenses could
appear, provided the impact parameter of light β̂ and the power n satisfy
β̂ > 2/(n + 1) in the units of the Einstein ring radius under a large n ap-
proximation.

Therefore, time-symmetric demagnification parts in numerical light curves
by gravitational microlensing (Abe, Astrophys. J. 725, 787, 2010) may be
an evidence of an Ellis wormhole but they do not always prove it. Such a
gravitational demagnification of the light might be used for hunting a clue
of exotic matter and energy that are described by an equation of state more
general than the Ellis wormhole case. Examples of n = 3 and 10 show maxi-
mally ∼ 10 and ∼ 60 percent depletion of the light, when the source position
is β̂ ∼ 1.1 and β̂ ∼ 0.7, respectively.

It is left as a future work to perform a numerical campaign for the vast
parameter space.

The above gravitational demagnification of light occurs, presumably be-
cause modified lenses could act as an effectively negative (quasi-local) mass
on a particular light ray (through the Ricci focusing). Regarding this issue,
a more rigorous formulation is needed. It would be interesting to study a
relation between the model parameter n and vital modified gravity theories
(or matter models with an exotic equation of state) and also to make an
interpretation of the parameter n in the framework of the theory of general
relativity.

The analytical approximate solution in this paper is obtained at the linear
order of 1/β̂ to discuss the total magnification. Tsukamoto and Harada [21]
have studied the next order of 1/β̂ to discuss the signed magnification sums,
namely the difference between the amplifications of two images.
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Chapter 3

Gravitational lensing shear by
modified spacetime

3.1 Modified spacetime model and modified

lens equation

3.1.1 Modified bending angle of light

Following Kitamura et al. [36], the present chapter assumes that an asymp-
totically flat, static and spherically symmetric modified spacetime could de-
pend on the inverse distance to the power of positive n in the weak field
approximation. Note that some of the notations are different from those in
Chapter 2. We consider the light propagation through a four-dimensional
spacetime, though the whole spacetime may be higher dimensional. The
four-dimensional spacetime metric is expressed as

ds2 = −
(

1 − ε1
rn

)
dt2 +

(
1 +

ε2
rn

)
dr2 + r2(dΘ2 + sin2 Θdϕ2) +O(ε21, ε

2
2, ε1ε2),

(3.1)
where r is the circumference radius and ε1 and ε2 are small book-keeping pa-
rameters in the following iterative calculations. Here, ε1 and ε2 may be either
positive or negative, respectively. Negative ε1 and ε2 for n = 1 correspond
to a negative mass (in the linearized Schwarzschild metric).

Without loss of generality, we focus on the equatorial plane Θ = π/2,
since the spacetime is spherically symmetric. The deflection angle of light is
obtained at the linear order as [36]

α =
ε

bn

∫ π
2

0

cosn ψdψ +O(ε2), (3.2)
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where the integral is positive definite, b denotes the impact parameter of the
light ray, and we define ε ≡ nε1 + ε2. By absorbing the positive integral
into the parameter ε, we rewrite the linear-order deflection angle simply as
α = ε̄/bn, where the sign of ε̄ is the same as that of ε. This deflection angle
recovers the Schwarzschild (n = 1) and Ellis wormhole (n = 2) cases. For
ε > 0, the deflection angle of light is always positive, which means that the
corresponding spacetime model causes the gravitational pull on light rays.
For ε < 0, on the other hand, it is inevitably negative, which implies the
gravitational repulsion on light rays like a concave lens. Tsukamoto and
Harada [21] employ as an ansatz the same modified bending angle as what
is derived from the spacetime metric by Kitamura et al. [36].

We mention an effective mass. A simple application of the standard lens
theory [33] suggests that the deflection angle of light in the form of α = ε̄/bn

corresponds to a convergence (scaled surface mass density) as

κ(b) =
ε̄(1 − n)

2

1

bn+1
. (3.3)

For the weak-field Schwarzschild case (n = 1), it follows that the conver-
gence vanishes. For ε > 0 and n > 1, the effective surface mass density of
the lens object is interpreted as negative in the framework of the standard
lens theory [36]. This means that the matter (and energy) need to be exotic
if ε > 0 and n > 1. Also when ε < 0 and n < 1, the convergence is negative
and hence the matter (and energy) need to be exotic. Interestingly, when
ε < 0 and n > 1, the convergence is positive everywhere except for the cen-
tral singularity and hence exotic matter (and energy) are not required in the
framework of the standard lens theory, in spite of the gravitational repulsion
on light rays. Attraction (ε > 0) and repulsion (ε < 0) in the above models
do not have a one-to-one correspondence to positive convergence κ > 0 and
negative one κ < 0. This point is summarized in Table 3.1.

3.1.2 Modified lens equation

Under the thin lens approximation, we consider the lens configuration which
is given in Figure 1.1,1.3, it is useful to consider the lens equation as [33]

β =
b

DL

− DLS

DS

α(b), (3.4)

where β denotes the angular position of the source and DL, DS, DLS are the
distances from the observer to the lens, from the observer to the source, and
from the lens to the source, respectively.
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For ε > 0, there is always a positive root corresponding to the Einstein
ring for β = 0. The Einstein ring radius is defined as [33]

θE ≡
(
ε̄DLS

DSDn
L

) 1
n+1

. (3.5)

If ε < 0, on the other hand, Eq. (3.4) has no positive root for β = 0. This
is because this case describes the repulsive force. For later convenience in
normalizing the lens equation, we define the (tentative) Einstein ring radius
for ε < 0 as

θE ≡
(
|ε̄|DLS

DSDn
L

) 1
n+1

, (3.6)

though the Einstein ring does not appear for this case. This radius gives a
typical angular size for ε < 0 lenses.

3.2 Gravitational lensing shear

3.2.1 ε > 0 case

Let us begin with a ε > 0 case. As already stated, the matter (and energy)
need to be exotic if n > 1. In the units of the Einstein ring radius, Eq. (3.4)
is rewritten in the vectorial form as

β̂ = θ̂ − θ̂

θ̂n+1
(θ̂ > 0), (3.7)

β̂ = θ̂ − θ̂

(−θ̂)n+1
(θ̂ < 0), (3.8)

where we normalize β̂ ≡ β/θE and θ̂ ≡ θ/θE for the angular position of the
image θ ≡ b/DL, and β̂ and θ̂ denote the corresponding vectors. There is
always one image for θ̂ > 0, while the other image appears for θ̂ < 0 [36].

Let us study the lensing shear that is generally defined via the magnifi-
cation matrix Aij ≡ ∂βi/∂θj [33]. After straightforward computations, the

magnification matrix for θ̂ > 0 becomes explicitly

(Aij) =

 1 −
1

θ̂n+1
+ (n+ 1)

θ̂xθ̂x

θ̂n+3
(n+ 1)

θ̂xθ̂y

θ̂n+3

(n+ 1)
θ̂xθ̂y

θ̂n+3
1 −

1

θ̂n+1
+ (n+ 1)

θ̂yθ̂y

θ̂n+3

 . (3.9)
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It is diagonalized by using its eigen values λ± as

(Aij) =

(
1 − κ− γ 0

0 1 − κ+ γ

)
≡

(
λ− 0
0 λ+

)
, (3.10)

where the x and y coordinates are chosen along the radial and tangential
directions, respectively, such that (θ̂i) = (θ̂, 0) and (β̂i) = (β̂, 0). Hence, the
radial elongation factor is 1/λ−, while the tangential one is 1/λ+.

First, let us investigate the primary image (θ̂ > 0). By using Eq. (3.7),
we obtain

λ+ =
β̂

θ̂
= 1 − 1

θ̂n+1
, (3.11)

λ− =
dβ̂

dθ̂
= 1 +

n

θ̂n+1
. (3.12)

To reach Eqs. (3.11) and (3.12), we need several steps, where first the Ja-
cobian matrix is computed and next the matrix is diagonalized. Note that,
for our axially symmetric cases, there is a shortcut of deriving Eqs. (3.11)
and (3.12) without doing such lengthy calculations. In the shortcut, one may
start with the x and y coordinates that are locally chosen along the radial and
tangential directions, respectively, such that (θ̂i) = (θ̂, 0) and (β̂i) = (β̂, 0).
Then, infinitesimal changes in β̂ and θ̂ can be written as (dθ̂i) = (dθ̂, θ̂dϕ) and
(dβ̂i) = (dβ̂, β̂dϕ), where ϕ denotes the azimuthal angle. The axial symmetry
allows that θ̂ and β̂ are independent of ϕ, which means that the off-diagonal
terms vanish in the local coordinates. Hence, one can immediately obtain
Eqs. (3.11) and (3.12) [93].

If and only if n > −1, one can show λ− > λ+. Therefore, the primary
image is always tangentially elongated. See also Figure 3.1 for κ and λ± that
are numerically calculated for n = 0.5, 1, 2 and 3. For these four cases, λ−
is always larger than λ+. The convergence κ is positive for n = 0.5, while
it is negative for n = 2 and 3. It follows that n = 1 corresponding to the
Schwarzschild lens leads to κ = 0.

Eqs. (3.11) and (3.12) give the convergence and the shear as

κ = 1 − λ+ + λ−
2

=
1 − n

2

1

θ̂n+1
, (3.13)
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γ =
λ+ − λ−

2

= −1 + n

2

1

θ̂n+1
, (3.14)

respectively. It follows that this result of κ agrees with Eq. (3.3).
Next, we study the secondary image (θ̂ < 0). By using Eq. (3.8), one

can show λ− > λ+, if and only if n > −1. Hence, the secondary image also
is tangentially elongated. See also Figure 3.2 for ε > 0 and n = 2, where one
can see a pair of tangential images.

Finally, we mention the dependence on the exponent n. A significantly
elongated case such as a giant arc appears near the Einstein ring (θ̂ ∼ 1),
around which Eqs. (3.11) and (3.12) are expanded as

λ+ = (n+ 1)(θ̂ − 1) − (n+ 1)(n+ 2)

2
(θ̂ − 1)2 +O

(
(θ̂ − 1)3

)
,(3.15)

λ− = n+ 1 − n(n+ 1)(θ̂ − 1) +O
(

(θ̂ − 1)2
)
. (3.16)

where we used the identity θ̂ = 1 + (θ̂ − 1). The ratio of the tangential
elongation to the radial one (corresponding to the arc shape) is

λ−
λ+

=
1

θ̂ − 1
+
(

1 − n

2

)
+O(θ̂ − 1). (3.17)

This suggests that, for the fixed observed lens position θ̂, elongation of images
becomes weaker, when n becomes larger. This dependence on n is true of
also the secondary image.

3.2.2 ε < 0 case

Let us study ε < 0 case. In the units of the Einstein ring radius, Eq. (3.4) is
rewritten in the vectorial form as

β̂ = θ̂ +
θ̂

θ̂n+1
(θ̂ > 0), (3.18)

β̂ = θ̂ +
θ̂

(−θ̂)n+1
(θ̂ < 0). (3.19)

Without loss of generality, we assume β̂ > 0. Then, Eq. (3.19) has no root
satisfying θ̂ < 0, while Eq. (3.18) has at most two positive roots. Figure 3.3
shows that there are three cases of the image number. For a large impact
parameter case, two images appear on the same side with respect to the lens
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position, while no image appears for a small impact parameter. The only
one image appears only when the impact parameter takes a particular value.
Let us focus on the two image cases, from which the single image case can
be discussed in the limit as the impact parameter approaches the particular
value.

By using Eq. (3.18), we obtain

λ+ =
β̂

θ̂
= 1 +

1

θ̂n+1
, (3.20)

λ− =
dβ̂

dθ̂
= 1 − n

θ̂n+1
. (3.21)

One can show that λ− < λ+, if and only if n > −1. Hence, both images
are everywhere radially elongated. See also Figure 3.4 for κ and λ± that
are numerically calculated for n = 0.5, 1, 2 and 3. For these four cases, λ+
is always larger than λ−. The convergence κ is negative for n = 0.5, while
it is positive for n = 2 and 3. It follows that n = 1 corresponding to the
(negative-mass) Schwarzschild lens leads to κ = 0.

Eqs. (3.20) and (3.21) give the shear as

γ =
λ+ − λ−

2

=
1 + n

2

1

θ̂n+1
. (3.22)

A repulsive case might correspond to the lensing by a void-like mass dis-
tribution. The above calculations assume the flat (Minkowskian) background
spacetime. If one wish to consider cosmological situations, the gravitational
potential and the mass density might correspond to the scalar perturbation
and the density contrast in the cosmological perturbation approach based
on the Friedmann-Lemaitre background spacetime [33]. In this cosmological
counterpart, the present model with κ < 0 might correspond to an under-
dense region called a cosmic void, in which the local mass density is below the
cosmic mean density and the density contrast is thus negative. The gravita-
tional force on the light rays by the surrounding region could be interpreted
as repulsive (ε < 0), because the bending angle of light with respect to the
center of the spherical void might be negative. Therefore, cosmic voids might
correspond to a κ < 0 and ε < 0 case. Note that the positive convergence
due to the cosmic mean density is taken into account in the definition of the
cosmological distances. There are very few galaxies in voids compared with
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in a cluster of galaxies. Hence, it is difficult to investigate gravity inside a
void by using galaxies as a tracer. Gravitational lensing shear measurements
would be another tool for studying voids.

Before closing this section, we mention whether we can distinguish radial
elongation and tangential one in observations without knowing the lens po-
sition. Usually, lens objects cannot be directly seen except for visible lens
objects such as galaxies. In particular, exotic lens models that are discussed
in this paper might be invisible. In the above calculations, the origin of the
two-dimensional coordinates is chosen as the center of the lens object, so
that the radial and tangential directions can be well defined. For a pair of
radially elongated images (ε < 0), they are in alignment with each other. For
a pair of tangentially elongated images (ε > 0), they are parallel with each
other. Therefore, one can distinguish radial elongation from tangential one
by measuring such an image alignment in observations. See also Figure 3.2
for ε < 0 and n = 2, where one can see a pair of radial images.

3.3 Summary of this chapter

We examined gravitational lens models inspired by modified gravity theories,
exotic matter and energy. By using an asymptotically flat, static and spher-
ically symmetric spacetime model of which metric depends on the inverse
distance to the power of positive n, it was shown in the weak field and thin
lens approximations that images due to lens models for the gravitational pull
on light rays are tangentially elongated, whereas those by the other models
for the gravitational repulsion on light rays are always radially distorted.

As a cosmological implication, it is suggested that cosmic voids might
correspond to a κ < 0 and ε < 0 case and hence they could produce radi-
ally elongated images rather than tangential ones. It would be interesting to
investigate numerically light propagation through realistic voids in cosmo-
logical simulations, because the present model obeys a simple power-law. It
is left for future work.
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Figure 3.1: κ, λ+ and λ− for ε > 0. They are denoted by solid (blue in colors),
dotted (purple in colors) and dashed (red in colors) curves, respectively. The
horizontal axis denotes the image position θ in the units of the Einstein
radius. Top left: n = 0.5 Top right: n = 1. Bottom left: n = 2. Bottom
right: n = 3. [44]

Table 3.1: The sign of the convergence κ. It is the same as that of ε(1 − n)
according to Eq. (2.14). [44]

κ > 0 ε > 0 & n < 1
ε < 0 & n > 1

κ = 0 n = 1
κ < 0 ε > 0 & n > 1

ε < 0 & n < 1
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Figure 3.2: Numerical figures of lensed images for attractive (ε > 0) and
repulsive (ε < 0) cases. They are denoted by dashed curves. We take n = 2.
The source for each case is denoted by solid circles, which are located on the
horizontal axis and vertical one for ε < 0 and ε > 0, respectively. [44]
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Figure 3.3: Repulsive lens model (ε < 0). Solid curves denote 1/θ̂n and
straight lines mean θ̂ − β̂. Their intersections correspond to image positions
that are roots for the lens equation. There are three cases: No image for a
small β̂ (dot-dashed line), a single image for a particular β̂ (dotted line), and
two images for a large β̂ (dashed line). The two images are on the same side
of the lens object. [44]
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Figure 3.4: κ, λ+ and λ− for ε < 0. They are denoted by solid (blue in colors),
dotted (purple in colors) and dashed (red in colors) curves, respectively. The
horizontal axis denotes the image position θ in the units of the Einstein
radius. Top left: n = 0.5 Top right: n = 1. Bottom left: n = 2. Bottom
right: n = 3. [44]
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Chapter 4

Microlensed image centroid
motion by the modified
spacetime

4.1 Modified spacetime model and modified

lens equation

This section briefly summarizes the basics of the exotic lens models [36, 44].

4.1.1 Modified bending angle of light

Following Kitamura et al. [36], in the chapter2, we assumes that an asymp-
totically flat, static and spherically symmetric modified spacetime could de-
pend on the inverse distance to the power of positive n in the weak field
approximation. Note that some of the notations are different from those in
Chapter 2. We consider the light propagation through a four-dimensional
spacetime, though the whole spacetime may be higher dimensional. The
four-dimensional spacetime metric is expressed as

ds2 = −
(

1 − ε1
rn

)
dt2 +

(
1 +

ε2
rn

)
dr2 + r2(dΘ2 + sin2 Θdϕ2) +O(ε21, ε

2
2, ε1ε2),

(4.1)
where r is the circumference radius and ε1 and ε2 are small book-keeping
parameters in iterative calculations. The weak field approximation means
ε1/r

n ≪ 1 and ε2/r
n ≪ 1. Namely, we study a far field from the lens object

as r ≫ ε
1/n
1 and r ≫ ε

1/n
2 . Note that Eq. (4.1) is not valid in the strong field

near r = 0 (Please see [92] for more detail). Here, ε1 and ε2 may be either
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positive or negative, respectively. Negative ε1 and ε2 for n = 1 correspond
to a negative mass (in the linearized Schwarzschild metric).

Without loss of generality, we focus on the equatorial plane Θ = π/2,
since the spacetime is spherically symmetric. The deflection angle of light is
obtained at the linear order as [36]

α =
ε

bn

∫ π
2

0

cosn ψdψ +O(ε2), (4.2)

where the integral is positive definite, b denotes the impact parameter of the
light ray, and we define ε ≡ nε1 + ε2. By absorbing the positive integral
into the parameter ε, we rewrite the linear-order deflection angle simply as
α = ε̄/bn, where the sign of ε̄ is the same as that of ε. This deflection angle
recovers the Schwarzschild (n = 1) and Ellis wormhole (n = 2) cases. For
ε > 0, the deflection angle of light is always positive, which means that the
corresponding spacetime model causes the gravitational pull on light rays.
For ε < 0, on the other hand, it is inevitably negative, which implies the
gravitational repulsion on light rays like a concave lens.

We mention an effective mass. A simple application of the standard lens
theory [33] suggests that the deflection angle of light in the form of α = ε̄/bn

corresponds to a convergence (scaled surface mass density) as

κ(b) =
ε̄(1 − n)

2

1

bn+1
, (4.3)

which implies an extended spherical distribution of matter (or energy) for
n ̸= 1 and a singular source only for n = 1.

For the weak-field Schwarzschild case (n = 1), it follows that the conver-
gence vanishes. For ε > 0 and n > 1, the effective surface mass density of
the lens object is interpreted as negative in the framework of the standard
lens theory [36]. This means that the matter (and energy) needs to be exotic
if ε > 0 and n > 1. Also when ε < 0 and n < 1, the convergence is neg-
ative and hence the matter (and energy) needs to be exotic. Interestingly,
when ε < 0 and n > 1, the convergence is positive everywhere except for the
central singularity and hence exotic matter (and energy) is not required in
the framework of the standard lens theory, in spite of the gravitational re-
pulsion on light rays. Attraction (ε > 0) and repulsion (ε < 0) in the above
two-parameter models do not have a one-to-one correspondence to positive
convergence κ > 0 and negative one κ < 0. This point is summarized in
Table 4.1 [44].
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4.1.2 Modified Einstein radius

Under the thin lens approximation, it is useful to consider the lens equation
as [33]

β =
b

DL

− DLS

DS

α(b), (4.4)

where β denotes the angular position of the source and DL, DS , DLS are the
distances from the observer to the lens, from the observer to the source, and
from the lens to the source, respectively. Note that there is the mathematical
consistency of the use of the lens equation Eq. (4.4), where the trigonometric
functions are approximated by their leading terms. The present paper studies
the leading term in the deflection angle, so that Eq. (4.4) can be mathemat-
ically consistent. On the other hand, if one wishes to include the next (and
higher order) for the bending angle, the third-order (or higher-order) terms
in the expansion of the trigonometric functions have to be taken into account
in the lens equation, because of the mathematical consistency [9, 2, 3].

For ε > 0, there is always a positive root corresponding to the Einstein
ring for β = 0. The Einstein ring radius is defined as [44]

θE ≡
(
ε̄DLS

DSDn
L

) 1
n+1

. (4.5)

If ε < 0, on the other hand, Eq. (4.4) has no positive root for β = 0. This
is because this case describes the repulsive force. For later convenience in
normalizing the lens equation, we define the (tentative) Einstein ring radius
for ε < 0 as

θE ≡
(
|ε̄|DLS

DSDn
L

) 1
n+1

, (4.6)

though the Einstein ring does not appear for this case. This radius gives a
typical angular size for ε < 0 lenses.

Like Schwarzschild lenses, there might exist a photon sphere for ε > 0.
The radius of the photon sphere for the spacetime metric by Eq. (4.1) might
become

Rps =

(
(n+ 2)ε1

2

)1/n

. (4.7)

See [53] for a more thorough discussion on the photon surfaces.

4.1.3 Modified lens equation: ε > 0 case

Following Izumi et al. [44], let us begin with ε > 0 case. As already stated,
the matter (and energy) needs to be exotic if n > 1. In the units of the
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Einstein ring radius, Eq. (4.4) is rewritten in the vectorial form as

β̂ = θ̂ − θ̂

θ̂n+1
(θ̂ > 0), (4.8)

β̂ = θ̂ − θ̂

(−θ̂)n+1
(θ̂ < 0), (4.9)

where we normalize β̂ ≡ β/θE and θ̂ ≡ θ/θE for the angular position of the
image θ ≡ b/DL, and β̂ and θ̂ denote the corresponding vectors. There is
always one image for θ̂ > 0, while the other image appears for θ̂ < 0 [36].

4.1.4 Modified lens equation: ε < 0 case

Next, let us mention ε < 0 case [44]. In the units of the Einstein ring radius,
Eq. (4.4) is rewritten in the vectorial form as

β̂ = θ̂ +
θ̂

θ̂n+1
(θ̂ > 0), (4.10)

β̂ = θ̂ +
θ̂

(−θ̂)n+1
(θ̂ < 0). (4.11)

Without loss of generality, we assume β̂ > 0. Then, Eq. (4.11) has no root
satisfying θ̂ < 0, while Eq. (4.10) has at most two positive roots. Figure 4.1
shows that there are three cases of the image number. For a large impact
parameter case, two images appear on the same side with respect to the lens
position, while no image appears for a small impact parameter. The only
one image appears only when the impact parameter takes a critical value.
Let us focus on the two image cases, from which the single image case can
be discussed in the limit as the impact parameter approaches the particular
value.

4.2 Microlensed image centroid

4.2.1 Image centroid

Let us study the microlensed image centroid motions. In any case of ε > 0
and ε < 0, the image positions are denoted by θ̂1 and θ̂2, and the corre-
sponding amplification factors are denoted by A1 and A2. Without loss of
generality, we take θ̂1 > θ̂2. In analogy with the center of the mass dis-
tribution, the centroid position of the light distribution of a gravitationally
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microlensed source is given by

θ̂pc =
A1θ̂1 + A2θ̂2

Atot

, (4.12)

where Atot denotes the total amplification as A1 + A2. The corresponding
scalar is defined as θ̂pc ≡ (A1θ̂1 + A2θ̂2)A

−1
tot . Note that θ̂pc is positive, when

the centroid is located on the same side of the source with respect to the lens
center.

The relative displacement of the image centroid with respect to the source
position is written as

δθ̂pc = θ̂pc − β̂. (4.13)

Henceforth, this is referred to as the centroid shift. The corresponding scalar
is defined as δθ̂pc ≡ θ̂pc − β̂. δθ̂pc is positive, when θ̂pc is larger than β̂.

By taking account of the relation between the lens and source trajectory
in the sky, the time dependence of β̂ is written as

β̂(t) =

√
β̂2
0 + (t− t0)2/tE

2, (4.14)

where β̂0 is the impact parameter of the source trajectory and t0 is the time
of closest approach. Here, the source is assumed to be in uniform linear
motion. We choose t0 = 0. tE is the Einstein radius crossing time given by

tE = RE/vT , (4.15)

where vT is the transverse velocity of the lens relative to the source and
observer. In the following numerical computations, time is normalized by
the Einstein ring radius crossing time.

In making numerical figures, we employ x− y coordinates, such that the
coordinate origin is chosen as the lens center, x-axis is taken along the direc-
tion of the source motion and y-axis is perpendicular to the source motion.

4.2.2 Numerical computations: ε > 0 case

Let us begin with the ε > 0 case. See Figure 4.2 for the image centroid
trajectories by ε > 0 models for β̂0 = 0.3 and 3. Figure 4.3 shows the image
centroid shift by the ε > 0 models. For β̂0 = 0.3 for instance, the maximum
vertical shift of the image centroid position by the exotic lens models is
0.2(n = 0.5), 0.14(n = 1), 0.07(n = 3) and 0.02(n = 10) in the units of
the Einstein ring radius, respectively. For β̂0 = 3, it is nearly 0.5(n = 0.5),
0.3(n = 1), −0.01(n = 3) and −0.02(n = 10). These results suggest that
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the astrometric lensing by the exotic models with large n is relatively weak
compared with that by the Schwarzschild one (n = 1). In the weak-field
region, one can understand the suppression of the anomalous shift of the
image centroid position for large n, because the bending angle by the large
n models is proportional to the inverse impact parameter to the power of
n, whereas that by the Schwarzschild lens depends on the inverse impact
parameter.

A distinctive feature is that in ε > 0 and n > 2 cases bow knots might
be added into the centroid shift trajectory, while the trajectory is known
to be an ellipse for n = 1 case [45, 49] and to be oval for n = 2 [19].
Such a multiply-connected shape of the centroid shift orbit would be an
evidence of the corresponding exotic lens in astrometric observations. Figure
4.3 shows the bow-tie shape might disappear when the impact parameter
becomes sufficiently large, for instance β̂ ∼ 3. For ε > 0 and n = 3, the
centroid shift could be negative for the β̂0 = 3 case. This is partly because
A2 becomes large compared with the n = 1 case.

At the center of the bow tie in the centroid shift, the image centroid
position is the same as the intrinsic (unlensed) source position. At which
time (and the corresponding source position) does the image centroid position
agree with the source position? For Schwarzschild lens, the image centroid
position agrees with the source position only at t = ±∞, namely β = ∞. In
order to study this coincidence time (and source position), it is convenient to
use Figure 4.4 for θ̂pc and β̂ and Figure 4.5 for δθ̂pc and β̂. Roughly speaking,

the coincidence occurs at β̂ ∼ 1−3, namely a few times the Einstein crossing
time. This timescale might be used for applications to observations.

4.2.3 Numerical computations: ε < 0 case

Next, we consider the ε < 0 case. Figure 4.6 shows the image centroid motion
by the ε < 0 models. Note that the centroid curve does not exist for small β̂
because of no images. See also Figure 4.1 for no image cases. Such a peculiar
event might be misinterpreted as an eclipse in astronomy.

Figure 4.7 shows the image centroid shift by the ε < 0 models. There does
not appear any bow-tie shape. Note that the image centroid shift is always
negative, because the effective force is repulsive. For unseen lens objects, the
negative shift can be hardly distinguished from the positive one.

The centroid shift trajectory for the repulsive models might be elongated
vertically to the source motion direction like a prolate spheroid as shown
by Figure 4.7, whereas that for convex-type attractive models such as the
Schwarzschild one is tangentially elongated like an oblate spheroid (See Fig-
ure 4.3). Figures 4.3 and 4.7 show that the size of the centroid shift by the
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repulsive models for each n and β̂0 is comparable to that for the correspond-
ing ε > 0 models.

4.2.4 Parameter estimations

Equations (4.5) and (4.6) are rewritten as

|ε̄|
Rn

E

=
DSRE

DLSDL

=
DSθE
DLS

. (4.16)

Here, DL, DS , DLS and RE = DLθE are observables in astronomy, while ε̄
and n are not direct observables but model parameters. Note that ε̄/Rn

E is
comparable to the typical size of the deflection angle.

The right-hand side of Eq. (4.16) consists of the observables and it is a
dimensionless quantity. Hence, Eq. (4.16) allows us to investigate |ε̄|/Rn

E

from observations. See Tables 4.2 and 4.3 for Einstein ring size and Einstein
radius crossing time, respectively. Near future astrometry space missions
such as Gaia and JASMINE are expected to have angular sensitivity of a few
micro arcseconds, for which the relevant parameter combination is limited
as |ε̄|/Rn

E > 10−11. Roughly speaking, the mission life time is several years,
for which the relevant timescale is limited as tE < a few years and Table 4.3
thus tells the limit as |ε̄|/Rn

E < 10−7 (for Bulge) and < 10−8 (for LMC). In
total, the parameter range relevant for the near future missions is 10−11 <
|ε̄|/Rn

E < 10−7.
Before closing this section, we mention how large n models could lead

to a multiply-connected curve of the microlensed centroid shift. Numerical
calculations suggest that n > 2 and ε > 0 models could produce a bow-
tie shape. See also Figure 4.8 for numerical computations in the vicinity of
n = 2 as n = 2.0, 2.1, 2.2 and 2.3. The numerical calculations suggest that
the bow tie shape could appear, if n > 2. Numerical computations for other
parameter values suggest that the maximum numbers of the loops and the
knots in the the centroid curve are three and one, respectively, which are
actually achieved by the n = 3 model.

4.3 Summary of this chapter

We examined gravitational lens models inspired by modified gravity theories,
exotic matter and energy. By using an asymptotically flat, static and spher-
ically symmetric spacetime model of which metric depends on the inverse
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distance to the power of positive n, it was shown in the weak field and thin
lens approximations that, for large n cases in the convex-type models, the
centroid shift from the source position might move on a multiply-connected
curve like a bow tie, while it is known to move on an ellipse for n = 1 case
and to move on an oval curve for n = 2. This bow-tie shape by the convex-
type exotic lens models is distinguishable from standard ones due to binary
motions or due the microlensing by Schwarzschild lens. The distinctive fea-
ture such as the bow-tie shape may be used for searching (or constraining)
localized exotic matter or energy with astrometric observations.

The parameter range relevant for the current and near-future missions
such as Gaia and JASMIME is 10−11 < |ε̄|/Rn

E < 10−7, where we assume
that the accuracy in astrometry will reach a few micro arcseconds and the
mission lifetime will be several years.

It was shown also that the centroid shift trajectory for concave-type re-
pulsive models might be elongated vertically to the source motion direction
like a prolate spheroid, whereas that for convex-type attractive models such
as the Schwarzschild one is tangentially elongated like an oblate spheroid.
The image centroid shift by the repulsive models is always negative, because
the effective force is repulsive. For unseen lens objects, the negative shift
can be hardly distinguished from the positive one. In this sense, it might be
relatively difficult to investigate the repulsive models in astrometry.
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Figure 4.1: Repulsive lens model (ε < 0). Solid curves denote 1/θ̂n and
straight lines mean θ̂ − β̂. Their intersections correspond to image positions
that are roots for the lens equation. There are three cases: No image for a
small β̂ (dot-dashed line), a single image for a particular β̂ (dotted line), and
two images for a large β̂ (dashed line). The two images are on the same side
of the lens object. [76]
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Figure 4.2: Centroid motions as (θ̂pc,x , θ̂pc,y) for ε > 0 (convex-type attractive

models). The solid and dashed curves correspond to β̂0 = 3 and β̂0 = 0.3,
respectively. The horizontal axis along the source linear motion is θ̂pc,x and

the vertical axis is θ̂pc,y . Top left: n = 0.5 Top right: n = 1. Bottom left:
n = 3. Bottom right: n = 10. [76]
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Figure 4.3: Centroid shifts δθ̂pc for ε > 0 (convex-type attractive models).

The solid and dashed curves correspond to β̂0 = 3 and β̂0 = 0.3, respectively.
The horizontal axis along the source velocity is δθ̂pc,x and the vertical axis

is δθ̂pc,y . Top left: n = 0.5 Top right: n = 1. Bottom left: n = 3. Bottom
right: n = 10. [76]
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Figure 4.4: Image centroid θ̂pc and β̂ for ε > 0 (convex-type attractive mod-
els). The dot-dashed, solid, dashed and dotted curves denote n = 0.5, 1,
3 and 10, respectively. The horizontal axis denotes the source position β̂
normalized by the Einstein radius, and the vertical axis denotes θ̂pc. [76]

Figure 4.5: Image centroid shift δθ̂pc and β̂ for ε > 0 (convex-type attractive
models). The dot-dashed, solid, dashed and dotted curves denote n = 0.5,
1, 3 and 10, respectively. The horizontal axis denotes the source position β̂
normalized by the Einstein radius, and the vertical axis denotes δθ̂pc. [76]
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Figure 4.6: Centroid motions as (θ̂pc,x , θ̂pc,y) for ε < 0 (repulsive models).

The solid and dashed curves correspond to β̂0 = 3 and β̂0 = 0.3, respectively.
The horizontal axis along the source linear motion is θ̂pc,x and the vertical

axis is θ̂pc,y . The dashed curves do not exist for small β̂, where no images
appear. Top left: n = 0.5 Top right: n = 1. Bottom left: n = 3. Bottom
right: n = 10. [76]
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Figure 4.7: Centroid shifts δθ̂pc for ε < 0 (concave-type repulsive models).

The solid and dashed curves correspond to β̂0 = 3 and β̂0 = 0.3, respectively.
The horizontal axis along the source velocity is δθ̂pc,x and the vertical axis is

δθ̂pc,y . The dashed curves are not closed, because no images appear for small

β̂. Top left: n = 0.5 Top right: n = 1. Bottom left: n = 3. Bottom right:
n = 10. [76]
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Figure 4.8: Image centroid shift δθ̂pc and β̂ for ε > 0 (convex-type attractive
models). The solid, dot-dashed, dashed and dotted curves denote n = 2.0,
2.1, 2.2 and 2.3, respectively. The horizontal axis denotes the source position
β̂ normalized by the Einstein radius, and the vertical axis denotes δθ̂pc. Top:

β̂ ∈ [0, 10]. Bottom: β̂ ∈ [100, 200]. [76]
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Table 4.1: The sign of the convergence κ. It is the same as that of ε(1 − n)
according to Eq. (2.14). [76]

κ > 0 ε > 0 & n < 1
ε < 0 & n > 1

κ = 0 n = 1
κ < 0 ε > 0 & n > 1

ε < 0 & n < 1

Table 4.2: Einstein radii and model parameters for Bulge and LMC lensings.
θE is the angular Einstein radius, RE is the Einstein radius, and ε̄ and n
are the two model parameters. DS = 8kpc and DL = 4kpc are assumed for
Bulge. DS = 50kpc and DL = 25kpc are assumed for LMC. [76]

Bulge LMC
θE (mas) RE (km) ε̄

Rn
E

RE (km) ε̄
Rn

E

10−3 6.0 × 105 1.0 × 10−11 3.7 × 106 1.0 × 10−11

10−2 6.0 × 106 1.0 × 10−10 3.7 × 107 1.0 × 10−10

10−1 6.0 × 107 1.0 × 10−9 3.7 × 108 1.0 × 10−9

1 6.0 × 108 1.0 × 10−8 3.7 × 109 1.0 × 10−8

10 6.0 × 109 1.0 × 10−7 3.7 × 1010 1.0 × 10−7

102 6.0 × 1010 1.0 × 10−6 3.7 × 1011 1.0 × 10−6

103 6.0 × 1011 1.0 × 10−5 3.7 × 1012 1.0 × 10−5

Table 4.3: Einstein radius crossing times for Bulge and LMC lensings. tE is
the Einstein radius crossing time. DS = 8kpc and DL = 4kpc are assumed for
Bulge. DS = 50kpc and DL = 25kpc are assumed for LMC. vT = 220km/s is
assumed for Bulge and LMC. In this table, the Einstein radius is calculated
by RE = vT × tE from the definition of the Einstein radius crossing time.
Here, the input is tE ∼ 10−3 − 103(day), namely 1(min.) − 3(yr.). [76]

tE (day) RE (km) ε̄
Rn

E
[Bulge] ε̄

Rn
E

[LMC]

10−3 1.9 × 104 3.1 × 10−13 5.0 × 10−14

10−2 1.9 × 105 3.1 × 10−12 5.0 × 10−13

10−1 1.9 × 106 3.1 × 10−11 5.0 × 10−12

1 1.9 × 107 3.1 × 10−10 5.0 × 10−11

10 1.9 × 108 3.1 × 10−9 5.0 × 10−10

102 1.9 × 109 3.1 × 10−8 5.0 × 10−9

103 1.9 × 1010 3.1 × 10−7 5.0 × 10−8
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Chapter 5

Gravitational lensing by
Tangherlini spacetime

In this Chapter, we investigate the gravitational lensing effects in the weak
field approximation and in the strong field limit of the Tangherlini space-
time [67]. The Tangherlini lens model would work as a wide-range toy model
for the exotic lens objects with strong gravitational field since the Tangher-
lini spacetime is a solution of the Einstein equations in all dimensions. The
Tangherlini lens model is expected to show the general features of the grav-
itational lensing effects by exotic gravitational objects in both the weak and
strong gravitational field.

The gravitational lens in the strong field limit is related to the other
phenomena such as the quasi-normal modes of a black hole [68, 69] and the
high-energy absorption cross section [70] which are caused by the nature of
the null geodesic near the photon sphere. Thus, the investigation of gravi-
tational lensing effects of the all-dimensional black hole in the strong field
limit would give us a new perspective on the intrinsic property of the all-
dimensional black hole.

This Chapter is organized as follows. In Section 1, we review the null
geodesic of the Tangherlini solution and investigate the deflection angle of
light rays. In Section 2 and IV, we will investigate the deflection angle
of the light in the weak field approximation and in the strong field limit,
respectively. In Section 4, we study the gravitational lens effects in the
strong field limit in the Tangherlini spacetime.
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5.1 Deflection angle of light in Tangherlini

spacetime

In this section, we review the null geodesic in the Tangherlini spacetime
briefly and investigate the deflection angle of light rays. The Tangherlini
solution is given by [67]

ds2 = −
[
1 −

(rg
r

)d−3
]
dt2

+
dr2

1 −
( rg

r

)d−3
+ r2dσ2

d−2, (5.1)

where rg is the event horizon radius and dσ2
d−2 is

dσ2
d−2 = dθ21 +

d−3∑
j=2

j−1∏
i=1

sin2 θidθ
2
j +

d−3∏
i=1

sin2 θidϕ
2 (5.2)

with the angular coordinates θi ∈ [0, π] and ϕ ∈ [0, 2π] and the integer i runs
from 1 into d− 3. The event horizon exists at r = rg, where rg is given by

rg =
16πM

(d− 2)Ad−2

, (5.3)

where M is the black hole mass and Ad−2 is the area of the unit sphere which
is given by

Ad−2 =
2π

d−1
2

Γ
(
d−1
2

) . (5.4)

For stationarity and axial symmetry, there exist the Killing vectors tµ∂µ = ∂t
and ϕµ∂µ = ∂ϕ, respectively.

We set sin θi = 1 and consider the induced line element

ds2 = −
[
1 −

(rg
r

)n]
dt2 +

dr2

1 −
( rg

r

)n + r2dϕ2, (5.5)

where n ≡ d− 3. From kµkµ = 0, where kµ is the photon wave number, the
equation of the photon trajectory is obtained by(

dr

dϕ

)2

= r4G(r, b), (5.6)
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where

G(r, b) ≡ 1

b2
− 1

r2
+

rng
rn+2

(5.7)

and b ≡ L/E is the impact parameter of the photon and E ≡ −gµνtµkν ,
and L ≡ gµνϕ

µkν are the energy and the angular momentum of the photon,
respectively. We assume that the conserved energy E is positive. We can
assume L > 0 or b > 0 without loss of generality.

The equation G(r, b) = 0 has two positive solutions r = r− and r0 for
b > bc, one positive solution r = r− = r0 for b = bc and no positive solution
for b < bc, where

bc ≡
(
n+ 2

n

) 1
2
(
n+ 2

2

) 1
n

rg (5.8)

is the critical impact parameter. From Eqs. (5.6) and (5.7), we find that
the photon is scattered if b > bc while it reaches the event horizon r = rg if
b < bc.

We will assume bc < b in what follows since we are interested in the
scattering problem. Here we define r0 as the larger solution of the equation
G(r, b) = 0 i.e. 0 < r− ≤ r0. Thus, r0 is the closest distance of a photon.
From G(r0, b) = 0, the relation between the impact parameter b and the
closest distance r0 is given by

1

b2
=

1

r20

[
1 −

(
rg
r0

)n]
. (5.9)

The derivative of G(r, b) with respect to r is given by

∂G(r, b)

∂r
=

2

r3
− (n+ 2)

rng
rn+3

. (5.10)

Thus, the radius of the photon sphere which satisfies ∂G(rm, b)/∂r = 0 is
obtained by

rm =

(
n+ 2

2

) 1
n

rg. (5.11)

The deflection angle α is given by

α = I(b) − π, (5.12)

where

I(b) ≡ 2

∫ ∞

r0

dr

r2
√
G(r, b)

. (5.13)
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5.2 Deflection angle in weak field approxima-

tion

In this section, we will calculate the deflection angle in the Tangherlini space-
time in weak field approximation by Keeton and Petters’s method [71]. We
define a small amount h by

h ≡
(
rg
r0

)n

≪
(
rg
rm

)n

=
2

n+ 2
. (5.14)

The relation between the impact parameter b and the closet distance r0 (5.9)
is expressed by (r0

b

)2
= 1 − h. (5.15)

Thus,

h =
(rg
b

)n
+O(h2). (5.16)

Using x ≡ r0/r, the deflection angle α is given by

α = 2

∫ 1

0

dx√
1 − x2

√
1 − hf(x)

− π, (5.17)

where

f(x) ≡ 1 − xn+2

1 − x2
=

1 + x+ x2 + · · · + xn+1

1 + x
. (5.18)

f(x) monotonically increases in the range of 0 ≤ x ≤ 1 with the minimum
value f(0) = 1 and the maximum value f(1) = (n+ 2)/2.

We will consider the Taylor series by the term of 1st degree

(1 − hf(x))−
1
2 = 1 +

1

2
hf(x) +O(h2) (5.19)

with respect to

hf(x) ≪
(
rg
rm

)n

f(1) = 1. (5.20)

Therefore, the deflection angle of the light is given by

α = 2

∫ 1

0

dx√
1 − x2

+ h

∫ 1

0

1 − xn+2

(1 − x2)
3
2

dx− π +O(h2). (5.21)
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We can easily integrate the first term,∫ 1

0

dx√
1 − x2

= [arcsin x]10 =
π

2
. (5.22)

Thus, the deflection angle is given by

α = Hn+2h+O(h2)

= Hn+2

(rg
b

)n
+O

((rg
b

)2n)
, (5.23)

where

Hm ≡
∫ π

2

0

1 − sinm k

cos2 k
dk, (5.24)

where k ≡ arcsinx and m is a positive integer.
A recurrence formula is obtained by

Hn+2 = Hn +Bn, (5.25)

where Bn is

Bn ≡
∫ π

2

0

sinn kdk =

∫ π
2

0

cosn kdk

=

√
π

2

Γ
(
n+1
2

)
Γ
(
n+2
2

)
=

{
(n−1)!!

n!!
π
2

for an even n,
(n−1)!!

n!!
for an odd n.

(5.26)

When n is even, we can put n = 2L where L is a positive integer. From
H2 = π/2 and Eqs. (5.25) and (5.26), we obtain

Hn+2 = H2 +
L∑

m=1

B2m =
π

2

[
1 +

L∑
m=1

(2m− 1)!!

(2m)!!

]
. (5.27)

Thus, the deflection angle is obtained by

α =
π

2

[
1 +

L∑
m=1

(2m− 1)!!

(2m)!!

](rg
b

)n
+O

((rg
b

)2n)
. (5.28)

When n is odd, we can put n = 2L − 1. From H1 = 1 and Eqs. (5.25)
and (5.26), we get

Hn+2 = H1 +
L∑

m=1

B2m−1 = 1 +
L∑

m=1

(2m− 2)!!

(2m− 1)!!
. (5.29)
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Here we have defined 0!! = 1. Thus, the deflection angle is

α =

[
1 +

L∑
m=1

(2m− 2)!!

(2m− 1)!!

](rg
b

)n
+O

((rg
b

)2n)
. (5.30)

We can also calculate the deflection angle by the terms of higher order
than the 1st degree with respect to h by Keeton and Petters’s method [71].

5.3 Deflection angle in strong field limit

In this section, we will investigate the deflection angle in the Tangherlini
spacetime in the strong field limit. We will express the deflection angle α of
the light ray in the strong field limit by

α(b) = −ā log

(
b

bc
− 1

)
+ b̄+O

(
(b− bc)

1
2

)
, (5.31)

or

α(θ) = −ā log

(
θDl

bc
− 1

)
+ b̄+O

(
(θDl − bc)

1
2

)
, (5.32)

where ā is a positive parameter, b̄ is a parameter, θ is the image angle and
Dl is the distance between the observer and the lens object. For the small
image angle θ ≪ 1, the impact parameter b can be described by

b = θDl. (5.33)

If we get the explicit expression for the deflection angle in the strong field
limit, we can calculate countably infinite relativistic images angle θN and the
countably infinite magnifications µN individually [63].

We show the explicit expression for the divergent part of the deflection
angle in the all-dimensional Tangherlini spacetime or the parameter ā and
we integrate the regular part of the deflection angle in 4, 5 and 7 dimension.1

Using by Eqs. (5.9) and

z ≡ 1 −
(r0
r

)n
, (5.34)

1As below, we obey the convention of the analysis in the strong field limit but the
definitions of some symbols such as z are different from the definitions by Bozza [63].
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we rewrite G(r, b) and I(b) into G(z, r0) and I(r0), respectively, as follow:

G(z, r0) =
1

r20

{
1 −

(
rg
r0

)n

+(1 − z)
2
n

[
−1 +

(
rg
r0

)n

(1 − z)

]}
. (5.35)

I(r0) =

∫ 1

0

R(z)f(z, r0)dz, (5.36)

where

R(z) ≡ 2

n
(1 − z)

1
n
−1 (5.37)

and

f(z, r0) ≡ 1√
r20G(z, r0)

=
1√

1 −
(

rg
r0

)n
+ (1 − z)

2
n

[
−1 +

(
rg
r0

)n
(1 − z)

] .
(5.38)

We can expand r20G(z, r0) near the z = 0 and obtain

r20G(z, r0) = γ(r0)z + β(r0)z
2 + · · · , (5.39)

where

γ(r0) ≡
1

n

[
2 − (n+ 2)

(
rg
r0

)n]
(5.40)

β(r0) ≡
1

n2

[
n− 2 + (n+ 2)

(
rg
r0

)n]
. (5.41)

Near the photon sphere r0 = rm, γ(r0) and β(r0) are expanded in a series,

γ(r0) =
2

rm
(r0 − rm) +O

(
(r0 − rm)2

)
(5.42)

and

β(r0) =
1

n
− 2

nrm
(r0 − rm) +O

(
(r0 − rm)2

)
, (5.43)
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respectively.
We will divide I(r0) into the divergent part ID(r0) and the regular part

IR(r0) or
I(r0) = ID(r0) + IR(r0). (5.44)

The divergent part ID(r0) is defined by

ID(r0) ≡
∫ 1

0

R(0)f0(z, r0)dz, (5.45)

where

f0(z, r0) ≡
1√

γ(r0)z + β(r0)z2
. (5.46)

The divergent part ID(r0) is calculated in a simple and straightforward way,

ID(r0)

=
2

n
√
β(r0)

log

∣∣∣∣∣γ(r0) + 2β(r0) + 2
√

(γ(r0) + β(r0))β(r0)

γ(r0)

∣∣∣∣∣
=

4

n
√
β(r0)

log

(√
β(r0) +

√
γ(r0) + β(r0)√
γ(r0)

)
. (5.47)

Therefore, the divergent part ID(r0) in the strong field limit is obtained by

ID(r0) = − 2√
n

log

(
r0
rm

− 1

)
+

2√
n

log
2

n
+O(r0 − rm).

(5.48)

We will rewrite the divergent part ID(r0) into a function ID(b) with respect
to the impact parameter b since the lens equation is usually written as an
equation in terms of the impact parameter b or the image angle θ. From
the relation between the impact parameter b and the closet distance r0 (5.9),
we can regard the impact parameter b(r0) as a function with respect to the
closet distance r0, we expand the impact parameter b(r0) in a series near
r0 = rm and we get

b(r0) = bc +
1

2

(
n+ 2

n

) 3
2 n

rm
(r0 − rm)2

+O
(
(r0 − rm)3

)
. (5.49)
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From Eqs. (5.8), (5.11) and (5.49) we obtain

log

(
r0
rm

− 1

)
=

1

2
log

(
b

bc
− 1

)
+

1

2
log

(
2

n+ 2

)
+O(r0 − rm). (5.50)

Hence, the divergent part is

ID(b) = − 1√
n

log

(
b

bc
− 1

)
+

1√
n

log
2(n+ 2)

n2

+O
(

(b− bc)
1
2

)
. (5.51)

The regular part IR(r0) is defined by

IR(r0) ≡
∫ 1

0

g(z, r0)dz, (5.52)

where

g(z, r0) ≡ R(z)f(z, r0) −R(0)f0(z, r0). (5.53)

We can expand IR(r0) in powers of (r0 − rm) and express it as a function
IR(b) with respect to b as follow:

IR(r0) =
∞∑
l=0

1

l!
(r0 − rm)l

∫ 1

0

∂lg

∂rl0

∣∣∣∣
r0=rm

dz

=
2

n

∫ 1

0

 √
n+ 2(1 − z)

1
n
−1√

n− (1 − z)
2
n (n+ 2z)

−
√
n

z

 dz
+O(r0 − rm)

= 2
√
n+ 2

∫ 1

0

dy√
n− (n+ 2)y2 + 2yn+2

−2
√
n

n

∫ 1

0

dz

z
+O

(
(b− bc)

1
2

)
= IR(b), (5.54)

where we have used y ≡ (1 − z)
1
n .

Thus, the deflection angle α(b) of the light on the Tangherlini spacetime
in the strong field limit is obtained by

α(b) = ID(b) + IR(b) − π

= − 1√
n

log

(
b

bc
− 1

)
+

1√
n

log
2(n+ 2)

n2

+IR(b) − π +O
(

(b− bc)
1
2

)
. (5.55)
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Hence, we get the parameters ā = 1√
n

and b̄ = 1√
n

log 2(n+2)
n2 + IR(b) − π.

We can analytically calculate the regular parts IR(b) for n = 1, 2 and 4
since the elliptic functions I(b) for n = 1, 2 and 4 are integrable [27].

5.3.1 n = 1

We consider the case for n = 1. In this case, the critical impact parameter

and the radius of the photon sphere are given by bc = 3
√
3rg
2

and rm = 3rg
2

,
respectively. The divergent part is obtained by

ID(b) = − log

(
b

bc
− 1

)
+ log 6 +O

(
(b− bc)

1
2

)
. (5.56)

The regular part IR(b) is given by

IR(b) = 2

∫ 1

0

 1

z
√

1 − 2
3
z
− 1

z

 dz +O
(

(b− bc)
1
2

)
= 2 log

[
6
(

2 −
√

3
)]

+O
(

(b− bc)
1
2

)
. (5.57)

Thus, the deflection angle α(b) of the light is obtained by

α(b) = ID(b) + IR(b) − π

= − log

(
b

bc
− 1

)
+ log

[
216

(
7 − 4

√
3
)]

−π +O
(

(b− bc)
1
2

)
. (5.58)

Therefore, we get the parameters ā = 1 and b̄ = log
[
216

(
7 − 4

√
3
)]

− π ≃
−0.40. It recovers the deflection angle of the light in Schwarzschild spacetime
in the strong field limit which was obtained by Bozza [63].

5.3.2 n = 2

For n = 2. the critical impact parameter and the radius of the photon sphere
are bc = 2rg and rm =

√
2rg, respectively. The divergent part is given by

ID(b) = − 1√
2

log

(
b

bc
− 1

)
+

1√
2

log 2

+O
(

(b− bc)
1
2

)
. (5.59)
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The regular part is obtained by

IR(b) =

∫ 1

0

( √
2

z
√

1 − z
−

√
2

z

)
dz +O

(
(b− bc)

1
2

)
= 2

√
2 log 2 +O

(
(b− bc)

1
2

)
. (5.60)

Thus, we obtain the deflection angle α(b) in the strong field limit for n = 2;

α(b) = − 1√
2

log

(
b

bc
− 1

)
+

5
√

2

2
log 2 − π

+O
(

(b− bc)
1
2

)
. (5.61)

In this case, the parameters are given by ā = 1√
2

and b̄ = 5
√
2

2
log 2 − π ∼

−0.69.

5.3.3 n = 4

For n = 4, the critical impact parameter and the radius of the photon sphere

are given by bc =
(
27
4

) 1
4 rg and rm = 3

1
4 rg, respectively. The divergent part

is obtained by

ID(b) = −1

2
log

(
b

bc
− 1

)
+

1

2
log

3

4

+O
(

(b− bc)
1
2

)
. (5.62)

The regular part IR(b) is given by

IR(b) = 2
√

3

∫ 1

0

dy√
2 − 3y2 + y6

−
∫ 1

0

dz

z
+O

(
(b− bc)

1
2

)
= log 12 +O

(
(b− bc)

1
2

)
(5.63)

and the deflection angle in the strong field limit is obtained by

α(b) = −1

2
log

(
b

bc
− 1

)
+ log 6

√
3 − π +O

(
(b− bc)

1
2

)
(5.64)

and hence we get the parameter ā = 1
2

and b̄ = + log 6
√

3 − π ∼ −0.80.
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5.4 Gravitational Lensing

5.4.1 Lens equation

We consider the lens configuration which is given in Figure 5.1 The light
ray emitted by the source S bends near the lensing object L. The observer
O does not see the source S with the source angle ϕ but the image I with
the image angle θ. For simplicity, we assume that both the observer O and
the source S are far from the lensing object L or Dl ≫ b and Dls ≫ b,
where Dl and Dls are the distance between the observer O and the lensing
object L and between the lensing object L and the source object S. We
also assume the thin lens approximation that the light ray bends on the lens
plane. The impact parameter b of the light ray is described by b = Dlθ.
Under the assumptions, the effective deflection angle ᾱ, the source angle ϕ
and the image angle θ are small or |ᾱ| ≪ 1, |ϕ| ≪ 1 and |θ| ≪ 1. The
effective deflection angle ᾱ is defined by

ᾱ ≡ (α mod 2π). (5.65)

The deflection angle α is expressed by

α = ᾱ + 2πN, (5.66)

where N is a non-negative integer which denotes the winding number of the
light ray.

Then, the lens equation is given by

Dlsᾱ = Ds(θ − ϕ), (5.67)

where Ds is the separation between the observer O and the source S and
satisfies the relation Ds = Dl + Dls. If the source angle ϕ = 0, ring-shaped
images which are called the Einstein ring with the angle θ0 for N = 0 and
the relativistic Einstein ring with the angle θN≥1 for N ≥ 1 appear from the
symmetry. From N = 0, ϕ = 0 and Eqs. (5.23), (5.33), (5.66) and (5.67),
the Einstein ring angle is given by

θ0 ∼
(
Hn+2

Dls

Ds

) 1
n+1
(
rg
Dl

) n
n+1

. (5.68)

The behaviors of the Tangherlini lens model in the weak field approxi-
mation has known already because the lens model is included in the exotic
lens model or the general spherical lens model [36, 21, 44, 76]. Here, we
refer only to the image angles and the magnification in the directly aligned
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limit (|ϕ| ≪ θ0 ≪ 1). Under the weak approximation, the lens equation has
two solutions θ0+ and θ0− regardless of the source angle ϕ for n ≥ 1. For
|ϕ| ≪ θ0 ≪ 1, the image angles θ0± and the magnification µ0± are given
by [36, 21]

θ0± = ±θ0 +
ϕ

1 + n
± nϕ2

2(1 + n)2θ0
+O

(
ϕ3

θ20

)
(5.69)

and

µ0± ∼ 1

1 + n

ϕ± θ0
ϕ

, (5.70)

respectively. The total magnification µ0 in the directly aligned limit is given
by

µ0 ≡ |µ0+| + |µ0−| =
2

1 + n

θ0
ϕ
. (5.71)

The relativistic Einstein rings or the relativistic images always appear
on the region just outside the photon sphere. The angle of the innermost
relativistic Einstein ring is obtained by

θ∞ =
bc
Dl

=

(
1 +

2

n

) 1
2 (

1 +
n

2

) 1
n rg
Dl

. (5.72)

The relation between the Einstein ring angle θ0, the relativistic Einstein ring
angle θ∞ and the relativistic image angle θN≥1(ϕ) is obtained by

θN≥1(ϕ) ∼ θ∞

∼
√
n+ 2

n

(
n+ 2

2Hn+2

Ds

Dls

) 1
n

θ
n+1
n

0 . (5.73)

5.4.2 Magnifications and Images of the Relativistic Im-
ages

We will briefly review the magnifications µN≥1 and the angles θN≥1 of the
relativistic images [72, 63] and investigate them in the Tangherlini spacetime.
We use the deflection angle α(θ) (5.32) in this subsection.

When the winding number N ≥ 1, we define an angle θ0N≥1 by

α(θ0N≥1) = 2πN. (5.74)
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From Eqs. (5.32) and (5.74), we obtain

θ0N≥1 =
bc
Dl

[
1 + e(b̄−2πN)

√
n
]
. (5.75)

We expand the deflection angle α(θ) around θ = θ0N≥1 to obtain the effective
deflection angle ᾱ. We define a small angle

∆θN≥1 ≡ θN≥1(ϕ) − θ0N≥1, (5.76)

where θN≥1(ϕ) is the solution of the lens equation (5.67) or the relativistic
image angle with the winding number N ≥ 1. From Eqs. (5.32) and (5.75),
the effective deflection angle of the light in the strong field limit is given by

ᾱ = −Dl

bc

e
√
n(−b̄+2πN)
√
n

∆θN≥1. (5.77)

We substitute the effective deflection angle (5.77) into the lens equa-
tion (5.67) and obtain

ϕ = θ0N≥1 +

[
1 +

Dl

bc

Dls

Ds

e
√
n(−b̄+2πN)
√
n

]
∆θN≥1.

(5.78)

From Eqs. (5.76) and (5.78), We get the the relativistic image angle θN≥1(ϕ)

θN≥1(ϕ) ≃ θ0N≥1 +
bc
Dl

Ds

Dls

√
ne

√
n(b̄−2πN)

(
ϕ− θ0N≥1

)
,

(5.79)

where we have used bc/Dl ≪ 1. From Eqs. (5.75) and (5.79), the innermost
relativistic image angle is obtained by

θ∞ = θ0∞ =
bc
Dl

. (5.80)

From Eqs. (5.75), (5.79) and (5.80), the difference of the angles between the
outermost relativistic image and innermost one is given by

θ1 − θ∞ ≃ θ01 − θ∞ = θ∞e
√
n(b̄−2π). (5.81)

The magnification µN≥1 of the relativistic image is obtained by

µN≥1 ≃ θN≥1

ϕ

dθN≥1

dϕ

∣∣∣∣
θN≥1=θ0N≥1

≃ 1

ϕ

b2c
D2

l

Ds

Dls

√
ne

√
n(b̄−2πN). (5.82)
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The sum of the magnifications of all the relativistic images is given by

∞∑
N=1

µN ≃ µ1 ≃
1

ϕ

b2c
D2

l

Ds

Dls

√
ne

√
n(b̄−2π)

≃ 2

H
2
n
n+2

√
nϕ

[
(n+ 2)Ds

2Dls

] 2
n
+1

θ
2n+2

n
0 e

√
n(b̄−2π).

(5.83)

The sum of the magnification of all the relativistic images become unity when
the source angle is

ϕ ≃ 2

H
2
n
n+2

√
n

[
(n+ 2)Ds

2Dls

] 2
n
+1

θ
2n+2

n
0 e

√
n(b̄−2π). (5.84)

In the directly aligned limit, the ratio of the magnification of the weak field
image divided by the sum of the magnification of all the relativistic images
is given by

µ0∑∞
N=1 µN

≃ µ0

µ1

≃
H

2
n
n+2

√
n

n+ 1

[
2Dls

(n+ 2)Dsθ0

] 2
n
+1

e
√
n(2π−b̄).

(5.85)

The ratio shows that the relativistic images are always fainter than images
in the weak field. Thus, we can ignore the effect of the relativistic images
on the light curve. However, this does not mean that we cannot observe the
relativistic images since they can get bright when the source angle is small.

The sum of the magnifications of the relativistic images excluding the
outermost relativistic image is given by

∞∑
N=2

µN ≃ µ2 ≃
1

ϕ

b2c
D2

l

Ds

Dls

√
ne

√
n(b̄−4π). (5.86)

From Eqs. (5.86) and (5.82), the ratio of the magnification of the outer-
most relativistic image divided by the sum of the magnification of the other
relativistic images is given by

µ1∑∞
N=2 µN

≃ µ1

µ2

≃ e
√
n2π. (5.87)

61



5.5 Summary of this chapter

We investigated the gravitational lensing effects in the Tangherlini spacetime
in the weak gravitational field and in the strong field limit. The Tangherlini
lens would be work as a wide-range toy model for a exotic lens model or
a general spherical lens model [21, 36, 44, 76] with a photon sphere. The
gravitational lensing in the strong field limit in higher dimension would be
related to the nature of the higher dimensional black hole such as quasi-
normal modes of black hole [68, 69] and high-energy absorption cross section
[70].

We derived the divergent part of the deflection angle in all dimensions
and the regular part in 4, 5 and 7 dimensions in the strong field limit, the
deflection angle in all dimensions under the weak gravitational approxima-
tion and the relation between the size of the Einstein ring and the ones of
the relativistic Einstein rings in all dimensions. We also shown that the rel-
ativistic images are always fainter than the images in the weak gravitational
field.

Kitamura et al. [36] studied the demagnification of the light curves of
the exotic lens object in the weak gravitational field. We conclude that
the images in the strong gravitational field have little effect on the total
light curve and that the characteristic demagnification of the light curve will
appear after considering the images in the strong gravitational field for n > 1.
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Figure 5.1: The configuration of the gravitational lensing. The light ray
emitted by the source object S bends on the lens plane and the observer O
does not observe the source S with the source angle ϕ but the image I with
the image angle θ. ᾱ is the effective deflection angle and b is the impact
parameter of the light. Dl and Dls are the distances between the observer O
and the lens object L and between the lens object L and the source object S,
respectively. The distance between the observer O and the source S is given
by Ds = Dl +Dls. [22]
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Chapter 6

Conclusion

We examined a gravitational lens model inspired by modified gravity theo-
ries, exotic matter and energy. By using an asymptotically flat, static and
spherically symmetric spacetime model of which metric depends on the in-
verse distance to the power of positive n. In Chapter2, it was shown in
the weak field and thin lens approximations that demagnifying gravitational
lenses could appear, provided the impact parameter of light β̂ and the power
n satisfy β̂ > 2/(n+ 1) in the units of the Einstein ring radius under a large
n approximation.

Therefore, time-symmetric demagnification parts in numerical light curves
by gravitational microlensing (Abe, Astrophys. J. 725, 787, 2010) may be
an evidence of an Ellis wormhole but they do not always prove it. Such a
gravitational demagnification of the light might be used for hunting a clue
of exotic matter and energy that are described by an equation of state more
general than the Ellis wormhole case. Examples of n = 3 and 10 show maxi-
mally ∼ 10 and ∼ 60 percent depletion of the light, when the source position
is β̂ ∼ 1.1 and β̂ ∼ 0.7, respectively. It is left as a future work to perform a
numerical campaign for the vast parameter space. The gravitational demag-
nification of light occurs, presumably because modified lenses could act as an
effectively negative (quasi-local) mass on a particular light ray (through the
Ricci focusing). Regarding this issue, a more rigorous formulation is needed.
It would be interesting to study a relation between the model parameter n
and vital modified gravity theories (or matter models with an exotic equa-
tion of state) and also to make an interpretation of the parameter n in the
framework of the theory of general relativity.

The analytical approximate solution in this paper is obtained at the linear
order of 1/β̂ to discuss the total magnification. Tsukamoto and Harada [21]
have studied the next order of 1/β̂ to discuss the signed magnification sums,
namely the difference between the amplifications of two images.
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In the Chapter 3 it was shown in the weak field and thin lens approx-
imations that images due to lens models for the gravitational pull on light
rays are tangentially elongated, whereas those by the other models for the
gravitational repulsion on light rays are always radially distorted.

As a cosmological implication, it is suggested that cosmic voids might
correspond to a κ < 0 and ε < 0 case and hence they could produce radi-
ally elongated images rather than tangential ones. It would be interesting to
investigate numerically light propagation through realistic voids in cosmo-
logical simulations, because the present model obeys a simple power-law.

Furthermore, in Chapter 4 it was shown in the weak field and thin lens
approximations that, for large n cases in the convex-type models, the centroid
shift from the source position might move on a multiply-connected curve like
a bow tie, while it is known to move on an ellipse for n = 1 case and to move
on an oval curve for n = 2. This bow-tie shape by the convex-type exotic lens
models is distinguishable from standard ones due to binary motions or due
the microlensing by Schwarzschild lens. The distinctive feature such as the
bow-tie shape may be used for searching (or constraining) localized exotic
matter or energy with astrometric observations.

The parameter range relevant for the current and near-future missions
such as Gaia and JASMIME is 10−11 < |ε̄|/Rn

E < 10−7, where we assume
that the accuracy in astrometry will reach a few micro arcseconds and the
mission lifetime will be several years.

It was shown also that the centroid shift trajectory for concave-type re-
pulsive models might be elongated vertically to the source motion direction
like a prolate spheroid, whereas that for convex-type attractive models such
as the Schwarzschild one is tangentially elongated like an oblate spheroid.
The image centroid shift by the repulsive models is always negative, because
the effective force is repulsive. For unseen lens objects, the negative shift
can be hardly distinguished from the positive one. In this sense, it might be
relatively difficult to investigate the repulsive models in astrometry.

Finally, in Chapter 5 we investigated the gravitational lensing effects in
the Tangherlini spacetime in the weak gravitational field and in the strong
field limit. The Tangherlini lens would be work as a wide-range toy model
for a exotic lens model or a general spherical lens model [21, 36, 44, 76]
with a photon sphere. The gravitational lensing in the strong field limit in
higher dimension would be related to the nature of the higher dimensional
black hole such as quasi-normal modes of black hole [68, 69] and high-energy
absorption cross section [70].

We derived the divergent part of the deflection angle in all dimensions
and the regular part in 4, 5 and 7 dimensions in the strong field limit, the
deflection angle in all dimensions under the weak gravitational approxima-
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tion and the relation between the size of the Einstein ring and the ones of
the relativistic Einstein rings in all dimensions. We also shown that the rel-
ativistic images are always fainter than the images in the weak gravitational
field.

Kitamura et al. [36] studied the demagnification of the light curves of
the exotic lens object in the weak gravitational field. We conclude that
the images in the strong gravitational field have little effect on the total
light curve and that the characteristic demagnification of the light curve will
appear after considering the images in the strong gravitational field for n > 1.
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