RMuトランスポゾンによる ほ遺伝子改変システムの構築

研究課題番号:10660003

平成10年度~平成12年度科学研究費補助金 基盤研究(C)(**1**)研究成果報告書

平成13年3月

研究代表者:石川隆二 (弘前大学農学生命科学部**3)務権**)

•

イネ RMu トランスポゾンによる遺伝子改変システムの構築 研究組織: 弘前大学農学生命科学部 研究代表者:石川隆二 研究分担者:なし 研究経費

平成10年度	2,700千円
平成11年度	500千円
平成12年度	700千円
ਡ <u>+</u> ਸ	3,900千円

(1) 論文など

Ishikawa, R. Structural difference of RiceMutator and maize Mutator elements and the activity of *RiceMutator*, Abstrats of 41th Annual Maize Genetics Conference, Lake Geneva, Wisconsin, 1999.

Miyashita, Y., R. Ishikawa, M. Senda, S. Akada, T. Harada and M. Niizeki : Copy number of *RMu* elemenets in Japanese lowland rice landrace. Rice Genet. Newslt. 15:162,1998

Ishikawa, R., T. Konnno, M. Senda, S. Akada, T. Harada and M. Niizeki: Behavior of transposable elements in Akihikari and its parental strains. Rice. Genet. Newlt. 15:163-164, 1998

(2) 口頭発表

石川隆二・宮下弥生・三浦 桂・赤田辰治・原田竹雄・新関 稔 *PMu2* クラスのトランスポゾンの構造解析.日本育 種学会第96回講演会,1999.

宮下弥生・石川隆二・三浦 桂・千田峰生・赤田辰治・原田竹雄・新関 稔 PMu 1 クラスにおけるトランスポゾンの 構造解析、日本育種学会第96回講演会、1999、

石川隆二・宮下弥生・千田峰生・赤田辰治・原田竹雄・新関 稔 RMu トランスポゾンの遺伝的特徴 I. PMu トラ ンスポゾンファミリーの挿入領域の分子的特徴. 日本育種学会第95回講演会, 1999.

宮下弥生・石川隆二・千田峰生・赤田辰治・原田竹雄・新関 稔 PMu トランスポゾンにおけるトランスポゼース領域の構造的多型、日本育種学会第95回講演会、1999、

石川隆二・千田峰生・赤田辰治・原田竹雄・新関 稔 PMu トランスポゾンの構造分化とタッギング用プローブの開

5:40

発. 日本育種学会第94回講演会, 1998.

宮下弥生・石川隆二・今野太郎・三浦 桂・千田峰生・赤田辰治・原田竹雄・新関 稔 イネ在来種における PMu トランスポゾンの可動性.日本育種学会第94回講演会,1998.

石川隆二・千田峰生・赤田辰治・原田竹雄・新関 稔 FMu トランスポゾンの遺伝的特徴 I. FMu トランスポゾン ファミリーの挿入領域の分子的特徴.日本育種学会第93回講演会,1998. 1. 緒言

Mutator トランスポゾンはトウモロコシゲノム内で見出された可動性因子であ り, Donald Robertson(1978)が Ac トランスポゾンから生じた葉色変異系統から 得た系統後代からクローニングされた.そのため、制御因子は易変異性との共 分離や Mutator ファミリーで最長のものとして見出された (Chomet 1991, Hershberger et al. 1991, Qin et al. 1991). 後に制御因子の命名に関して混乱をさけ るため MuDR と改名された. イネ RMu 系統は MuDR の内部領域をプローブと して IR36 ゲノムライブラリーから得られた(Ishikawa and Freeling 1997). RMu1-*IR36* は内部に *mudrA* 遺伝子と相同な領域を有する *rmuA* 遺伝子を有する 4.3kb の配列である. その rmuA 遺伝子は MuDR の転移酵素である mudrA と高い相同 性を示し、内部には Super-Mu ファミリーに共通する Putative transposase domain(Eisen et al 1994)を有する. その発現は栄養成長期においては日本型のみ に見出された. また, 日本型系統では北海道でのイネの北進に役立った易変異 系統の赤毛(A1)系統において見出された. そのため、RMu トランスポゾンの転 移に関しても A1 系統を中心に調査を行った. 日本型近縁系統間で RMu プロー ブにおける多型がみられたことは近年に生じた多型であると考えられた. さら に、RMu ファミリーにはかなりの構造変化を有したサブファミリーが分化して いることから、これらサブファミリーの構造変異とその変異機構についても調 査をすすめた.これらの知見は、イネゲノムにおけるジェノミックスを進めるた めの遺伝的解析ツールとして利用可能であると考えられる. これらの可動性の 分子的証拠を得るためにいくつかの実験を行った. 1つはサザン法による内在 性因子の可動性の検出である. そのために、サブファミリーを識別同定するプ ローブを作成した. 2つめは、イネゲノム内における RMu 因子の周辺配列を 明らかにして、そこからの転移を確認することである、さらに、イネゲノムに おいて全ての派生系統をサザン法で解析することが困難であることから、アラビ ドプジスを利用した RMu 転移検出系統を作出する試みを行った.

2. RMu 因子構造の解析

IR36 の Sau3AI 不完全消化産物から得られたライブラリーより, RMu1-IR36 が クローニングされた(Fig 1). これまでクローニング, 解析された RMu 因子は1 8因子である(Fig 2, Tab 1). これらは逆位末端反復配列(TIR)に相同性を有し (Tab2及び 3), さらに内在 rmuA 遺伝子を有するかどうかにより RMu1 ならびに RMu2 因子に大別される. TIR は 141-275bp までの変異があり,高い相同性は末 端部にみられる(Fig 3, 4). これは murA 遺伝子が Mutator ファミリーの可動性因 子に結合する 25-56nt を含む最末端から 90nt までにおいて高い相同性を示すこ とと一致した(Fig 5). 特に, RMu1-IR36 においては 90nt の左右 TIR が完全に一 致する. また,内部構造における差違から分類したサブファミリー間において も片側の TIR 間で高い相同性を示すことは単純に左右の相同性のみによって機 能を維持しているのではなく,MuDR と同様に転写制御領域などを含んでいる ことが推測される.ただ,まだ内部遺伝子の制御領域が特定されていないこと より,この相同性の保持は今後の課題となろう.

RMu1 は内部の多様性を有する複数の因子に分けられる.*RMu2* 因子にも *RMu1* からの内部欠失によって生じた系統があり, *RMu2-IR36a* は IR36 ゲノムから TIR 末端に設定したプライマーによってクローニングされた(Fig 6). これらの欠失 は主に縦列配列を介して生じることが *RMu1-IR36* ならびに *RMu2-IR36a* の塩基 配列の比較から推定される. EST データベースから C98506 (日本晴れ, 開花 期の cDNA ライブラリー) と *RMu1-IR36,RMu2-IR36a* 配列との同一性がみられ た(Fig 6 のアンダーライン部). この配列は *RMu1-A1* では完全に一致したため *RMu1-A1* もしくは, その類似因子から転写されたものと考えられる(Fig 7).

*RMu1-IR36*の内部配列(TNP)ならびに右 TIR を含む 700bpの TIR 配列をプローブとして, *RMu1-IR36*関連配列のマッピングを行った.これらのサザンは65℃条件における 1xSSPE,0.1%SDS での洗浄により行ったため,推定で95%以上の相同性を有する配列がマッピングされたものと考えられる.マッピング材料は,あさみのり xIR24の KRIL 系統を利用した.その結果,TNP で2ならびにTIR で10カ所の位置にマッピングされた(Fig 8A,B).セントロメアとの位置関係を図示したが,ゲノム全体に散在していることがわかった.また.これらのプローブを利用して在来種間での多型を調査した.供試材料には日本在来水稲ならびに在来陸稲を用いた.在来水稲51系統ではTIR プローブでは5-6コピーの*RMu* 因子が識別され,RFLP パターンから4タイプにわけることができた(Fig 9).これらのタイプごとにTNP プローブでサザン解析を行ったところ,タイプ1の11系統のうち1系統が異なる RFLP を示した.同様に在来陸稲

られた(Fig 10). 在来陸稲ではタイプ1ならびに2がそれぞれ多型を示したことから, これらは近縁系統間で *RMu* 因子が比較的近年に転移したものではないかと推定された. 熱帯日本型 12 系統を用いて同様なサザン解析したところ, TIR プローブで 4-8 コピーとかなりの多型を示した(Fig 11). これらの多型系統においても TNP プローブで同一 RFLP パターンを示した系統があることから, これらの多型が転移によるものであれば熱帯日本型では *RMu2* クラスの因子がより高い転移活性を有することになる. 易変異系統, 赤毛系統の自殖後代8系統を用いたサザン解析においては TNP プローブで3系統, TIR 系統で2系統の RFLP

パターンを示す個体がみられた(Fig 12). ただし,これらの多型が遺伝せず,異 なる自殖後代ではこのような多型を生じる頻度が異なった.したがって,これ らの多型が体細胞で生じた変異か挿入領域近傍で生じたメチル化などによる制 限部位の修飾により生じた後生的な,一時的な変異であるかについては明らか でない.これらの違いを示す有効な方法がないため,転移酵素に共通する部位 を有する rmuA 遺伝子の転写を追跡することで,これら転移を高頻度に誘発す る条件を探索した.

3. RMu 転移酵素の転写

rmuA 遺伝子は内部に細菌から高等植物まで広く存在するトランスポゾンファ ミリーである Super-Mu ファミリーに共通する転移酵素に共通する配列を有し ていた(Fig 13)では高い相同性を示した部分を強調して示した.

この 5'領域を FM2 (ORF 中の2番目の Met 配列からのプライマー)-r1 (第 2エキソン内における reverse プライマー)により RT-PCR を行ったところ,栄 養生長組織では日本型系統においてのみ転写が認められた.しかし,インド型 系統である IR36 並びに ACC435 系統ではみられなかった.

この2番目の Met の上流2塩基が CC であり、これは高等植物の開始メチオ ニンに共通する Context であり、より上流の Met ならびに下流の第3メチオニ ンにはみられなかった.よって、2番目の Met からのアミノ酸配列が rmuA と して働くことが予測された.次に orf の上流にある3つの Met から始まるプラ イマーを上流からそれぞれ FM1,FM2,FM3として Forward プライマーとして利 用し、reverse として r1 プライマーを用いたところ、FM2 と r1 との組み合わせ でのみ RT-PCR 産物が得られた. 第1 Met は転写領域外であり, 第3 Met は第 1イントロン中にあるために増幅しなかったものと考えられる.

次にエキソン3内部, 最も高い相同性を mudrA 遺伝子と示した部位に r4 プ ライマーを設定して、5'側の領域を FM2-r4 プライマーで増幅を行った. その 結果, 2種類の RT-PCR 産物が得られた(Fig 14). 3'側では単一の増幅産物しか 得られなかった. FM2-r4 で得られた PCR 産物は約 1kb ならびに 0.4kb であり, 塩基配列を調べた結果、1kb 断片は第1及び2イントロンがスプライシングさ れたものであり(ALTS1), 0.4kb 断片はイントロン以外に第2エキソンも含めて スプライシングされていた(ALTS2). 第2エキソンにも mudrA 遺伝子との同一 性がみられるため、第2エキソンを失った場合は転移の抑制に働く産物を作出 するのではないかと考えられる.選択的スプライシング産物(ALTS1,ALTS2)の 量比の変化をみるために様々なストレスを与えたが,脱メチル化剤や単純な低 温では顕著な差はみられなかった. さらに、カルスでは 0.4kb のサイズしか増 幅されなかった(Fig 14). 異なる生育ステージの組織(生育後期の葉組織,止め 葉ならびに葉耳間長が0cm以上になる後期の穂)ならびに温度条件を12時 間サイクルで変化させた時(25℃12時間, 15℃12時間)に ALTS1 産物が ALTS2 より多くみられたため、この条件での転写産物の誘導を IR36 で試みた. ALTS1 産物をみるため、第1から第2エキソンにまたがるプライマーALTSを設計し、 第2エキソンの r1 と組み合わせて RT-PCR を行った,その結果,12時間サイ クルの低温ストレスで IR36 からの転写産物を誘導することができた(Fig 15). さらに、この転写産物を完全長のサイズでみるために、第2エキソンの 20bp 上流の 623f と RSTOP で RT-PCR を行った. DNA のコンタミネーションの可能 性については PGI 遺伝子のエキソン-イントロン隣接領域を利用して確認した. cDNA からは 294bp, ゲノムからは2つの重複遺伝子から, それぞれイントロ ンを含む 1.2 ならびに 1.3kb の断片が増幅される. RT-PCR からはA1系統では 正常と考えられる第2エキソンを含めた ALTS2 産物がみられず、ALTS1 と考 えられるサイズと異常なサイズの RT-PCR 産物がみられた(Fig 16). これは A1 系統ではコード領域に塩基置換で様々な変異がみられるため全長にわたって正 常な産物が転写されなかったためと考えられる, RT-PCR 産物の塩基配列から は non-sence, missence 変異を有したものが得られた. IR36 からは少ないながら も低温ストレスでも生育後期の葉でも ALTS1,2 の両産物が転写されていた. こ れらの結果より、A1 より IR36 ゲノム内においてはより厳密な遺伝子転写制御

が行われていると考えられた. これまでクローニングされた RMu1 因子からも この転写制御の機構が推定される. RMu1-IR36 に比較して, RMu-A1 ならびに RMu1-A23 では TIR と開始コドンの間に変異がみられ,特に日本型から得られ た RMu1 因子では欠失もみられる. TIR においても変異がみられるため,これ らが転写機構の違いに関与していると考えられた.

EST の BLASTN 検索から muA 遺伝子に高い相同性を有するものがイネ EST 配列として得られた. この配列は開花期に得られた cDNA からクローニングさ れており, RMu1-A1 の配列により高い相同性を示した. アラインメントをとっ たところ, TIR 配列直後の 240bp から高い相同性を示した(Fig 17). しかし, 第 2エキソンがスプライシングされていた(Fig 18). この第2エキソンの欠失した 因子がないことを確認するために第2エキソンを挟み込む位置にプライマーを 設定して PCR を行った(Fig 19). その結果, 全てが第2エキソンを含むバンド であったため、転写においてなんらかの理由で第1及び2イントロンと共に第 2 エキソンがスプライシングを受けている、つまり第1イントロンのスプライ ス受容部位が機能していないことがわかった、イントロンの供与、受容部の塩 基配列が RMu1-IR36 ならびに RMu1-A1 でほぼ同一であり、GT-AG 配列エキソ ンーイントロン隣接部にみられることから、このエキソンスキッピングはエキ ソン/イントロン接合部の配列異常によるものではないことがわかった(Fig 20). 一方、このようなスプライシングがおこらないことがあり、それも生育後期な らびに低温ストレス時に正常なスプライシング(ALTS1)が頻繁に生じる.この 原因は明らかでなく、なんらかのトランス因子が働いているものと考えられる.

RMu1 因子では多様性がみられる 5'ならびに 3'領域の PCR 増幅を行った.これまで得られていた *RMu1* 因子から期待されていたサイズ以外の断片も複数得られた(Fig 21,22). この領域に複数の繰り返し配列がみられることから,これら反復配列を介した塩基配列の再構成が頻繁に生じていると考えられる.

4. RMu 因子の挿入領域の特徴と新たな因子の構造変異

新たな RMu 因子をクローニングする目的で保存性が高い TIR 領域のプライマ ーを利用して, PCR 及び I-PCR を行った. さらに,赤毛系統からのゲノムライ ブラリーを作成し TNP ならびに TIR プローブを利用してクローニングを行っ た. TIR に設定したプローブからは *RMu1* からの欠失因子である *RMu2-IR36a* が得られている.この因子は転移後の2重鎖切断箇所を姉妹染色分体の鋳型因子をもとに Gene conversion で修復している最中にタンデムに存在している反復配列を介しての鋳型の横滑りで生じるのであろう.

I-PCR では TIR 末端直後の TIRout, RMu1out プライマーを行った. 隣接領域に ゲノムから重複された標的配列重複が認められた場合に *RMu* 因子が挿入され ているとし,それらの周辺配列を調査した. 9bp の標的配列ならびに TIR 隣接 領域には特に顕著な塩基配列の特徴は認められなかった.

この I-PCR で得られた隣接領域にプライマー配列を設定し, LA-Taq (Takara co.)によるゲノムからの増幅を行った. A1 ゲノムからは 748bp の RMu2-A1a, 1147bp の RMu2-A1b, 1169bp の RMu2-A1c 因子を得た(Tab 1).

RMu2-A1a は他の因子に比較して内部に全く相同性を示さず,右 TIR において最も低い相同性を示した因子である.さらに,この内部をプローブ化し,サザン法によりゲノム内関連因子のコピー数を推定した.その結果,イネゲノム内におよそ2コピー存在していることが明らかとなった(Fig 23).

RMu2-A1b は RMu2-IR36a と高い相同性を示した(Fig 24). 顕著な違いは右 TIR における 245bp の挿入である.この配列を BLASTN 検索にかけたところ同じく イネゲノム内に存在する wanderer トランスポゾンと高い類似性を示した(Fig 25). ただし, 同トランスポゾンは 10bp の TIR を有するサイズ約 1kb のトランスポ ゾンである.ただし、挿入に当たる標的配列がみられないこと,wanderer の内部 配列の一部のみが挿入されていることから、この右 TIR への挿入は転移ではな いと考えられた. この挿入領域を RMu2-IR36a ならびに wanderer の配列と比較 したところ、右側 TIR からの配列からみた AAG のトリヌクレオチドにおける microhomology を介した組み換えで生じた挿入であると考えられた. Mu トラン スポゾンは切り出された時の2重鎖修復に際して、鋳型トランスポゾンを利用 した修復を行うことが知られている。この修復の際に鋳型トランスポゾンを姉 妹染色分体から探し出して修復すると考えられている.修復鎖と介在タンパク の複合体(推定)が microhomology を検索して鋳型鎖を探す際に間違って異所 的に存在する microhomology を鋳型として利用したと推定される. さらに, RMu2-A1b では wanderer 内部に存在する AAG で本来利用されるべき鋳型に戻 っている. そのため、鋳型鎖を早く交換する Rapidly Exchanging Template-strand 系が働いているものと考えられる.イネゲノム内では wanderer トランスポゾン

は高いコピー数で存在している(Fig 26). そのため、上記の検索システムに容易に検出されたものと考えられる.

RMu2-A1c は *RMu* 因子の中で最も長い 275bp の TIR を有していた(Fig 27). さらに内部は *RMu2-A1a* と同様に他の *RMu* 因子との類似性がなかった. この内部 配列はゲノム内で2-3コピーと低コピーであるが, TIR の延長された領域はかなりの高頻度反復として存在していた (Fig 28). これは *RMu2-A1b* 同様にゲノム内に存在する高頻度反復配列が取り込まれた後に, もう一方の TIR にコピーされたものと推定される.

モデルとしては, Fig 29 に示したように,

1) トランスポゾンが Stem-loop 構造をとる

2) 挿入の入っていない TIR にニックが入る

3) 挿入配列がニック修復の際にコピーされる

ことで A1b から A1c 因子のような構造をとるものが生じると考えられる.

さらに, Fig 30 に示したようなモデルで内部配列がゲノム内のユニークな配 列をとることが推定される. TIR の挿入と異なる点は, 複合構造をとることで 異所的な鋳型を検出する TIR と異なり, 転写されているようなユークロマチン 領域のユニークな配列が Loop 構造に接近しやすいために鋳型として利用され るものと考えられる.

RMu2-A1c と同じサブファミリーに属する2因子がゲノムデータベースから 検出された(Fig 31,32). インド型のゲノム配列から得られた *RMu2-G4* は *RMu2-A1c* で欠失している部分を有しているため *RMu2-A1c* の近年の祖先因子である と考えられる. さらに,日本晴れでみられた染色体1上の *RMu2-N1c* はそこか ら派生したものと推定される.

この他にゲノムデータベースから *RMu2-IR36b* ならびに *RM u2-IR36c* 因子と 相同な因子が得られた(Tab 1). これらは日本晴れの第1染色体に座乗してい ることが塩基登録情報からわかった.

RMu2-IR36a 類似因子としては A23 系統からのゲノミックライブラリーから 得られたものとして R6,R7,R12,ならびに TIR の4因子が得られた. これらの周 辺配列から他系統における存在様式を PCR で調査している. その結果について はまだでていない.

5. ベクターの作出

イネゲノム内では内在性の欠失因子(*RMu1-A1,RMu1-A23*,および *RMu1-435*)が 存在し、転移酵素の転写調節機構も存在しており、実際に転移をみることや、 追跡することが困難である.そのため、アラビドプシスを利用した形質転換系 を利用した解析を進め転移、ならびに転移酵素の制御機構を検討することにし た.

形質転換体における標識遺伝子として、さらに転移を可視化するためにオワ ンクラゲの蛍光タンパク(GFP)を利用することにした. GFP は静岡県立大学の 丹羽博士より譲渡していただいた(Chiu et al. 1996, 丹羽康夫 1999).

sGFP は pUC18 にクローニングされており、ベクターの構築上望ましくない 制限酵素サイトもあったため、sGFP(112-*Hind*III)プライマーと sGFP(SacI)プラ イマーにより不必要な制限サイトをなくして pBluescriptII ヘクローニングした (Fig 33). ベクターの構築は Fig 34 にまとめた.

現在のところ可動因子として高い可能性を持つ *RMu1-IR36* は TIR 末端に *Bam*HI サイトを加えたプライマーを設定して,再クローニングした.この RMu1 因子は,35S—Ωプロモーターと sGFP との間に挿入した(Fig 35).このベクタ ーでは

1) RMu1-IR36 の自律因子としての可動性をアラビドプシスで検定する,

2) イネに形質転換することで可動性(この場合は自律性でなくても可動)

性を示す場合が考えられる)を検定することができる. さらに, RMu1 の代わり RMu2 因子を導入して, 転移酵素の過剰発現下での転移能をみるようなベクター系として利用できよう.

転移酵素に関しては, *RMu1-IR36* の内部配列から 623f(*Xba*I)ならびに RSTOP(*Sac*I)プライマーで *rmuA* 遺伝子コード領域をクローニングした. この断 片を 35S プロモーター下に挿入することで過剰発現系を構築するベクターとし た.

RMu2 因子の系としては *RMu2-IR36a* を TIR(*Xba*I)プライマーで増幅して pBluescriptII にクローニングした. この因子を 35S-sGFP に挿入することで非 自律因子の系として,

1)転移酵素過剰発現系と組み合わせて挿入して転移酵素の機能を検定
 2)イネに導入することで可動性を検定する.

ことにした.

RMu1-IR36 の内部を TIR-r1,F5-TIR プローブで増幅し, 左 TIR ならびに右

TIR のサザンハイブリダイゼーションを行った結果,右 TIR がユニークなサザ ンハイブリダイゼーションパターンを示した(Fig 36). このことから右 TIR のみ を利用するプラスミドレスキュー系を構築することにした(Fig 37). この系には 内部に Bar 遺伝子を導入する予定である. Bar 遺伝子には 35S プロモーターと コード領域の間に XbaI サイトがあるため,ここに XbaI 消失カセット(両末端 が XbaI に相補的であり,パリンドロームを形成しない)を導入する. その後, XbaI サイトを利用してバイナリーベクターに RescueRmu を導入する予定であ る.

RMu1 因子の派生系統では *rmuA* 遺伝子の上流の転写調節領域に多様性がみられたため、転移酵素の制御パターンが単一でないことが予想されている.そのため、*RMu1-IR36* から TIR-613(*BamI*)プライマーで該当領域をクローニングした(Fig 38). この領域は 35S-Ωを除いたベクターの sGFP 上流領域に挿入することで転写調節単位としての機能を検定する(Fig 39). 同様に *RMu1-A1* からの同領域もクローニングする(Fig 40,41). *RMu1-435* の該当領域は転写単位として機能しないと考えられるが同様にクローニングする(Fig 42,43). これらベクターは構築できたものから、現在アラビドプシス(コロンビア生態型)に湿潤法で導入を試みている.

6.赤毛系統における易変異性の検定

赤毛系統ではこの100年の間に an1,an2,d1,d2,d6,Ur1 など複数の変異を生じ ておりその原因解明は突然変異育種をすすめるためにも重要である. さらに, いまだにクローニングされていない an1,an2,Ur1 などの遺伝子群の機能解明に もつながる.現在のところ, D1 座については名古屋大学芦刈氏より,D6 座 については遺伝学研究所伊藤氏より,周辺配列の情報をいただいて赤毛系統の 変異を調査した.D1 については全塩基配列は明らかとなっていないが,ノー ザンにおける転写量が赤毛よりも低いことからなんらかの転写調節機構が変異 したことが推定される.解析としては,PCR による D1 座の内部領域の増幅, ならびに PCR-RFLP による多型の検定を行った.また,これらをプローブとし てサザンハイブリダイゼーションを行って制限酵素認識部位多型をみた.RT-PCR 産物については塩基配列の決定をすすめている.現在のところ,大きな変 異は認められていない.一部,PCR 増幅のできない転写調節領域での変異が原 因していることも予想される. D6 遺伝子座については夷糯から d6 対立遺伝子をしおかりの遺伝的背景下に 導入した系統において欠失が認められている(Sato et al. 1999). その d6 供与系統 における変異を夷糯のゲノミック DNA を供試して調査した. PCR による増幅 ならびに塩基配列の解析から, 646bp の欠失が原因となっていることがわかっ た. この欠失が直接なんらかの原因で生じたか, トランスポゾンなどの可動性 因子が再転移をした際に欠失したかについては明らかでない(Fig 44,45).

7. 総合論議

RMu 因子はトウモロコシの Mutator 因子と同じ Super-Mu ファミリーに属す るトランスポゾンである. イネには Yoshida(1998)らがクローニングした Mutator 様因子も存在するが RMu とは配列が異なり, 遺伝的に分化した時期が異なる 因子が複数存在しているものと考えられる. このような Paralogous な因子の存 在はアラビドプシスにおいても認められる(Yu et al. 2000). トウモロコシ Mutator 因子は Robertson(1978)により易変異系統 Mutator から見出されたトランスポゾ ンであり、これまでに遺伝学的、分子遺伝学的に様々なデータの蓄積がある (Bennetzen 1996, Chandler and Hardeman 1992). Mutator は長い TIR や9 b p の標 的配列,ならびに保存的な転移機構などが顕著な特徴である.また,内部の配 列の獲得機構についても独特な特徴を持っている(Bennetzen and Springer 1994). これらの特徴をいかして Gene Machine と呼ばれる遺伝子破壊系に利用されてい る(Bensen et al. 1995). 遺伝的な実験系は Lisch et al. (1994, 1996)による内部欠 失系統の利用による遺伝解析で詳細に報告されている。また、トウモロコシで は 2500Mb 程度の大きなゲノムを解析する手段として, 効率的に遺伝子に挿入 する Mutator 系を遺伝子破壊系に利用する計画がすすんでいる. その計画例を 次に紹介する.

8. Mu トランスポゾンによるタッギング

はじめに

トウモロコシには育種的に利用可能なトランスポゾンが数多く存在している. *Ac/Ds*, *Spm/dSpm*, *Dt*, ならびに *Mutator* などが DNA を鋳型として転移する ものとして知られており, 数多くの総説がだされている (Bennetzen 1996, Chandler and Hardeman 1992, Fedoroff 1989, Kunze 1996).. *Ac/Ds* の同祖性トラン スポゾンである *Ac/hobo/Tam3* 系はトウモロコシ以外でも植物・動物を問わず広

い生物種に保存されている(Streck et al. 1986, Calvi et al. 1991). 一方, Mutator トランスポゾンが検出されたのは近年であるが、独特な遺伝的特徴をもとに精 力的な研究が行われ、効率的な遺伝子タッギング装置として、Gene Machine と一般的に呼ばれているシステムが近年では精力的に利用されている(Bensen et al. 1995). しかし, PCR 法による選抜挿入変異体は 10-20%で, 残りは体細胞 変異を検出していると推定される(未発表). さらに、挿入変異を生じた有用な 遺伝子には特許権も絡んでくるため、新たに効率的なシステムが構築されよう としている (Das and Martienssen 1995, Martienssen 1999). トウモロコシは潜在 的4倍体として遺伝子重複が数多く起こっている複雑な遺伝システムを備えて いること、またそのためイネの5倍程度、ヒトと強敵するゲノムサイズであるこ とが知られている(Herentjaris et al. 1988, Herentjaris et al. 1995). そのため, 遺伝学的に優れた業績が積み上げられてきているもののゲノムプロジェクトが 進めにくい生物種と考えられてきた.しかし、RescueMu システムを利用した プロジェクト Maize Gene Discovery, sequencing and phenotypic analysis, NSF#9872657 推定額\$12,548,370)では、遺伝子タッギングならびにゲノム内全遺 伝子発現様式の特定と様々な環境下での遺伝子発現の特定を行うとしている. この総説では、このプロジェクトの全容を明らかにするとともに、遺伝学的ツ ールとして利用されている Mutator の特徴的な遺伝的行動様式についても明ら かにする.

Mutator トランスポゾン

Mutator トランスポゾンはもともと Ac トランスポゾンの活性化している系統 から得られたものである. Donald Robertson (1978,1980)は葉緑素異常を生 じている突然変異体後代に新たな変異が高頻度で出現することを見出し,その 頻度は Ac による変異変異体の出現率の 20 倍であることを推定した. しかし, その系統では Ac が不活化していることから,突然変異は新たな機構 (Mutator) によるものと結論づけ,後に Mutator トランスポゾンが変異源となっているこ とが明らかにされた.

最初にクローニングされた Mutator 因子は,アルコール脱水素酵素 (ADH) における Mutator による誘発変異体からクローニングされた Mu1 因子である (Freeling ら 1982, Strommer ら 1982).制御因子(自律性因子)は明らかでな かったが、1991年に3つの研究室が独立にクローニングした(Chomet et al. 1991, Hershberger et al. 1991, Qin et al. 1991). これら因子は2-3の塩基配列の変異を 含み、それぞれ *Mu9,MuR1* および *MuA2* と名づけられ、後年に混同をさけるた め最初の発見者の Donald Robertson の頭文字をとって *MuDR* と改名された. このクローンの塩基配列の解析とこれまでの研究から*MuDR*トランスポゾンは、 1)およそ 220bp の長い末端反復配列を有する、2)挿入時に 9bp の標的配列 の重複を生じる、3)減数分裂の直前に重複的転移を引き起こす、4)ある遺 伝子座への挿入頻度が $10^{-3}-10^{-4}$ と他のトランスポゾンに比較して高い、5) 再転移の頻度が $10^{-4}-10^{-5}$ と低く復帰変異体が得にくい、6)*MuDR* 因子内の *mudrA* 遺伝子が転移酵素である、7)*MuDR* 因子内の *mudrB* 遺伝子は *Mu* 因子 の転移後の再挿入に必要であることが知られている(Bennetzen 1996, Bennetzen ら 1993, Chandler and Hardeman 1992).

Mutator ファミリー内には, MuDR により転移の制御をうけるサブファミリ ーが多様に分化していることも特徴の1つである.特に, Mu1 は MuDR とは全 く異なる内部配列を有しており,この配列はトウモロコシにおける嫌気条件下 で発現が誘導される遺伝子を内部に取り入れたと考えられる(Talbert and Chandler 1988). この他に,トウモロコシと同じ単子葉に属するイネ,ならびに 双子葉のアラビドプシスにおいても Mutator 様トランスポゾンの存在が知られ ている(Ishikawa and Freeling 1997, Yu et al. 2000).

Mutator の遺伝的特徴

Mutator における転移機構はまだ明らかにされていないが, Mutator トランス ポゾンの転移制御因子である MuDR 内の遺伝子 mudrA がトランスポゼースを産 出することがわかっている. MuDR 内には mudrA と逆向きに転写される mudrB 遺伝子も存在している. しかし, この産物の機能についてはまだ明らかでない (Hershberger et al. 1993, Donlin et al. 1995).また,挿入サイトからの切り出 しは子実では発育が停止する直前の細胞分裂時に生じる(Levy et al. 1989).さら に,体細胞で重複性転移をすることからコピー数の倍化が生じ,複数の転移制 御因子 (MuDR) を有する.この倍数化により, Mutator 制御機構の詳細な遺伝 解析は戻し交雑による単一の制御因子を有する系統を作出した後に可能となっ た(Chomet et al. 1991).この系統は Minimal line と呼ばれ,単一の制御因子 *MuDR* と単一の *Mu1* を有している. この系統を用いて, *Mu1* 因子の複製的転移 が確認された(Lisch et al. 1995). さらに, *MuDR* の座乗染色体の位置効果によ り, *Mu1* の再転移能力が影響を受けることも明らかにされた(Lisch et al. 1995).

遺伝子タッギングには Mul が多く用いられているが、これは他のサブファミ リー因子に比較して Mul の転移率の高いことに起因している(Bennetzen et al. 1993). アントシアニン系色素遺伝子 Al のプロモーター領域にも挿入した変異 体は、al-mum 2::Mul 対立遺伝子を有している (O'reilly et al. 1985). この almum2 系統では MuDR が活性化しているときはアントシアニンの着色のみられ ない葉鞘を呈する劣性表現型を示す.一方、MuDR を失った遺伝的背景下では、 弱いアントシアニンの着色を呈し、いわゆる抑制型突然変異として表現型が検 出される(Chomet et al. 1991, Lisch et al. 1995). このレポーター標識変異を利 用した Mul 因子の遺伝的行動様式は Lisch et al.(1995)により明らかにされてい る.

Super-Mu ファミリーとイネ RiceMutator

イネにおいても Mutator の構造的類似因子の報告もある(OSMU; Xie et al.によ X16597). その後, この OSMU とは異なる RiceMutator る遺伝子登録 1990, がイネゲノム内からクローニングされ、同因子が内部のトランスポゼースの配 列ならびに構造的な類似性を有することが明らかにされた(RMu1-IR36; Ishikawa and Freeling による登録 1997, AB006808). RiceMutator はもともとトウモロコシ の Mutator ファミリーの転移制御因子である MuDR の内部にあるトランスポゼ ース遺伝子(mudrA)をプローブとしてイネ栽培品種, IR36 のゲノムライブラ リーからクローニングされた. サイズは 4374bp, 内部に mudrA と高い相同性 を示す遺伝子,ならびに両末端に193bpの逆位末端反復配列を有する.さらに, その両側に挿入時に重複されたと考えられる 9bp の標的配列が見出されている. その後、サブファミリーを構成する因子(RMu1-A23; Ishikawa and Freeling に よる登録 1999, AB023047, RMu2-IR36; Ishikawa and Freeling による登録 1999, AB017542) も検出された. RiceMutator は日本型, インド型, ならびに野生イ ネをとわず広くゲノムに見出される. それらの間での TIR の相同性は 59-96% と変異が認められる.内部配列に関する変異も大きく, RMu1-A23 は RMu1-IR36 と 86%の相同性を有し, RMu2-IR36a は RMu1-IR36 の 5'側のおよそ 3kb の内部

配列の欠失をしている. さらに, 異なる内部配列を獲得した因子 (*RMu2*-A1; Ishikawa and Freeling による登録 1999, ABAB017543) もクローニング されて いる. この内部配列の多様性, ならびに TIR 相同性変異の特徴は *Mutator* ファ ミリーの特徴でもある. これはイネにおける同トランスポゾンが同様なシステ ムを利用して多様性を確保していることを示すものである. 一方, *Mutator* が およそ 215bp の TIR を共通して有しているが, イネでは平均 193bp の TIR しか 有していない. DNA レベルの相同性は 50%であり, 内部にトウモロコシ *Mutator* 因子といくつかの相同領域が見出される.

アラビドプシスにおける Mutator についても mudrA 遺伝子と高い相同性を示 す遺伝子,比較的長い TIR,ならびにその外側に 9bp の標的配列の存在が確認 されている(Yu et al. 2000). これらのことをふまえるとイネ科のみならず高等植 物にかなりの Mutator トランスポゾンの存在していることが推定される. これ ら因子の内部にあるトランスポゼース遺伝子は細菌の IS 因子においても保存さ れていることから生物界に存在していると考えられる(Eisen et al. 1994).ま た,ゲノム解析の発展により,いまだ Mutator 様因子のみつけられていない生 物種においても今後, Mutator トランスポゾンが検出されるものと考えられる.

新たなプロジェクト RescueMu

トウモロコシ遺伝学分野で 1998 年度の NSF 研究補助での対象となったプロ ジェクト Maize Gene Discovery, sequencing and phenotypic analysis は大変な興味 深い(コラム, Science 282:652-654, 1998). この計画はこれまでゲノム解析 に関して立ち後れていたトウモロコシをゲノム解析のモデル植物の位置に高め る内容を持っている.

飛行機により2時間以内にアクセスすることの可能な6大学の研究者らの協 力体制はインターネットによるサイバースペースにおける研究センターでの共 同組織をつくりあげることになる.研究の基本骨格は、1)改変した Mu 因子 である RescueMu を利用することで、50万以上の固定化された遺伝子ライブラ イリーを蓄積し挿入領域両側 1.2kb 塩基配列解析する、2)解析された遺伝子 はマイクロアレイ上の DNA チップとされ、あらゆる組織での発現様式が確認 される.3)供試個体は自殖され、デジタルカメラなどの手段で後代の幼苗、 開花期における種子の形態的突然変異などの表現型がウェブ上に記録され、ど の研究者からのアクセスも可能となる.4)形態的変異体は原因遺伝子のクロ ーニングに利用される.5)同遺伝子の塩基配列は明らかにされ、これまでト ウモロコシ遺伝学が蓄積してきた遺伝標識、染色体系統を用いたマッピングが 行われる(Freeling and Walbot 1993).

従来の Mutator トランスポゾンによるタッギングシステムとの比較

従前の遺伝子タッギング装置, Gene Machine (Bensen ら 1995)では,およそ 1万個体の F₁ (*Mutator* 系統 x Non-*Mutator* 系統)系統を50個体程度毎に DNA をプール化し,その DNAを鋳型として機知の塩基配列と*Mutator* の TIR 間で PCR 増幅産物を示す個体を選抜していた.しかし,体細胞における転移により生 じた挿入と生殖細胞に生じた挿入変異を識別できない.そのため希望した遺伝 子に関する変異は, PCR で推定した個体数の 10-20%である.一方,Martienssen は F₁個体の止葉 2 箇所から DNA を抽出して DNA サンプル化を行うことで体 細胞のみで生じる挿入変異を生殖系における挿入変異とわけることで効率化を 図っている(Martienssen 1999).この方法では,目的遺伝子近傍への*Mutator* 因 子の挿入が生じても体細胞でのみ生じた挿入では,異なる葉から抽出した2つ めのサンプルでは識別されず,生殖系に伝わる挿入変異と容易に識別できる. これと同様の選抜方法は RescueMu においても採択され,体細胞の挿入変異と 生殖細胞での挿入変異の識別を容易にしている.

さらに、この研究に用いられる *Mutator* 因子は分子的に改良された RescueMu である.この因子はトウモロコシゲノムにおけるプラスミドレスキューを可能 にする.プラスミドレスキューはショウジョウバエの P 因子を対象として応用 されている手法である(Steller and Pirrotta 1986).これまでのトランスポゾンタ ッギングでは、目的の遺伝子がトランスポゾンによって分子的にタグされ、そ の DNA 領域をゲノミックライブラリーからクローニング することで行われて きた.ただし、複数のサブファミリーに分化した *Mutator* の中で特定の遺伝子 に入り込んだ因子を特定してクローニングするためにはかなりの労力が必要と される.その研究に費やす手間を省くために、

1) *Mu1* の中にプラスミドの複製に必須の配列であり ori 領域ならびに抗 生物質耐性を付与する遺伝子をいれる.さらに,内部にトウモロコシゲノ ムに相同性を示さない *Rizhobium* の DNA を持たせ,ゲノム内在性の *Mu1* と 区別してこの改変した Mu1 因子 RescueMu 因子の行動を追跡するためのプ ローブとして用いられる.

- 35S プロモーターと色素合成に関与する Lc 遺伝子の間に RescueMu 因 子を挿入して遺伝子銃で形質転換する
- 3) 個体の着色でトランスポゾンの転移を確認した後に、ゲノム DNA を 導入プラスミドが制限化されない酵素で処理した後にライゲースで環状化させ る.ただし、2種類の制限酵素を利用することで自己環状化して回収する プラスミドサイズを小さくする.
- 4) 処理後の全 DNA を大腸菌に形質転換することで, Mutator トランスポ ゾンの特徴である複製転移した先のすべての挿入領域近傍をクローニングする.

以上の手順で大量の個体からトランスポゾンの転移した先の DNA 情報を得る ことを可能とした.

新規挿入の検定と利用

新規挿入は平均5個の RecueMu を有する個体を Mutator 活性系統と交配する ことで得られる.その後代は 48 の格子状(48x48=2304 個体)に栽培され,そ れぞれ倍化した新しい挿入配列を生み出すことになる.これら1個体から100mg の DNA が採集される.葉断片から抽出された DNA には,生殖細胞に伝わる新 規挿入と体細胞切りだしと再挿入により生じた新規挿入も含まれる.2304 x 10 セットの集団内での新規挿入クローン化を目的としたプラスミド救出法により 固定化ライブラリーが作成される.これらの一部はストックされ,残りは塩基 配列の決定と標的塩基配列への挿入因子選抜の PCR スクリーニングに用いられ る.この際も 48X48 格子でプール化された行列サンプルが利用される.

RescueMu ならびに Mu 因子はプロモーターならびにイントロンに挿入される 頻度が高いことが報告されている(Raizada 1999). そのため RescueMu 挿入領 域の外側にあたる 1.2kb の塩基配列を解読して,新規遺伝子のスクリーニング が行われる.挿入近傍配列ならびに cDNA ライブライリーにおける遺伝子配列, エキソンならびにイントロンの検出は,新たにトウモロコシの既知の遺伝子配 列に最適化されたプログラムを用いて解析される.現在のところ得られた遺伝 子情報に対する特許化はなされず,新規塩基配列データは自動的に GenBank 番号がわりあてられ,データ公開がなされる.この計画に従事する共同研究者たちも GenBank からデータの引出しを行うため, "SuperFair"な情報公開がなされることになる(Walbot 私信).

RescueMu 挿入のある集団を利用したい研究者には無料で種子が配布される が、この一連の塩基配列の解読作業とデータ登録作業を行う義務付けがなされ る.これらは新規の遺伝子配列と既知のものにわけられ、Galbraith によりマイ クロアレイ上にブロットされる.これらマイクロアレイは7つのトウモロコシ 遺伝学者により既に作成されている cDNA ライブラリーからも作成される.現 在、Sara Hake の研究室で作成された頂端分裂組織の cDNA ライブラリーを利 用してランダムクローンの塩基配列解読が始められており、かなりの割合で新 規配列が見出されている(Walbot 私信).

さらに、希望する研究者から特定の組織ならびにストレスを与えた条件での cDNA ライブラリーを加えて、cDNA ライブラリーに関するマイクロアレイが 作成される. これらのマイクロアレイは、特定の組織における発現を明らかに するためにあらゆる組織・発育段階での遺伝子発現の解析に用いられる. 既に、 7つの研究室の遺伝学者は各種 cDNA ライブラリーを有しているために、これ らのライブラリーが供試されるであろう. また、共通のマイクロアレイを利用 する利点として、他殖性作物として遺伝的背景が多様であるトウモロコシにお いても共通の遺伝子カタログを利用することができる点があげられよう.

改良を必要とされる点

本研究の今後の改良されるべき1つは、トウモロコシの形質転換に用いられ る系統は現在のところ限られており、B73,A23 自殖近交系を組み合わせた後代 の Hill 系統が使用される点である。Hill 系統は活性化した MuDR を持たないた め、RescueMu 形質転換された後、再分化個体は MuDR を有している Mutator 系統と交雑される必要がある。そのため、複数の Mu1 が交雑により導入される。 したがって、変異体がどの Mutator 因子による挿入変異体であるかを特定する ことが困難である。そのため、今後は Lisch によって作成される Mu1 ならびに Mu2 を含まず特定の染色体位置効果を有する MuDR のみを含む新 Minimal 系統 が RescueMu 形質転換系統と交配されるであろう(Chometet al. 1991, Lisch 私信). また,遺伝子銃による遺伝子導入系が用いられることから同一の染色体位置に 複数の RescueMu が挿入され,転移率の低下が推定される.

ベクターからの RescueMu の転移は着色遺伝子(*Lc*)の発現により検出され るが,*Lc* が*Mu1*の TIR 上のプロモーター配列によりわずかに転写される(Barkan and Martienssen 1991). そのため RescueMu 因子の切り出しによらない色素形成 セクターが生じる.したがって、導入ベクターからの RescueMu の転移を検出 するためには TIR 配列の突然変異集積,もしくは異なる末端反復配列を有する *Mu* 因子のベクター化が必要となる.さらに、*Lc* 遺伝子の産物は着色の細胞自 律性があること、生育後期特異的な転移のためで1-2細胞でのみ着色するこ となどから、転移を肉眼で検出することが容易でない(Raizada 私信). *Bz2* 遺伝子の産物は細胞自律性がないことから、着色細胞の数が多くなり識別が容 易となることから、今後は転移を識別するマーカー遺伝子としては *Bz2* 遺伝子 などに変更した系が作られるであろう.このように今後も計画の進行にあわせ て数々の改良が続けられるであろう.

一方,個体の表現型調査についての問題点も残っている.表現型からの遺伝 的変異の調査では,形質転換中の細胞培養時に生じるソマクローナル変異と RescueMu により生じた変異を識別する必要がある.この課題はイネにおける 他植物からのトランスポゾンやレトロトランスポゾンにおけるタッギング系に しても克服されなければならない.したがって,いまだ明らかになっていない ソマクローナル変異の制御機構を明らかにする研究の進展が望まれる.

今後の展望と育種的利用

今後,上記の改良が行われ効率的なクローニングが可能な Gene Machine とし て本システムが確立されるであろう.これからのゲノム解析においては,既知 の塩基配列に関する突然変異体をタッギングするシステムと表現型からの変異 個体選抜ならびに遺伝子タッギングを行うシステムの並存が必要になる.さら に、トウモロコシでは潜在的4倍体としての劣性変異で致死性となる遺伝子に 関しての重複遺伝子のタッギングシステム,細胞形成など個体の大きさによる 組織切片作成や各組織の肉眼での検出の容易性を生かした発育遺伝学的変異体 の解析のための遺伝子タッギングシステムとしての価値が見出され、一方、イ ネにおいては2倍体として1遺伝子に生じた変異が容易に表現型に現れること、 トウモロコシとイネで既に機能分化をした遺伝子が存在している可能性がある ことなどから、同様の遺伝子タッギング系を確立することが求められる.モデ ル植物もしくはモデル双子葉としてのアラビドプシスの遺伝子タッギング系, ならびにモデル生物としての線虫に比較して、トウモロコシならびにイネにお けるモデル穀物植物、モデル単子葉植物、モデル倍数性進化生物としての価値 は、経済的にもさらに進化的にも十分な研究価値を有するものと考えられる. また、潜在するゲノム内の *Mutator* と同祖因子である *RiceMutator* がイネにおい て既存の Gene Machine として利用可能であるかは今後の検討課題となる. 引用文献

- Barkan and Martienssen (1991) Inactivation of maize tranposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc. Natl. Acad. Sci. USA 88:3502-3506.
- Bennetzen, J.L. (1996) The *Mutator* tranposable element system of maize. in *Transposable Elements* (eds. SAEDLER, H. & GIERL, A.) 195-229.
- Bennetzen, JL, PS Springer, AD Cresseand M Hendrickx (1993) Specificity and regulation of the Mutator transposable element system in maize.Crit. Rev. Plant Sci. 12:57-95.
- Bennetzen, J.L., and P.S. Springer (1994) The generation of *Mutator* transposable element subfamilies in maize. Theo Appl Genet 87:657-667
- Bennetzen, J.L. (1996) In "Transposable elements" Saidler, H. and A. Gierl (eds.), Springer-Verlag, Heidelberg, 195-229.
- Bensen, R.J., Johal, G.S., Crane, V.C. Tossberg, J.T., Schanable, P.S., Meeley,
 R.B., and S.P. Briggs (1995) Cloning and characterization of the maize *An1* gene. *Plant Cell* 7: 75-84.
- Calvi, B.R., T.J. Hong, S.D. Findley and W.M. Gelbart (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: *hobo*, *Activator*, and *Tam3*. Cell 66:465-471.
- Chandler and Hardeman (1992) The Mu elements of Zea mays. Adv. Genetics 30:77-122.
- Chomet, P., Lish, D. Hardeman, K.J. Chandler, V.L. and M. Freeling (1991) Identification of a regulatory transposon that controls the *Mutator* transposable element system in maize. *Genetics* 129: 261-70.
- Das, L. and R. Martienssen (1995) Site selected transposon mutagenesis at the *hcf106* locus in maize. The Plant Cell 7:287-294.
- Donlin, M, D. Lisch and M Freeling (1995) Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. The Pant Cell 7:1989-2999.

Eisen, J.A., M.I. Benito and V. Walbot (1994) Sequence similarity of putative

transposase links the maize Mutator autonomous element and a group of

bacterial insertion sequences. Nucleic Acids Res. 19:2634-2636.

- Fedoroff, N. (1989) In: Berg, D. and M. Howe (eds) Mobile DNA, pp375-411, American Society for Microbiology, Washington.
- Freeling, M., D Cheng, and M. Alleleman (1982) Mutant alleles that are altered in quantitative, organ-specific behavior. Dev. Genet. 3:179-196.
- Freeling, M.and V. Walbot (1993) The Maize Handbook, pp 759, Springer laboratory, New York.
- Herentjaris, T. (1995) Atlas of duplicated sequences. Maize Genetics Cooperation News Letter 69:67-82.
- Herentjaris, T., D Weber and S Wright (1988) Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms.Genetics 118:353-364.
- Hershberger, R.J., C.A. Warren and V. Walbot (1991) *Mutator* activity in maize
 correlates with the presence and expression of the *Mu* transposable element *Mu9*.
 Proc. Natl. Acad. Sci. USA 88:10198-10202.
- Hershberger, R. J., M.I. Benito, K.J. Hardeman, C Warren, V.L. Chandler and V.
 Walbot (1995) Characterization of the major transcripts encoded by the regulatory *MuDR* transposable element of maize. Geneics 140:1087-1098.
- Hesia, A-P. and P. S. Schnable (1996) DNA sequence analyses support the role of interrupted gap repair in the origin of the internal deletions of the maize transposon, *MuDR*. Genetics 142:603-618.
- Ishikawa, R. and M. Freeling (1997) In the 39th Annual Maize Genetics Conference, Chicago, USA.
- Kunze, R. (1996) In "Transposable elements" Saidler, H. and A. Gierl (eds.), Springer-Verlag, Heidelberg, 162-194.

Levy, A.A., A.B. Britt, K.R. Luehrsen, V.L. Chandler, C. Warren and V. Walbot (1989)

Developmental and genetic aspects of Mutator excision in maize. Development. Genet.

10:520-531.

- Lisch, D., and M. Freeling (1994) Loss of *Mutator* activity in a minimal line. Maydica 39:289-300.
- Lisch, D., P. Chomet and M. Freeling (1995) Genetic characterization of the *Mutator* system in maize: behavior and regulation of *Mu* transposons in a minimal line. Genetics 139:1777-1796.
- Martienssen, R. (1999) In the 41st Annual Maize Genetics Conference, Wisconsin, USA.
- O'reilly, C., N.S. Shepherd, A. Pereira, Z. Schwarz-Sommer, I. Bertram,
 D.S. Robertson, P.A. Peterson and H. Saedler (1985) Molecular cloning of the al locus of *Zea mays* using the transposable elements *En* and *Mul*. EMBO J 4:877-882.
- 丹羽康夫 (2000)「GFP とバイオイメージング」実験医学別冊, ポストゲノム 時代の実験講座3 第3章.GFP の生物種別の適用例 3. 植物, 72-85, 羊土社
- Qin, M., D.S. Robertson and A.Ellingboe (1991) Cloning of the *Mutator* transposable element *MuA2*, a putative regulator of somatic stability of the *a1*-Mum2 allele in

maize. Genetics 129:845-854.

- Raizada, M. and V. Walbot (1999). In the 41st Annual Maize Genetics Conference, Wisconsin, USA.
- Robedrtson, D.S. (1978) Characterization of a *Mutator* system in maize. *Mutat. Res.* 51: 21-28.

- Sato, Y., N. Sentoku, Y. Miura, H. Hirochika, H. Kitano and M. Matsuoka (1999) Loss-of- function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO 18:992-1002, 1999.
- Steller, H. and Pirrotta, V. (1986) *P* transposons controlled by the heat shock promoter. Mol. Cell. Biol.6:1640-1649.
- Streck, R.D., J.E. MacGaffey and S.K. Beckendorf (1986) EMBO 5:3615-3623.
- Strommer, J.N., S. Hake, S. Bennetzen, W.C. Taylor and M. Freeling (1982) Regulatory mutants of the maize *Adh1* gene caused by DNA insertions. Nature 300:542-544.
- Talbert, L.E. and V.L Chandler (1988) Characterization of a highly conserved sequence related to *Mutator* transposable elements in maize. Mol. Biol. Evol 5:519-529.
- Yoshida, S., K. Tamaki, K. Watanabe, M Fujino and C. Nakamura (1998) A maize MuDR-like element expressed in rice callus subccultured with proline. Hereditas 129:95-99.
- Yu, Z., right, I. And T.E. Bureau (2000) *Mutator*-like elements in Arabidopsis thaliana: Structure, diversity and evolution. Genetics 156:2019-2031.
- W-I. Chiu, Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi and J. Sheen : (1996) Engineered GFP as a vital reporter in plants. Current Biology, 6, 325-330.

plant
nice
in a
members
of RMu
Characterization of
Table 1.

RMu	Subfamily	Length	TIR	TSD	TSD sequence	Accession
		(bp)	(L/R,bp)	(dq)		
RMu1-IR36	RMu1/RMu2-IR36	4374	193/193	6	CCGAAAAGT	AB006808
RMu1-A1	RMu1/RMu2-IR36	4157	176/173	9	CTTCTGAGG	
RMu1-A23	RMu1/RMu2-IR36	4144	176/174			AB023047
RMu1-435	RMu1/RMu2-IR36	4043	176/174			
RMu2-IR36a	RMu1/RMu2-IR36	897	189/195			AB017542
RMu2-AIb	RMu1/RMu2-IR36	1147	189/195*	6	GAAAGGAGG	
RMu2-R6	RMu1/RMu2-IR36	898	189/195	6		
RMu2-R7	RMu1/RMu2-IR36	897	189/195	6		
RMu2-R12	RMu1/RMu2-IR36	897	189/195	6		
RMu2-TIR	RMu1/RMu2-IR36	897	189/195	9		
RMu2-IR36b	RMu2-IR36b	929	227/191			
RMu2-N1a	RMu2-IR36b	923	140/169	6	TCCCTCGAC	AP00302
RMu2-IR36c	RMu2-IR36c	1115	185/181			
RMu2-N1b	RMu2-IR36c	645	179/182	9	CTCCTGGAC	AP003105
RMu2-AIa	RMu2-A1a	748	214/177	9	AGCGCCGGC	
RMu2-AIc	RMu2-A1c	1169	259/275	9	ACTCTCAAC	
RMu2-N1c	RMu2-A1c	1062	240/240	2	CTCTGGAAC/	AP002843
					CTTGTAACA	
RMu2-G4	RMu2-A1c	1193	273/274	6	ATCTCAAC	B0808H03

.

•

lomolo	gy	HMu 1	-IR36	RMu1	-A23	-2nMH	IR36a	βΜuź	2-A1a	HMu:	2A1c	HMu2-I	R36b	RMu2-	IR36c
(%)			œ		œ	_	œ	_	œ	-	æ		æ	L	Æ
Mu 1-IR36	Г		87	68	86	8	84	82	64	62	59	86	66	88	82
	œ			85	96	87	93	82	62	62	59	84	68	83	79
Mu 1-A23					85	8	83	62	59	8	58	85	65	87	82
	œ					87	96	81	63	61	59	85	68	ß	78
Mu2-IR36a	_						85	88	63	61	59	86	68	88	81
	œ							62	63	59	57	82	67	82	76
Mu2-A1a									61	ន	60	81	66	83	78
	æ									55	53	62	74	62	60
Mu2-Aic											84	61	58	8	65
	ц											59	56	57	62
<i>Mu2</i> -IR36b	_												66	84	81
	œ													99	65
Mu2-1R36c															81
	œ														

Table 2. Homology of 193 nt from the end of TIRs among RMu members

RMu members
TIRs among
the end of
90 nt from
Homology of §
Table 3.

Homolo	y g	HMu1	-IR36	1 HMu1	'-A23	HML2-	R36a	SUMA	?-Ala	IMU	2-A1c	HMu2-1	R36b	RMu2-	R36c
(90bp,%	(%		œ	L	œ		æ		œ		œ	L	æ		В
<i>RMu 1-</i> IR36	L		100	97	98	95	93	92	64	85	59	96	82	91	92
	œ			97	98	95	93	92	64	85	59	96	82	91	92
<i>HMu1-A</i> 23	Ц				96	63	91	8	65	8	88	85	80	68	91
	œ					96	94	91	65	2 8	60	97	68	8	91
HMu2-1R36a	_						91	87	64	87	87	94	83	68	91
	æ							85	65	80	84	92	80	86	85
<i>HMu2</i> -A1a	L								63	78	81	91	76	68	87
	œ									80	60	64	63	64	65
<i>RMu2</i> -Aic											91	82	73	62	82
	£											88	75	82	83
RMu2-IR36b													81	88	89
	œ													76	78
RMu2-IR36c															87
	œ														

Solid arrow heads were terminal inverted repeats. rmuA coding sequence was shown with the first methionine and stop codon. Two introns found in the coding sequence were compared with genomic fragment. TSD is 9bp tandem Fig 1. Restriction map flanking of RMu1-IR36 element. Primers designed for each PCR were shown as arrows. duplicated sequences.

RMu2-A1c (1170bp)

Fig 2. Structural differences in RMu subfamilies

		10	20	30	40	50	
RMu1-IR36L	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATACT	50
RMu1-IR36R	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATACT	50
RMu1-A1L	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	ATTGGTTTCG	CTGAAATACT	50
RMu1-A1R	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATACT	50
RMu1-A23L	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	ATTGGTTTCG	CTGAAATACT	50
RMu 1 – A 2 3 R	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATACT	50
RMu2-A1aL	- 1	GAGAAATTTG	TGATTTTGCT	ATCTCAAACG	GATGGTTTCG	CTAGAATACT	50
RMu2-A1aR	1	GAGAAATTTG	TGATCTTGCT	ATCGCAAT		TTAAAATGTT	50
Rmu2-A1bL	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATGCT	50
Rmu 2 – A 1 b R	1	TAGAAAATTG	TGATTTTTCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATACT	50
RMu2-A1cL	1	GAGAAAATTG	GGATTATACT	ATCGTAAAAG	AGTGGTTTCG	CTGGAATGCT	50
RMu2-A1cR	1	GAGAAAATTG	GGATTATATT	ATCGTAAAAG	AGTGGTTTCG	CTGGAATGCT	50
RMu2-IR36aL	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTCG	CTGGAATACT	50
RMu2-IR36aR	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATGGTTTTG	TTGGAATACT	50
RMu2-IR36bL	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAAG	AATAGTTTCG	CTGGAATACT	50
RMu2-IR36bR	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAA		AGAATGAT	50
RMu2-IR36cL	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAATG	GATGGTTTCG	CTAGAATACA	50
RMu 2 - IR 36 cR	1	GAGAAAATTG	TGATTTTGCT	ATCGCAAAGG	A-TGGTTTCA	CTGGAATACT	50
		60	70	80	90	100	
RMu1-IR36L	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATCCTAAA	CTAAGGGGTG	100
RMu1-1R36R	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATCCTAAA	CTA-GGGGTG	100
RMu1-A1L	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATCCTAAA	CTAAGGGGTG	100
RMu1-A1R	51	ATC-CTTC	AA-AGTGATT	CATTAAAATG	CTATTCTAAA	CTAAGGGGTG	100
RMu1-A23L	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATCCTAAA	CTAAGGGGTG	100
RMu1-A23R	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATTCTAAA	CTAAGGGGTG	100
RMu2-A1aL	51	ATCCCTTC	AA-AGTGATT	CATTAAAATA	CTATCCTTAA	CTAAGGGGTG	100
RMu 2 - A 1 a R	51	ATCCTAAACT	AACGGAGGTT	CACTAAAGCG	CCCT		100
Rmu2-A1bL	51	ATCCCTTC	AA-AGTGATT	CATTAAA-TG	CTATCATAAA	CTAAGGG-TG	100
Rmu2-A1bR	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATTCTAAA	CTAAGG	100
RMu 2 - A 1 c L	51	ACCTCTTC	AA-ACTAATT	CACTAAAATG	CTATCTTAAA	CTGGG-GGTG	100
RMu2-A1cR	51	ATCCCTTC	AA-AGTGATT	CATTAAAATG	CTATTCTAAA	CTGAA-GGTG	100
RMu2-IR36aL	51	ATCCCTTC	AA-AGTGATT	TATTAAAATG	CTATTCTAAA	TCAAGGGGTG	100
RMu2-IR36aR	51	ATCATTTT	AA-AGTGATT	CATTAAAATG	CTATTCTAAA	CTAAGAGGTG	100
RMu2-IR36bL	51	ATCCCTTC	AA-AGTGATT	CATTAAAATA	CTATTCTAAA	CTAAGGGGTA	100
RMu2-IR36bR	51	TTCGCTGG	AATACTATCC	TTTCAAAGTG			100
RMu2-IR36cL	51	ATCCCTTTTC	AA-AGTGATT	CATTAAAATG	CTATCCTAAA	CTAAGGGGTG	100
RMu 2 - IR 36 c R	51	ATCCCTTC	AA-AGTGATT	TACTGAAATG	CTATCCTAAA	CTGAGAGGTG	100
		110	120	130	140	150	
RMu1-IR36L	101	TTCACTGAAA	TGCTATTTTT	GATCTTTTG	GTTTCTAGAA	ATG-ATTTTA	150
RMu1-1R36R	101	TTCACTGAAA	TACTATTTTG	GATCTTTTG	ATTATTACTA	ATGT-TTTTA	150
RMu1-A1L	101	TTCACCGAAA	TACTATTTTG	GTTCTTTTTG	GTTGCTAGAA	ATATATTTA	150
RMu1-A1R	101	TTCACTGAAA	TATTATTTG	GATCTTTTTG	-TTAGTACTA	ATGT-TTT-A	150
RMu 1 – A 2 3 L	101	TTCACCGAAA	TACTATTTTG	GTTCTTTTG	GTTGCTAGAA	ATATATTTA	150
RMu1-A23R	101	TTCACTGAAA	TATTATTTG	GATCTTTTTG	-TTAGTACTA	ATGT-TTTTA	150
RMu2-A1aL	101	TTCACTAAAA	TGCTATTTTG	GGTCTTTTGG	GTTAATACTA	ATGT-TTTTG	150
RMu2-A1aR	101	-TCACTGAA-	TGCTATTTGG	ATTTTTTT	GTTGCTAGAA	ATG-ATTTCG	150
Rmu2-A1bL	101	TTCACTGAAA	TGCTATTTTA	GATCTTTTTG	ATTGCTAGAA	ATG-ATTTTA	150
Rmu 2 - A 1 b R	101	CTG	CATTCTA	TACCCATG	GTTCCCA	ACTTTC	150
RMu2-A1cL	101	TTCACCAAAG	TGCTATTTTC	GCTCTTTTGG	GTAAATAGAA	ATGT-TTTTC	150
RMu2-A1cR	101	TTCACCAAAA	TGCTATTTTC	GTTTTTTAG	GTAAATAGAA	ATGT-TTTTT	150
RMu2-IR36aL	101	TTCACTGAAA	TGCTATTTTA	GATCTTTTTG	GTTGCTAGAA	ATG-ATTTTA	150
RMu 2 - 1 R 3 6 a R	101	TTCACTGAAA	TACTATTTTG	GATCTTTTG	-TTAGTACTA	ATGT-TTTTA	150
RMu2-IR36bL	101	TTCACTGAAA	TACTATTTTG	GGT-TTTTTG	GTTATTAGAA	ACGA-TTTTG	150
RMu2-IR36bR	101	ATTAAA-	TGCTATTTTG	GGTCTTTT	AGTTAGAA	ATG-ATTTTG	150
RMu 2 - 1 R 3 6 c L	101	TTCACTAAAA	TGCTATTTTG	AGTCTTTTTG	GTTGCTAGAA	ATGA-TTTTG	150
RMu2-IR36cR	101	TTCACCAAAA	TGCTATTTTC	GCTCTTTTGG	GTGAATAGAA	ATGT-TTTT-	150

Fig 3. Multiple edit done with TIRs

Fig 4. Phylogenic tree of TIRs based on 193nt sequence from each end. Percentage reveals similarity between two sequences.

	IR-like MBS	(25-56nt)
RMu1,L RMu1,R MuDR,L MuDR,R	GAGAAATTGTGATTTTGCTATCGCAAAAGAATGG GAGAAATTGTGATTTTGCTATCGCAAAAGAATGG GAGATAATTGCCATTATAGACGAAGAGCGGAAGGG GAGATAATTGCCATTATAGACGAAGAGCGGAAGGGG GAGATAATTGCCATTATAGACGAAGAGCGGAAGGGG	TTTCGCTGGAATACT TTTCGCTGGAATACT ATTCGACGAAATGGA ATTCGACGAAATGGA
RMu1,L RMu1,R MuDR,L MuDR,R	ATCCCTTCAAAGTGATTCATTAAAATGCTATCCTA ATCCCTTCAAAGTGATTCATTAAAATGCTATCCTA GGCCATGGCGTTGGCTTCTATGATCTGGAGACGCA GGCCATGGCGTTGGCTTCTATGATCTGGAGACGCA	AACTAAGGGGGTGTTC AACTA-GGGGGTGTTC 3AG-GACACCCAATC 3AG-GACAGCCAATC
RMu1,L RMu1,R MuDR,L MuDR,R	ACTGAAATGCTATTTTTG-ATCTTTTTGGTTTCTAG ACTGAAATACTATTTTGG-ATCTTTTTGATTATTAG GCCAAAACAGAAAGGTGACAGCGCTTGGAGCTCCT GCCAAAACAGAAAGGTGACAGCGCTTGGAGCTCCT	GAAAT-GATTTTACTC CTAAT-GTTTTTTACTC FAAACAGGTATTACTC FAAACAGGTATTACTC
RMu1,L RMu1,R MuDR,L MuDR,R	TATT-TTAAGTTTTGTTCTGAC-AAAATAC TCTT-TTATTTTTTCTCCGGACCAAAATGC TCTTGTCGCCGTTTACCGTTCGCCCGCGCACACGCC	CTTGTGT CCTCGTC CGTCACTTGTACTCCT CGTCTGGCATACTCCT
RMu1,L RMu1,R MuDR,L MuDR,R	CTTATCACC TCTATGTCC CTTGTGACCAGTCG CTTGTCACCGTCTC	
Fig 5. Se internal	sequence comparison of TIRs. MBS: MUDRA protein binding site fou I inverted like sequences found in RMu and Mu TIRs.	ind in TIRs of <i>MuDR</i> . IR-like:

-34-

GAGAAAATTG TGATTTTGCT ATCGCAAAAG AATGGTTTCG CTGGAATACT GAGAAAATTG TGATTTTGCT ATCGCAAAAG AATGGTTTCG CTGGAATACT ATCCCTTCAA AGTGATTCAT TAAAATGCTA TCCTAAACTA AGGGGTGTTC ATCCCTTCAA AGTGATTTAT TAAAATGCTA TTCTAAATCA AGGGGTGTTC ACTGAAATGC TATTTTGAT CTTTTTGGTT TCTAGAAATG ATTTTACTCT ACTGAAATGC TATTTTAGAT CTTTTTGGTT GCTAGAAATG ATTTTACTCT ATTTTAAGTT TTGTTCTGA- CAAAATAC-C TTGTGT-CTT ATCACCAGAT ATTTTAAGTT TTGTTCTGAC CAAAATACCC TTGTGTCCTT GTCTCTATTA CGAATCGATC TCTCCAGCCG TCCAGCGTCG GTGTTGACAG AG-3026del TGTTGTG--- ------CTCCTATAC CACATACCCC AACTAGGCCT ACTGTACAAA CCATTATICA -------AGAAAGCCCA ACAGTTGTGA CAAGACGGTT AGTACAACCA ACTACAATTA CATTAACCTA GATGTATTTT TGCTTAACAC ACATTTCCTT GTAGCCGGCT TGCATGTTAA TGGACAAGGA GGGACAGCAC ACACGGCACT TGCTTCACAA GTGACATGTA AAAGGAGGTG AATATTGCTG AATCAAGCTC AAAGAGGACA TGTACAAAGA AGCTCACACC CAAGAAAATG AAGCCTACTT GATTTGTGCT ATGCATGTGA GGCACTGTTA TAGAGGTATT TTGTGACCCA TGTGGTGTTA ----- --------IGTGACCCAT GIAGTGTATG IGAACCACCG ITTGTGTGCT IACGIGIGCA TGTGAGGCAC TGTTATTTGA GGTCTTTTGT GAACCATGGT GCATGTGAAC -----<u>TGTGAAC</u> CATGGTGCAT GTGAACCACT GTTATGTTGT GACCACTGTT ATGTTGTGAA CTTGGTGCAT GTGA----- ----- -<u>ACCACTGTT ATGTTGTGAA</u> (A) CCATTGTTAT GTGAGGTATT TTGTGAACCA CATGCTATTC AATATTATGT CCATTGTTAT GTGAGGTATT TTGTGAACCA CATGCTATTC AATATTATGT CTACATGCTG TCCAAATTTG TTCTATTTG TTTTTACAAT TTTTTCATGC CTACATGCTG TCCAAATTTG TTCTATTTTG TTTTTACAAT TTTTTCATGC CCAAATTTTA TGGGTTAAGC TAGCTTCTCC ATTAT---- ------CCAAATTTTA TGGGTTAAGC TAGCTTCACC ATTATATCTT TATAACTTGG ----- ATCTTGATGT GTATGCGCGC TTGTGACTGA ACTGGACTAC0 AGTGAGAAAA ATCTTGATCT GTATGCACGC TTGTGGCTAA ACTGGACTAC ACACCATTTT TATTGTACAA ATGTGAAAGC AAAATATATT GCTCTAGCAA ACACCATTTT TATTGTACAA ATGTGAAAGC AAAATATATT GCTCTAGCAA AGCATGTGTC AA----AACC AGAGAGGTGT TGTTTGACTT TCAAACCAGT AGCATGTGTC AAAATTAACC AGAGATGTGT TGTCTGACTT TTAAACCAGT GCACGGGAGC TTTTGTATTA GTGTTAGTGA TCAATTAGTA TATACATATC GCACTAGAGC TTTTGTATTA GTGTTAATGA TCAATTAGTA TATACATATC ACGCAGCGGA GCATGAGGCG TGCATAGGTT CACAAATATA TAGCAATATA ACGCAGCGGA GCGTGAGCCG TACATAGTTT CACAAATATA TAGCAATATA TTTTGCTAGA GCAA----- TGTCAACCTG CCATTATCCT GGGCGAAAGG TTTTGCTCTA GCAAAGCATG TGTCAACCTG CCATTATCCT GGGCGAAAGG AGGACATAGA GACGAGGGCA TTTTGGTCCG GAGAAAAAAT AAAAGAGAGT AGGACATAGA GGCGAGGGCA TTTTGGTCCG GAGAAAAACT AAAAGAGAGT AAAAACATTA GTAATAATCA AAAAGATCCA AAATAGTATT TCAGTGAACA AAAAACATTA GTACTAA-CA AAAAGATCCA AAATAGTATT TCAGTGAACA · CCCC-TAGTT TAGGATAGCA TTTTAATGAA TCACTTTGAA GGGATAGTAT CCTCTTAGTT TAGAATAGCA TTTTAATGAA TCACTTTAAA ATGATAGTAT TCCAGCGAAA CCATTCTTTT GCGATAGCAA AATCACAATT TTCTC..... TCCAACAAAA CCATTCTTTT GCGATAGCAA AATCACAATT TTCTC.....

Fig 6. Sequence coparison between *RMu1-IR36* and *RMu2-IR36a*. Underlined and double underlined sequences were found in EST C98506:double underlined sequence but 9th nucleotide was not T but A.

		10	20	30	40	50	
A1 (3136-4040	1	CTCCTATACC	ATATACCCCA	ACTAGGCCTA	CTGTAGAAAC	CATTATTCAA	50
C98506	1	CnCCTATACC	ATATACCCCA	ACTAGGCCTA	CTGTAGAAAC	CATTATTCAA	50
	•					•••••	
		60	70	80	90	100	
A1 (3136-4040	51	GAAAGCCCAA	CAATTGTGAC	AAGACGGTTA	GTACAACCAA	CTACAATTAC	100
C98506	51	GAAAGCCCAA	CAATTGTGAC	AAGACG			100
		110	120	130	140	150	
A1 (3136-4040	101	ATTAACCTAG	ATGTATTTT	GCTTAACAAC	AACAATTTCC	TTGTAGCCGG	150
C98506	101					CCGG	150
		160	170	180	190	200	
A1 (3136-4040	151	CTTGCAATGT	TAATGGAACA	AGGAGGGACA	AGCTCACAAC	CGGCACTTGC	200
C98506	151	CTNGCAATGT	TAATGGAACA	AGGAGGGACA	AGCTCACAAC	CGGCACTTGC	200
		210	220	230	240	250	
A1 (3136-4040	201	TTCACAAGTG	ACATGTAAAA	GGAGGGTGAA	TATTGCTGAA	TCAAGCTC-A	250
C98506	201	TTCACAAGTG	ACATGTAAAA	GGAGGGTGAA	TATTGCTGAA	TCAAGCTCCA	250
		260	270	280	290	300	
A1 (3136-4040	251	CAGCCGGCTC	CATCAAAGAG	GACATGTACA	AAGAAGCTCA	CACCCAAGAA	300
C98506	251	CAGCCGGCTC	CATCAAAGAG	GACATGTACA	AAGAAGCTCA	CACCCAAGAA	300
		310	320	330	340	350	
A1 (3136-4040	301	AATGAAGCCT	ACTTGAATAG	CTCCTCCTGT	ATCACAACTA	ATATTGTGTG	350
C98506	301	AATGAAGCCT	ACTTGAATAG	CTCCTCCTGT	ATCACAACTA	ATATTGTGTG	350
		360	370	380	390	400	
A1 (3136-4040	351	CTGTGCATGT	GAGGCACAAT	TATAGGAGGT	ATTTTGTGAA	CCATGGTGCA	400
C98506	351	CTGTGCATGT	GAGGCACAAT	TATAGGAGGT	ATTTTGTGAA	CCATGGTGCA	400
		410	420	430	440	450	
A1 (3136-4040	401	TGTGAACCAT	GTTGGTGTAT	GTGAACCACC	TTTGTTGTTG	GTGCATGTGA	450
C98506	401	TGTGAACCAT	GTTGGTGTAT	GTGAACCACC	TTTGTTGTTG	GTGCATGTGA	450
		460	470	480	490	500	
A1 (3136-4040	451	GGCACTGTTA	TGTGAGGTCT	TTTGTGAACC	ATGGTGCATA	TGAACCACTA	500
C98506	451	GGCACTGTTA	TGTGAGGTCT	TTTGTGAACC	ATGGTGCATA	TGAACCACTA	500
		510	520	530	540	550	
A1 (3136-4040	501	CTATGTTGTG	AACCATGGTG	CATGTGAACC	ACTGTTATGT	TGTGAACCAT	550
C98506	501	CTATGTTGTG	AACCATGGTG	CATGTGAACC	ACTGTTATGT	TGTGAACCAT	550
		560	570	580	590	600	
A1 (3136-4040	551	TGTTATGTGA	GGTATTTGT	GAACC			600
C98506	551	TGTTATGTGA	GGTATTTGT	GAACCAAAAA			600
		610	620	630	640	650	~ F ^
A1 (3136-4040	601		•••••	•••••		• • • • • • • • • •	650
C98506	601						650

Fig 7. Sequence comparison between a part of RMu1-A1 sequence and a sequence of EST clone, C98506.

Fig 8. Chromosomal locations of *RMu* related fragments probed with TIR (A) and TNP (B).

Fig 9. Variation banding pattern probed with TIR (A) and TNP (B) in Japanese lowland strains. Eleven strains in Type 1 was hybridized to TNP (B) and showed RFLPs among them.

Fig 10. Variation banding pattern probed with TIR (A) and TNP (B and C) in Japanese upland strains. Twenty-seven strains in Type 2 and twenty-two strains in Type 1 were hybridized to TNP (B) and showed RFLPs among them.

Fig 12. Newly found RFLPs in self-pollinated projeny of Akage strain. Genomic DNAs were digested with *Sac* I and probed with TIR.

RMu1	MILLYFKFCSDKIPCVLSPDRIDLSSRPASVLTEGEAGSGIGRGDSSAPP M L
MuDR	MDL
RMu1	HRLRLRRGAGPHPCHSPTSSSPSQRHRPHPPPLPPPPSAAATATPIRRR TP
MuDR	TP
RMu1	PHP PRP PSTATPICRRPHP PPPPSAATAAP I HRYLHPL PPP SAAAPR SAL
MuDR	
RMu I	PALHSLLPSLNVWLGFDSMDDSTWLQIVGRLEEEPGNQLVVVQSPVDEPD F S*D ** ***SP *P
MuDR	SFNSLDSNGIPNSPDVDPA
RMu1	SGGSSPPTQGEQPQPEPHPPPIVDWENLQIIESLDEEGRVNIVDDDELYV G ** * * E** *DW*** * LD*EGRV*** * E*Y*
MuDR	LGETGGSEGLQKIDGESQLDWDSIIVSDVLDDEGRVQVPTENEIYF
RMu1	LIGLRAEDEAAENAQAAAATEQGNGNKGNGAENRNHDENEVEVEPPVEDE LGL**DEAA N*** G*G* * * D * ** P D
MuDR	NLGLNKGDEAANNRFSGSGTNCHAQGSLDTDNEDHHADQPCQDY
RMu1	VAGERMMVNDANKPSLVKGTVYPNMKVFRLAVRQFAINEEFELWVKATDR ** E* *V* PS* G** PNMK FR*A*RQ AI EFEL * *T
MuDR	IPDEKRVVYNRMNPSMQPGCLFPNMKEFRIAMRQYAIKHEFELGIEVTST
RMu1	KKYVGACKGASDCPWHVNGRRQADE-RTVMVTKFTNYHTCTSSGRRKTTT *YVG CKG* DCPW*** R T**V * HTCTSSGRRKTTT
MuDR	TRYVGYCKGG-DCPWRIYAREEKKGLPTIVVAVLDDVHTCTSSGRRRTTT
RMu1	PTSAWVASKAIHILRTDSGMGPKELQKRLQEDQKCKINYDTVAKGRSLAM PT* WVA *A *L *MG*KELQ LQ I*YDTV*KG* A*
MuDR	PTCGWVAFHAKPLLINKKPQMGAKELQQTLQTTHNVTIGYDTVWKGKEKAL
RMu1	IQLQGSWEENFHMLYRWRAAVMERSPGSVIEIDTIEVDGKVYFNRFFCAL L*GSWEE*F *LY W* AV* P SVIEID I DGK YF*RFFCA*
MuDR	RELYGSWEESFQLLYSWKEAVIAVMPDSVIEIDVILEDGKYYFSRFFCAF
RMu1 MuDR	SPCITGFLTGCRPYLSVNSTALNGLWKGHLASAIAIDGNNWMYPIAFGFF *PCI*GF GCRPYLSV STALNG W GHLASA *DG NWMYP* FGFF GPCISGFRDGCRPYLSVDSTALNGRWNGHLASATGVDGHNWMYPVCFGFF
RMu I	DAETTDNWTWFMIQLLKAIGKVSPLAICTDACKGLEIAVHRVFPWAGHRE
MuDR	AET DNW WFM QL K**G ***LAIC*DA*KGL AV VFP A *RE QAETVDNWIWFMKQLKKVVGDMTLLAICSDAQKGLMHAVNEVFPYAERRE
RMu1	CFNHLTQNLIKKYGGSVFQEMYPVARSYRAQVHEECHDTIKKACTDVALW
MuDR	CFRHLMGNYVKHAGSEHNYPARAYRRDVFEHHVSKVRNV-HKIAEY
RMu1	LDTYHKLIWYRSGFNAEIKCDYVTNNLAECFNNWIRDIKALPICELADTC LD* HK**WYRSGFN *IKCDY*TNN*AE NNW**D K LP*C*LA*
MuDR	LDQHHKFLWYR SGFNKDIKCDYITNNNAEVYNNWVKDHKDLPVCDLAEKI
RMu i	REMIMTLWNRRRRIGNKFTGTILPAVLHQLRARTRGLGHLSVVHADITTA REM M L* RRRRIG K* G ILP VL L*ARTRGLGHLS*V* D * A
MuDR	REMTMELFHRRRRIGHKLHGIILPSVLAILKARTRGLGHLSIVKCDNYMA
RMu 1	EVWDNSSSHARHVARTHEQSCTCQEWQHTGKPCQHALAVIASQQIRDVKL EV D**** *HV* *C*C EWQHTGKPCOH LA*I* 0 RDV *
MuDR	EVRDSTNCMTKHVVNAELKQCSCEEWQHTGKPCQHGLALIIAQDSRDVGM
RMu1	ENYINPYYSVALFWNAYNSIIEPLPDKSQWPKVDLPFVLGAPLAKRNLGR EN * YYS F AY* *EP* D*S WP VD** * AP*A*R*LGR
MuDR	ENFVDDYYSTERFKIAYSRRVEPIGDRSFWPSVDFASGVFAPIARRGLGR
RMu1	YRKLRIKGCLEDGGSKPKDCDC
MuDR	QRKNRIKSCLEGGSARNKSTNENEKTKKRLKRQYTCPNCGELGHRQSSYK
RMu1	
MuDR	CPLNGTKKRKRKPRINTTKNWIPKELRTSSQNVPVQPDVAEEVTEQELED
RMu I	EGND
MuDR	PQPETEQLGLALFQPLGAQITEQEADEPAEQAPPASPPPTRKWLVKKITP
RMu 1	
MuDR	KKRLRI SAQQKQY

Fig 13. Comparison of amino acids sequences of *mudrA* gene and *rmuA* gene.

and the 2nd introns. PCR products covered from the first ATG to the middle of the 3rd exson. 0.6 kb fragment lost the 2nd Fig 14. RT-PCR of *rmuA* gene transcript. A: 1.0kb RT-PCR fragments correspond to the transcripts spliced with the 1 st exon with two intron. Lanes 1 and 3 were panicles at later stage. In contrast, lanes 2 and 4 were young panicles. B: Lanes 5 to 7 were tissues from the plants grown under 25°C(day) and 15°C (night). Lane 8 were tissue from the plant grown under 25°C (day) /20°C (night). C: RT-PCR product obtained from calli.

Fig 15. Activation of the *rmuA* gene. A: Cycling stress of lower temperature given for a week activated the transcription of the *rmuA* gene. RT-PCR was done with ALTS and r1 primer shown in panel C. B: Control for RT-PCR reaction by actin primers.

Fig 16. Alternative transcription amplified by RT-PCR. Panel A: 623f and RSTOP primers were used for RT-PCR. Normally spliced product including the exon 1 to 3 were shown with an arrow. Alternative spliced product lost the exon 2. Lane 1, 3: RNA samples were extracted from mature leaves from A1 and IR36 grown in green house. Lanes 2 and 4: RNA samples from flag leaves grown in green house. lane 5: RNA sample from mature leaves grown with cycling stress $(25^{\circ}C \text{ for } 12 \text{ hours and } 12^{\circ}C \text{ for } 12 \text{ hours})$. Panel B: primers designed to amplify a portion of PGI gene including introns. Lanes 1 to 5 were same as panel A. Lane 6: Genomic DNA of A1. Amplified fragment from Pgi1 and Pgi2 were shown with arrows (genomic 1 and genomic 2).

Fig 17. Sequence comparison between RMu-A1 and rice EST, C71789. Gap was indicated with dash. Same nucleotides were shown with asterisks. Differences were markerd

240 5' C--T-GAGGAGGAGGAGGAGCAGGGGCATCGGCAGAGGGCGACACCAGCGTGCCTCCACATCGGCTTCGTCTCCGGCGGCCGGGCCCCGGCCCCTGCCAC 336 <u>10</u> 136 201 EST C71789 A RMu1-A1 æ NTR

st exon

515 51 ATGGATGACCTGGCTACAGATTGTTGGGAGG 3' RMu1-A1 A

5' ATGGATGACTCCACCTGGCTACAGATTGTTGGGGGG 3' EST C71789 æ

280

3rd exon

A RMU1-A1

B EST C71789

TTGGGACA-GATTCAGGTAT-GGGCCCTAAAGAACTGCAAAAAGGTT 3' 1499 1454

Fig 19. Genomic fragments carring exon 2. Genomic PCR was done with FM2 and r4 primers which can amplify a part of coding sequences including exon 2.

Fig20. Sequence idengtities in two introns of *RMu*1-IR36 and *RMu*1-A1.

•

-

٠

50 50	100 100	150 150	50 50 100
<pre>1 GTAIGCACITCTATTTTTTCAGTGACATGATTACCCGATTGATT 40************************************</pre>	 GCTGGAAGTAAGGGGTTAGATCTGACTATTGTTTGCAATTATTTGC **********************************	1 ATCTTTTCTCTA8 ************************************	I GTACITITITICCTAATGTCATTGACATTTCACTTCTATGTATTTCTI GTACITTTTTCCTAATGTCATGGTCATTGACATTTCACTTCTATGTATTTCTI GTACTTTTTTTCCTAATGTCATTGATTTTCACTTCTATGTTGTTTCTI TATTTTGCTAATGCCATGTTTTTGTTTGTTTTATTT-GCAGI TATTTTGCTCAATGCCATGTTTTATTTGTTTTGTTTTGCTI TATTTTGCTCTAATGCCATGTTTTATTTGTTTTGTTTTG
	5	10	Intron 2

•

Intron 1

-49-

Fig 21. Polymorphism detected at 5' region in RMu1 elements. TIR and r1 primers were used to amplify variable regions from genomic DNAs from IR36 and A1. Arrow shows the size of the region in RMu1-IR36.

Fig 22. Polymorphism detected at 5' region in *RMu*1 elements. TIR and r1 primers were used to amplify variable regions from genomic DNAs from IR36 and A1. Arrow shows the size of the region in *RMu*1-IR36.

Fig23. DNA gel blot of Asaminori (odd lanes) and IR24 (even lanes). Lanes 1 and 2: EcoRI, lanes 3 and 4: HindIII, lanes 5 and 6 PstI, lanes 7 and 8: SacI, lanes 9 and 10: XbaI, lanes 11 and 12: XhoI. Int2 probe prepared from internal sequence of *RMu2-A1a* was used.

<i>RMu2</i> -IR36 <i>RMu2</i> -A1b	GAGAAAATTGTGATTTTGCTATCGCAAAAGAATGGTTTTGTTGGAATACTATCATTTTAA TAGAAAATTGTGATTTTTCTATCGCAAAAGAATGGTTTCGCTGGAATACTATCCCTTCAA	60
DM12 TD26		120
<i>RMu2</i> - A 1b	AGIGATICATTAAAAIGCTATICTAAACTAAGCTACCATTCTATACCCATGGTTCCCAAC	
RMu2-TR36		180
RMu2-A1b	TTTCCTCCATCGTTTTACGCACACACGCTTTTCAAACTGCTAGACGGTGTGTTTTTTGCA	
<i>RMu2</i> -IR36		240
<i>RMu2-</i> A1b	AATAGCAAATACTAAATTAATCGCGTGCTAATCGCTACTCCGTTTTCCGTGCTAGGAAGT	200
<i>RMu2-</i> IR36		300
<i>RMu2-</i> A1b	GAGGTTCCCAACCCTCACTCCCGAACACAGCCTAAGAGGTGTTCACTGAAATGCTATTTT	260
<i>RMu2</i> -IR36	AGGTGTTCACTGAAATACTATTTT	300
<i>RMu2-</i> A 1b	GAGGTTCCCAACCCTCACTCCCGAACACAGCCTAAGAGGTGTTCACTGAAATGCTATTTT	
<i>RMu2-</i> IR36	GGATCTTTTTG-TTAGTACTAATGTTTTTACTCTCTTTTAGTTTTTCTCCGGACCAAAAT	420
<i>RMu2-</i> A 1b	GGATCTTTTTGGTTAGTACTAATGTTTTTACTCTCTTTTAGTTTTTCTCCCGGACCAAAAT	
<i>RMu2</i> -IR36	GCCCTCGCCTCTATGTCCTCCTTTCGCCCAGGATAATGGCAGGTTGACACATGCTTTGCT	480
<i>RMu2-</i> A 1b	GCCCTCGCCTCTATGTCCTCCTTTCGCCCAGGATAATGGCTGGTTGACACATGCTTTGCT	
<i>RMu2</i> -IR36	AGAGCAAAATATATTGCTATATATTTGTGAAAC-TATGTACGGCTCACGCTCCGCTGCGT	540
<i>RMu2-</i> A 1b	CTAGCAAAATATATTGCTATATATTTGTGAAACCTATGCACGGCTCACGCTCCGCTGCGT	
<i>RMu2</i> -IR36	GATATGTATATACTAATTGATCATTAACACTAATACAAAAGCTCTAGTGCACTGGTTTAA	600
<i>RMu2-</i> A 1b	GATATATATATACTAATTGATCATTAACACTAATACAAAAGCTCTAGTGCACTGGTTTGA	
<i>RMu2-</i> IR36	AAGTCAGACAACACATCTCTGGTTAATTTTGACACATGCTTTGCTAGAGCAATATATTTT	660
<i>RMu2-</i> A1b	AAGTCAAACAGCACTTCTCTGGTTTTGACACATGCTTTGCTATAGCAATATATTTT	_
<i>RMu2</i> -IR36	GCTTTCACATTT-GTACAAT-AAAAATGGTGTGTAGTCCAGTTTAGCCACAAGCGTGCAT	720
<i>RMu2-</i> A1b	GCTTTCACATTTTGTACAATTAAAAATGGTGTGTAGTCCAGTTCAGCCACAAGCGCGCAT	
<i>RMu2</i> -IR36	ACAGATCAAGATTTTTCTCACTCCAAGTTATAAAGATATAATGGTGAAGCTAGCT	780
<i>RMu2-</i> A1b	ACACATCAAGATTTTTTCTCACTCCAAGTTATAAAGATATAATGGAGAAGCTAGCT	
<i>RMu2</i> -IR36	CATAAAATTTGGGCATGAAAAAATTGTAAAAACAAAATAGAACAAATTTGGACAGCATGT	840
<i>RMu2-</i> A1b	САТААЛАТТТGGGCАТGААЛАЛАТТGТААЛААСАЛАТАGААСАААТТТGGACAGCATGT	
RMu2-TR36	AGACATAATATTGAATAGCATGTGGTTCACAAAATACCTCACATAACAATGGTTCACAAC	900
RMu2-A1b	AGACATAATATTGAATAGCATGTGGTTCACAAAATACCTCACATAACAATGGTTCACAAC	
PM112_TR36	ネ Ͳネネペスで ロビビルで ネペネーロンである。	960
RMu2-A1b	ATAACAGTAGTTCACAACATACCAGTGGTTCACATGCACCATGGTTCACAACGTAATAAA	
RMu2_TR36	Ⴚልሮልልሮልሮልሮልሮልዴሞልሞሞሞርሬሞሮልርልልሮልልሮምምልልልልሞልርልሬሞልልልምምምሮሞ	1020
RMu2-A1b	GACAAGGACACAAGGGTATTTTGGTCAGAACAAAACTTAAAATAGAGTAAAATCATTTCT	
		1000
<i>RMu2</i> -IR36	AGCAACCAAAAAGATCTAAAATAGCATTTCAGTGAACACCCCTTGA-TTTAGAATAGCAT	1080
RMu2-A1b	AGCAATCAAAAAGATCTAAAAATAGCATTTCAGTGAACACCC-TT-AGTTTATGATAGCAT	1140
<i>RMu2-</i> IR36	TTTAATAAATCACTTTGAAGGGATAGTATTCCAGCGAAACCATTCTTTGCGATAGCAAA	1140
<i>RMu2-</i> A 1b	TT-AATGAATCACTTTGAAGGGATAGCATTCCAGCGAAACCATTCTTTGCGATAGCAAA	
<i>RMu2-</i> IR36	ATCACAATTTTCTC	
RM_{12} - A 1h	ϪͲϹϪϹ;;ϪͲͲͲͲϹͲϹ	

Fig 24. Sequence comparison between *RMu2-IR36a* and *RMu2-A1b*. *RMu2-IR36a* sequence starts from right TIR to left TIR.

Original CTAAACTAAG

wanderer TTTCTGCGCGCACGCTTTTCAAACTGCTAAACAATGTGTTTTTTGCAAAA

- Insertion TTTACGCACACACGCTTTTCAAACTGCTAGACGGTGTGTTTTTTGCAAAA
- Insertion AAAAAATTCTATACGAAAGTTGCTCAAAAAATCATATTAATCCATTTTTG

wanderer	САААААААА-	-GCAAATACTTAATTAATCI	ACG	CGCTAATG.	ААСТО	GCTT	ľCG
	*******	*****	**	*****	**	**	**

Insertion AAAAAAAAATAGCAAATACTAAATTAATCGCGTGCTAAT-CGCTACTCCG

wanderer TAAG **** Insertion TAAG

Original AAGAGGTGTTCACTGAAATACTATTTTGGATCTTTTTG-TTAGTA

Fig 25. Sequence similarity found between wanderer and an insertion sequence in *RMu2-A1b*. Presumable recombination point (AAG) was algned with original TIR sequence in *RMu2-IR36a*.

Fig 26. DNA gel blot of Asaminori and IR24. An insertion sequence In *RMu2-A1b* was hybridized to panel A (lane 1; Asaminori, lane 2;IR24). Genomic DNAs were digested with *Eco*RI. Panel B: The same blot used in Fig 23 Was used and hybridized with TIR probe.

Ă.	<i>RMu2</i> -A1c TIR-L <i>RMu2</i> -A1c TIR-R	1 I-L GAGAAAATTGGGATTATACTATCGTAAAAGAGTGGTTGGCTGGGAATGCTACCTCTTCAAACTAA ***********************************	100 ATTCACTAAAATGCTATCTTAAACTGGGGGGGGGTGTTCA ***********************************
	<i>RMu2</i> -A1c TIR-L <i>RMu2</i> -A1c TIR-R	<pre>101 8-L CCAAAGTGCTATTTTCGCTCTTTTGGGGTAAATAGAAATGTTTTTCCTCAATTTTAACTTTTTTCT 8-L CCAAAGTGCTATTTTCGCTCTTTTGGGGTAAATAGAAATGTTTTTCCTCAATTTTTAACTTTTTTCT 3-R ccAAAATGCTATTTTCGTTTTTTAGGTAAATAGAAATGTTTTTTTCTCAATTATAACTTTTTCCCC</pre>	200 TGGGCTACGGGCCCACATGTCA *** * * * ***************************
	<i>RMu2</i> -A1c TIR-L <i>RMu2</i> -A1c TIR-R	201 - L TACTCTCCACTCTTCTCCTTCCCCCTCTATCGAGGGAGCGCCGGTGGCGGAGGCGA ***** ** ****************************	275 AGCAGTGGCCG ********* AGCAGTGGCCG
- ₅₆ - ထ	0 -	220 269 (Left TIR end) 609	specific TIR probe internal probe 1170t
	Fig 27. Structure o extended parts of T any parts of TIR.	re of <i>RMu2-A1c</i> . Panel A: TIRs werealigned. Panel B: Solid arrows re of TIRs. <i>RMu2-A1c</i> specific TIR probe includes the extended part an 3.	eveal TIRs. Dotted regions are

Fig 28. DNA gel blot of genomic DNAs of Asaminori and IR24. Lane definition is same as Fig 23. Panel A: RMu1-A1c internal probe was hybridized. Panel B: *RMu2-A1c* specific TIR probe was hybridized with the same blot in panel A.

Fig 29. Model of extension of TIRs in *RMu* subfamily.

Fig 30. Model of rcruitement of an unique internal sequence from an extopic template.

RMu 2 - A 1 c RMu 2 - G 4	1 1	10 GAGAAAATTG GAGAAAATTG	20 GGATTATACT ATCG GGATTATACT ATCG	30 Taaaag Taaaag	40 AGTGGTTTCG AGTGGTTTCG	50 CTGGAATGCT CTGGAATGCT	5 C 5 C
RMu 2 - A 1 c RMu 2 - G 4	5 1 5 1	60 ACCIETICAA ATCICIICAA	70 ACTAATTCAC TAAA ACTAATTCAC TAAA	80 ATGCTA ATGCTA	90 TETTAAACTG TCTTAAACTG	100 GAGGTETICA GAGGTETICA	100
RMu 2 – A 1 c RMu 2 – G 4	101 101	110 CCAAAGTGCT CCAAAGTGCT	120 ATTITCGCTC TTTT ATTITCACTC TTTT	130 GGGTAA GGGTAA	140 ATAGAAATGT ATAGAAATTT	150 TTTTCCTCAA TTTTCCTCAA	150 150
RMu 2 - A 1 c RMu 2 - G 4	151 151	160 TTTTAACITT TTTTAACTTI	170 TTTCTGG TTTCTGGACC AAAA	180 TACCCC	190 -GCTAEGGGC TGCTACGGGE	200 CCACATGICA CCACAIGICA	200 200
RM⊔2.~A1c RM⊔2.~G4	201 201	210 TACTGTCCAC TACTCTCCAC	220 TCTCCCCTTC TCCC TCTCCCCTTC TCCC	230 CCTCCC CCTCCC	240 CTCTATCGAG CTCTATCGAG	250 GGAGCGCCGG GGAGCGCCGG	250 250
RMu 2 - A 1 c RMu 2 - G 4	251 251	260 TSSCGGGAGS TGGCGSSAGG	270 CGAGCABIGG CCCB CGAGCAGIGG CCGG	280 EGCCGC CGCCGC	290 GTCGCCGTCG GTCGCCGTCG	300 CTGGCSTGCC CTSGCGTGCC	300 300
RM ⊔ 2 − А1 с RM ⊔ 2 − G4	301 301	310 GGCTCGACCT GGCTCGACCT	320 CGAGAAGCTG ATGG CGAGAAGCTG ATGG	330 CGGCGC CGGCGC	340 AG-TCGGCTA AGCTCGGCTA	350 GCCCGTGCTC GCCTGTGCTC	350 350
RMu2-A1c RMu2-G4	351 351	360 GACGACCTCC GACGACCTCC	370 TCATCCCGTC CTCC TCATCCCGTC CTCC	380 TCGCC- TCGCCC	390 GACGC-GCG- GACGCCGCCG	400 -Cacaacggc Ccacaacgge	400 400
RMu 2 - A 1 c RMu 2 - G 4	401 401	410 - TACGACATT CTACGACATT	420 GACGCCGTGC AGAG GACGCCGTGC AGAG	430 SATCCT SATCCT	440 GGCCGGCTAC GGCCGGCTAC	450 GTCGACCATG CTCGACCATG	450 450
RM u 2 – A 1 c RM u 2 – G 4	451 451	460 AGGGCGACGC AGGGCGACGC	470 GECGGCGGCG C+GC GCCGGCGGCG CCGC	480 - ACGGC CACGGC	490 TGGACTGCAC TGGACTGCAC	500 Caccgaegae Cacegaegae	500 500
RMu2-A1c RMu2-G4	501 501	510 GACTTCAGCT GACTTCAGCT	520 CGGCGGTGTC GC-G(CAGCGGTGTC GCCG)	530 CGCAC CGCAC	540 AACGACGTCG AACGACGTCG	550 CCCAGGTCGG CCCAGGTCGG	550 550
RMu2 − A1 c RMu2 − G4	551 551	560 CAGGCTCATG CAGGCTCATG	570 GAGAGCTACC TCGCI GAGAGCTACC TCGCI	580 GAGAT GAGAT	590 CGCCTCCGAC CGCCTCCGAC	600 GAGAACCTGT GAGAACCTGT	600 600
R M u 2 - A 1 c R M u 2 - G 4	601 601	610 CCATTGACTA CCATTGACTA	620 GTTCACCGCC CTCG GTTCACCGCC CTCG	630 CGAGC CGAGC	640 TCATCCCGGA TCATCCCGGA	650 GCACGCCAGG GCACGCCAGG	650 650
RMu2-A1c RMu2-G4	651 651	660 TTCAACGAGG TTCAACGAGG	670 ACGGCATGTA CCACC ACGGCATGTA CCACC	680 ICCATC ICCATC	690 GACATCTACT GACATCTACT	700 TGAAGSTIAG TGAAGGTTAG	700 700
RM u 2 - A 1 c RM u 2 - G 4	701 701	710 AAGCTGCCAT AAGCTGCCAT	720 TCACATCGAT CACT/ TCACATCGAT CACT/	730 44444 44444	740 TGGCTAAATC TGGCTAAATC	750 CITEGTTAAT CITEGTTAAT	750 750
RM u 2 - A 1 c RM u 2 - G 4	7 5 1 7 5 1	760 Cactccacta Cactccacta	770 AATGETTATG TGGEC AATGETTATG TGGEC	780 GGTGC GGTGC	790 AGACGGTGGT AGACGGTGGT	800 GCAGGIGCIS GCAGGIGCIG	800 800
RM u 2 − A 1 c RM u 2 − G 4	601 801	810 TACCACGAGC TACCACGAGC	820 AGCG-CGCCT CCGCC AGCGGCGCCCT CCGCC	830 830000 800000 800000	840 TCGCAGCCGC TCGCAGCCGC	850 CGAGCACCGC CGAGCACCGC	850 850
RMu 2 - A 1 c RMu 2 - G4	851 851	860 GCCGTCGTAC GCCGTCGTAC	870 -CCGGCCGCG AGTCC GCCGGCGGCG AGTCC	880 ICCGGC ICCGGC	890 GETGTEGTAE GETGTEGTAE	900 Aggeebatac Aggeebacac	900 900
RM u 2 - A 1 c RM u 2 - G 4	901 901	910 CGAGCTTCAA CGAGCTTCAA	920 CGGCGCTGTC GGCC/ CGGCGCTGTC GGCC/	930 ACTGCT ACTGCT	940 CGCCTCCAAC CGCTTCCAAC	950 CACCGGCGCT GACCGGCGCT	950 950
RM u 2 - A 1 c RM u 2 - G 4	951 951	960 Cectogagag Cectegagag	970 Agatgaagag gagaj Agatgaagag gagaj	980 NGGAGA NGGAGA	990 GAGTAGAGGG GAGTAGAGGG	1000 AGTATGACAG Agtatgacag	1000 1000
RM u 2 - A 1 c RM u 2 - G 4	1001 1001	1010 GTGGGCCCGC GTGGGCCCGC	1020 Attaggggta titte Atcaggggta titte	1030 IGTCCG IGTCCG	1040 GGAAAAAGTT GGAAAAAGTT	1050 ATAATTGAGA ATAATTGAGA	1050 1050
RM u 2 - A 1 c RM u 2 - G 4	1051 1051	1060 AAAAACATTT AAAAACATTT	1070 CTATTTACCT AAAAA CTATTTACCT AAAAA	1080 AAEGA AAEGA	1090 AAATAGCATT AAATAGCATT	1100 TTGGTGAACA TTGGTGAACA	1100 1100
RM u 2 - A 1 c RM u 2 - G 4	1101 1101	1110 CCTTCAGTTT CCTTCAATTT	1120 Agaatagcat Tita/ Agaatagcat Tita/	1130 LTGAAT LTGAAT	1140 CACTITGAAG CAGTITGAAG	1150 Ggatagcatt Ggatagcatt	1150 1150
RM u 2 ~ A 1 с RM u 2 − G 4	1151 1151	1160 CCAGCGAAAC CCAGCGAAAC	1170 CACICITITA CGAI/ CACICITITA CGAI/	1180 KATATA KGTATA	1190 ATCCCAATTT ATCC-AATTT	1200 TCTC TCTC	1200 1200

Fig 31. Sequence comparison between RMu1-A1c and RMu1-G4.

RMu 2 - A 1 c RMu 2 - N 1 C	1 1	10 GAGAAAATTG GAGAAAATTG	20 GGATTATACT GGATTATACC	30 ATCGTAAAAG ATCGCAAAAG	40 AGTGGTTTCG AGTGGTTTCG	50 CTGGAATGCT CTCGAATGCC	5 0 5 0
RMu 2 - A 1 c RMu 2 - N 1 C	51 51	60 ACCTCTTCAA ATCGCTTCAA	70 ACTAATTCAC ACTGATTCAC	80 TAAAATGCTA TGTAATACCA	90 TCTTAAACTG TTCTAAACTA	100 -GAGGIGITC Agaggtattc	100 100
RMu 2 - A 1 c RMu 2 - N 1 C	101 101	110 ACCAAAGTEC ATCEAAATAT	120 TATTTTCGCT TGTTTTCATT	130 CTITIG-GGT CTITITGST	140 АЛАТАДАААТ GAATAGAAAT	150 GTITITICCTC GTITITIGCTC	150 150
RM u 2 - A 1 c RM u 2 - N 1 C	151 151	160 AATTTTAACT AATTTTATTT	170 TTTT-TCTGG TTTTGCCCAG	180 GCTACGGGCC ACCA-AAATA	190 CACATETCAT CCCCTGAGAG	200 ACTCTCCACT GGCCCCTCCT	200 200
RM u 2 - A 1 c RM u 2 - N 1 C	201 201	210 CTCTCCTTCT GTCATACTCT	220 CCCCCTCCCC CTCACCTCTC	230 TCTATCGAGG TCTTTT	240 GAGÇGÇÇGGT CÇÇTCTT	250 GGCGGGAGGC CGC+	250 250
RM u 2 - A 1 c RM u 2 - N 1 C	251 251	260 GAGCAGTGGC CTCTTCC	270 CGGCGCCGCG TCTCTCTCTC	280 TCGCCGTCGC TCGTGGGCGC	290 TGGCGTGCCG AGTCGGAGCT	300 GETCGACCTC GTGETGCC	300 300
RM u 2 - A 1 c RM u 2 - N 1 C	301 301	310 GAGAAGCTGA CAGCAGACGA	320 TGGCGGCGCA TAGCGG-GCG	330 GTCSGCTAGC CGGTGAGG	340 CCGTGCTCGA GTGTCAGA	350 CGACCTCCTC GGATCCCA	350 350
RM u 2 - A 1 c RM u 2 - N 1 C	351 351	360 ATCCCGTCCT ATTGCGTGCT	370 CCTCGCCGAC CTCAAC	380 GCGCGCACAA ATG-GAGGGA	390 CGGCTACGAC CGCCGAC	400 ATTGACGCCG AATGAC-CCC	400 400
RM u 2 - A 1 c RM u 2 - N 1 C	401 401	410 TCCAGAGGAT TCCGG	420 CCTGGCCGGC -CTGGCTCGG	430 TACCTOSACC TGTCACCT	440 ATGAGGGCCA GCGTCGAGGA	450 CGCGGCGGCG CGGCGGCG	450 450
RM u 2 - A 1 c RM u 2 - N 1 C	451 451	460 GCGEGEACGS GTG-GEAGGG	470 CTGGACTGCA TCGG	480 CCACCGACGA CGACG-	490 CGACTTCASC TGGAGC	500 Teggesgtgt Tesecaactt	500 500
RM u 2 - A 1 c RM u 2 - N 1 C	501 501	510 CSCGCCGCAC CTCACT-CAC	520 AACGACGTCG GA-GCTACCT	530 CCCAGGTCGG CCCATC	540 CAGGCTCATG CGAGTTGTCG	550 GAGAGCTACC CTACC	550 550
RM u 2 - A 1 c RM u 2 - N 1 C	551 551	560 TCGCCGAGAT CTACAACC	570 CGCCT-CCGA AGCTTGCCGG	580 CGAGAACCTG CCAGATCECG	590 TCCATTGACT GTCGCCA	600 Agttcaccgc Tcacgac	50 0 600
RMu2-A1c RMu2-N1C	601 601	610 CCTCGCCGAG GCT-GCAGA+	620 CTCATCCCGG AGCTCGC	630 AGCACGCCAG GGCGCTCCTG	640 GTTCAACGAG GCTCA-CAAC	650 GACGGCATGT CTCCTCTCCA	650 .650
RM u 2 - A 1 c RM u 2 - N 1 C	651 651	660 ACCACGCCAT GCTATATTCC	670 CGACATCTAC TG+CGGAGAT	680 TTGAAGGTTA TGGGCGGCGG	690 -GAAGCTOCC TGGASSTGTG	700 ATTCACATCG GTGGAGATC-	700 700
RMu 2 - A 1 c RMu 2 - N 1 C	701 701	710 ATCACTAAAA TTSGAG	720 AATGGCTAAA GAGGGTTCGA	730 TCCTTCGTTA GCATG-GSGA	740 ATCACTCCAC TGCACATTGC	750 TAAATGCTTA CGCATGCG	750 750
RMu 2 - A 1 c RMu 2 - N1 C	751 751	760 TGTGGCCGGT AGGGGCATGC	770 GCAGACGGTG CGAGGTTGTC	780 GTGCAGGTGC GAGCTGCTGC	790 TGTACCACGA TCCAGCGCGG	800 GCAGCGCGCC GGCGGATGCC	800 800
RMu2-A1c RMu2-N1C	801 801	810 TCCGCGCGCC ATCAT-TGCC	820 Atcgcagccs Ggccagatcs	830 CCGAGCACCG CCATG-GCIG	840 CGCCGTCGTA C-TCGCT-CG	850 CCCGGCGGCG CTCGGTCG	850 850
RMu 2 - A 1 c RMu 2 - N 1 C	851 851	860 AGTCGCCGGC ACGCCCGC	870 GCTGTCGTAC CTCCCCGCCA	880 AGGCEGACAC CGCCCGCTGC	890 CGAGCTTCAA CGACCACCAC	900 CGGCGCHGTC CTGC-CTCCC	900 900
RMu 2 - A 1 c RMu 2 - N 1 C	901 901	910 GSCCACTGCT GGCCACCGC-	920 CGCCTCCAAC CACTCCCAAC	930 CACCGGCGCT TGCA	940 CECTCOAGAG CECACGAGAG	950 Agatgaagag Agaggaagag	950 950
RMu 2 - A 1 c RMu 2 - N 1 C	951 951	960 Gagaabgaba Ggaaabgaba	970 GAGTAGAGGG GAGGTGAAAG	980 AGTATGACAG AGTATGACAG	990 GTGGGCCCGC GTGGGGCCCG GTGGGGCCCG	1000 ATTAGGGGTA CTAAGGGGTA	1000 1000
RMu 2 - A 1 c RMu 2 - N 1 C	1001 1001	1010 TTTTGGTCCG TTTTGGTCTA	1020 GGAAAAGTT GGCAAAAAAT	1030 ATAATTGAGA AAAATTGAGC	1040 AAAAACATTT AAAAACATTT	1050 CTATTTACCT ATATTCACCA	1050 1050
RM u 2 - A 1 c RM u 2 - N 1 C	1051 1051	1060 Алалалсса Алахбалтал	1070 AAATAGCATT AAATGGCATT	1080 TIGGIGAACA TIGGIGAACA	1090 CCT-TCAGTI CCTCTCAGTT	1100 TAGAATAGCA TAGGATGTCA	1100 1100
RMu2-A1c RMu2-N1C	1101 1101	1110 TTTTAATGAA TTATASTGAA	1120 TCACTITGAA TCAGTITGAA	1130 GGGATAGCAT GTGATGATAT	1140 TCCAGCGAAA TCCAGCGAAA	1150 CCACTCTTTT CCACT-TTTT	1150 1150
RM u 2 - A 1 c RM u 2 - N 1 C	1151 1151	1160 ACGATAATAT GCGATGGTAT	1170 AATGCCAATT AATCCCAATT	1180 TTCTC TTCTA	1190 	1200	1200 1200

Fig 32. Sequence comparison between *RMu2-A1c* and *RMu2-N1c*.

Fig 33. Modification of restriction sites in a sGFP vector.

pTIR623(IR36)

pTIR623(A1)

Fig 35. Construction of an *RMu1* inserted vector.

Fig 36. DNA gel blot of *Dra*I digested genomic DNAs. Genomic DNAs of IR36 (lane 1) and A1 (lane 2) were digested and hybridized to left TIR probe(panel A, TIR-r1) and right TIR probe(panel B, F5-TIR).

. -

NOS-Ter

CaMV35 S

BAR

Fig38. Cloning of upstream region of a rmuA gene in RMu1-IR36.

Fig 39. Ligation of anupstream region to sGFP vector.

Fig40. Cloning of upstream region of a *rmuA* gene in *RMu1-A1*.

Fig 41. Ligation of anupstream region to sGFP vector.

Fig 42. Cloning of upstream region of a *rmuA* gene in *RMu1-435*.

Fig 43. Ligation of anupstream region to sGFP vector.

Fig 44. A deletion found in d6 allele in A28 strain. D6F2 and D6R2 primers amplified polymorphic region (panel A). The PCR product revealed the difference of the fragment size (Panel B). Lane 1; size marker, lambda DNA *Sty*I digests, lane 2; A1, lane 3;A28.

-73-

A 1 - F 2 R 2 A 2 8 - F 2 R 2	1 1	10 GGTCAATACA GGTCAATACA	20 CACCCARACT CACCCARACT	30 ATATAGTITA ATATAGTITA	40 GCTGCAAACT GCTGCAAACT	50 TCAGICTTII TCAGICTTII	50 50
A 1 - F 2 R 2 A 2 8 - F 2 R 2	5 1 5 1	60 TCCATCACAT TCCATCACAT	70 CAACCTGTCA CAACCTGTCA	80 TACACACACA TACACACACA	90 ACTITICAST ACTITICAST	100 CGCATCATCT CGCATCATCT	100 100
A 1 - F 2 R 2 A 2 8 - F 2 R 2	101 101	110 CCAATTTTAA CCAATTTTAA	120 CCAARATTTA CCAARATTTA	130 AACTITEGAT AACTITEGAT	140 Ссаастаааа Ссаастаааа	150 ACAGCCITAG ACAGCCITAG	150 150
A 1 - F 2 R 2 A 2 8 - F 2 R 2	151 151	160 TAGCTGGGAT TAGCTGGGAT	170 CAUCASTTAT CAUCASTTAT	180 CAGATTTGCA CAGATTTGCA	190 Agctgsgagt Agctgggagt	200 AATTAAGTAG AATTAAGTAG	200 200
1 - F 2 F 2 A 2 8 - F 2 R 2	201 201	210 Agtacgtgta Agtacgtgta	220 Cacagtagaa Cacagtagaa	230 GTAGGGTATG GTAGGGTATG	240 Atccatatga Atccatatga	250 TATICCCTCC TATICCCTCC	250 250
41 - F 2 R 2 A 2 8 - F 2 R 2	251 251	260 CTCCCTTCCC CTCCCTTCCC	270 Agctigcaaa Agctigcaaa	280 TCTCICGTCI TCTCICGTCI	290 TCICGTCICG TCICGTCICG	300 TCTTTGGCTG TCTTTGGCTG	300 300
N 1 - F 2 R 2 N 2 8 - F 2 R 2	301 301	310 TGATTTGACG TGATTTGACG	320 CGAGAAAAAG CGAGAAAAAG	330 GATAGCCACC GATAGCCACC	340 CSCCATCSCC CSCCATCSCC	350 Cacacgeteg Cacaegeteg	350 350
1 - F 2 R 2 2 8 - F 2 R 2	351 351	360 CGCACAIACG CGCACAIACG	370 CTACACETCC CTACACETCC	380 CCCTCGCCGT CCCTCGCCG-	390 AGTATACACC	400 TCCACCTTTC	400 400
1 - F 2 R 2 2 8 - F 2 R 2	401 401	410 CCTTCCATTA	420 ATACCTNCAC	430 CCCCCACTCC	440 TCTCCCCCAT	450 CTCCCCTCCC	450
1 - F 2 R 2 2 8 - F 2 R 2	451 451	460 TCTCGCCATT	470 GGAGCTAGAC	480 Agctcgagct	490 CAGGAGGAAG	500 AAGAGAGAGA	500
1 - F 2 R 2 2 8 - F 2 R 2	501	510 GCTAGCTGCT	520 Agggtttcca	530 TCGGATTTGG	540 TTTTTTATTT	550 TCTTTTTGTT	550
1 - F 2 R 2 2 8 - F 2 R 2	551	560 TCTTGTGTGT	570 GTTTTGATGG	580 ATCAGAGCTT	590 TGGGAATCTT	600 GGAGGAGGAG	600 600
1-F2R2	601 601	610 GAGGAGCAGG	620 GGGGAGCGGC	630 AAGGCGGCGG	640 CGTCGTCGTT	650 CCTGCGCTGC	650
1-F2R2	651	660 CGCTGTCCAC	670 GCGGCGGCGG	680 CCACCGCGTA	690 CTACGGCACG	700 CCGCTCGCCT	700
1-F2R2	701	710 TGCACCAGGC	720 GGCGGCCGCG	730 GCTGGCCCGT	740 CGCAGTACCA	750 CGGTCACGGT	750
1-F2R2	701	760 CACCCCCACC	770 Acggcggcgg	780 CCACCACCAC	790 Agcaagcacg	800 CGGCGCCGGT	800
28-F2R2	751 801	810 GGTGGGGAGA	820 TCTCGGCGGC	830 GGAGGCCGAG	840 TCCATCAAGG	850 CCAAGATCAT	800 850
28-F2R2	801 851	860 GGCGCACCCC	870 CAGTACTCCG	880 CCCTCCTCGC	890 AGCCTACCTC	900 Gactgccaga	850 900
28-F2R2	851 901	910 AAGTATATAC	920 GCTCGATTAA	930 TTCTTCTCCG	940 ATTTTGTTGA	950 ACAAAATACT	900 950
28-F2R2	901 951	960 CCGTAGTAAT	970 TATCTATCGA	980 TCATATATAT	990 CACTGCAATT	1000 TTGATCCATC	950
1 - F 2 R 2	951	1010 CATCCATCCA	1020 GGTCGGAGCG	1030 CCGCCGAGGT	1040 GCTGGAGAGC	1050 TGACGCCACG	1000
1 - F 2 R 2	1001	1060 GCGCAAAGCT	1070 GACGCCCGCC	GAGGT 1080 TCCCGGCCGC	GCTGGAGAGC 1090 CACGACGCGC	IGACGCCACG 1100 GCGACCCGGA	1050
28-F2R2	1051	GCGCAAAGCT 1110 GCTCGACCAG	6AC6CCC6CC 1120 11C	1130	CACUACSCOC 1140	GCGACCCGGA 1150	1100
28-F2R2	1101	GCICGACCAG	1:1:04				1150

Fig 45. A deletion occurred in d6 allele in A28 strain.

 $\overline{}$

Χħι