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Abstract

One of the paradigms in modern cosmology is an early accelerated ex-
pansion of the universe, called “cosmic inflation”, before the big bang.
In the era of gravitational astronomy after the discovery of GW150914,
there is a growing hope that a detection of primordial gravitational
waves (PGWs), emerging from the quantum nature of spacetime dur-
ing the early accelerated expansion, will be carried out before long by
future-planned laser-interferometer experiments in space such as LISA,
DECIGO/B-DECIGO and Big Bang Observer, and it will serve as a
direct evidence of the occurrence of inflation. If there was a stage pre-
ceding inflation, it is well anticipated that the spacetime then was fairly
anisotropic and/or inhomogeneous with a magnitude of the order of the
energy scale of unified theories, and the dynamics of cosmic inflation
lead to homogeneous, isotropic expansion as partly proved by Wald’s
cosmic no-hair theorem. The aim of my study is to argue that one
could read the pre-inflationary initial anisotropy off from directional
variations of PGWs. In this thesis, we attempt to perform theoreti-
cal/numerical calculations of PGWs in triaxially anisotropic Kasner–de
Sitter spacetimes, which represents a homogeneous but anisotropic uni-
verse of Bianchi type-I, isotropized by a positive cosmological constant
Λ . Quantization in such an anisotropic background has been argued to
be problematic due to the presence of an initial singularity where the
anisotropy diverges. We circumvent this difficulty by introducing “the
time for quantization” after the singularity where certain adiabatic con-
ditions for the fields are met, so that the standard procedure of second
quantization can be carried out. We demonstrate that our prescription
for determining the quantum energy spectrum is useful in making phys-
ically meaningful predictions for the primordial gravitational waves in
triaxially anisotropic Kasner–de Sitter backgrounds. As a sanity check,
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it is confirmed that, with a moderate assumption on the choice of the
quantum state, the power spectrum and distribution of PGWs on suf-
ficiently short wave-length scales recover the one for de Sitter inflation,
namely, scale invariant and isotropic. Moreover, we perform a detailed
analysis of the directional dependence of the time evolution of PGWs.
As a result, it is found that the predicted angular distribution map of
the growth factor of PGWs on large scales exhibits topologically distinc-
tive patterns according to the degree of the pre-inflationary anisotropy.
Such a qualitative topological nature of the sky-map of the growth fac-
tor should have impacts on the final intensity of PGWs. Particularly,
the regions where our quantization prescription is ineffective could cor-
respond to greater growths, which might serve as a potential probe for
the pre-inflationary initial anisotropy with future all-sky observations
of gravitational waves. The success of observation of such topological
nature would be not only useful for searching the initial anisotropy but
also be a proof of the presence of a “pre-inflation” stage of the universe.
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Preface

Organization of this thesis: Chapter 1 reviews some of the modern paradigms in the
research fields of cosmology and astrophysics and introduces the whole purpose of the
studies presented in this thesis. In particular, the theoretical and observational motiva-
tions for studying the state of the extremely early universe preceding cosmic inflation,
pre-inflationary state, are presented. In Chapter 2, we show derivation of gravitational
wave equations in the Kasner–de Sitter cosmological model, a (pre-)inflation model with
a primordial anisotropy, where this part is mostly based on Reference [PPU07]. In
Chapter 3, we consider quantization of primordial gravitational waves, suggesting a pre-
scription for circumventing the initial Kasner singularity. In Chapter 4, we perform
detailed analyses of directional dependence of the time evolution of tensor fluctuations
in general directions. In Chapter 5, we conclude this thesis.

Notations: Throughout the thesis, we use the natural units with c = ℏ = kB = 8πG =

1 . In general, Greek indices µ, ν, · · · of vectors and tensors run through 0, 1, 2, 3 , while
Latin indices i, j, · · · through 1, 2, 3 . Note, however, that, in Chapters 2–4, λ and λ′ are
used to represent tensor polarizations and a and b for vector polarizations. We employ
the Einstein summation convention, such as

aµ bµ ≡
3∑

µ=0

aµ bµ = a0 b0 + a1 b1 + a2 b2 + a3 b3 ,

AiBi ≡
3∑

i=1

AiBi = A1B1 + A2B2 + A3B3 .

(1)

Brackets are used to denote symmetrization and anti-symmetrization of tensor indices
as

T(ij) ≡
1

2
(Tij + Tji) , T[ij] ≡

1

2
(Tij − Tji) . (2)
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We will use the arrow notation to denote spatial contravariant vectors such as V⃗ ≡
(V 1, V 2, V 3) . The Minkowski spacetime metric is ηµν ≡ diag(−1, 1, 1, 1) . The sign
convention for the Riemann tensor of a metric gµν is Rµνρσ = 1

2
∂ν∂ρgµσ + ... .

Declaration: This thesis includes materials presented in the following two papers co-
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Chapter 1

Introduction

1.1 Standard cosmology, big bang and its problems

The idea of the big-band theory [Gam46] is that the universe expanded from a very high-
density and high-temperature state, which is based on General Relativity and the cosmo-
logical principle, i.e., an assumption that the universe is isotropic and homogeneous on
large scales. In this theory, the geometry of the universe is described by the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric [Fri22; Lem27; Rob35; Rob36a; Rob36b;
Wal37] given by

ds2 = −dt2 + a(t)2 γij dx
i dxj , (1.1)

where a is the scale factor and γij is the 3-metric for a homogeneous and isotropic space.

The big-bang theory enjoyed great success in explaining important observational
facts, the Hubble–Lemaître law [Lem27; Hub29], big-bang nucleosynthesis (BBN), i.e.,
the light-element abundances at present [Pit+18], and the isotropic cosmic microwave
background (CMB) [PW65; Fix+96].

However, at the same time, the big-bang theory was suffering from a few serious
problems as briefly explained below.

The horizon problem: From the CMB observations [PW65; Fix+96], the observable
universe is almost isotropic and homogeneous in the sky to a precision of O(10−5) . On
the other hand, the whole sky as seen by us is much larger than the section of the particle
horizon at the epoch of last scattering of CMB photons, and any two points separated
by a Hubble distance at a certain time could not have had causal relationship in the

1



2 Introduction

past. This would mean that all the patches of the universe should have the same initial
condition to a precision of O(10−5), which sounds unnatural.

The flatness problem: The observable universe is almost flat, |ΩK0| ≲ 0.01 [Ala+17;
Agh+18], where ΩK0 is the curvature parameter at the present time. Since ΩK0 ∝
1/(aH)2 , where H ≡ ȧ/a and the dot denotes derivative with respect to t , it can be
found that the the curvature parameter at the epoch of BBN, ΩK(tBBN) , was less than
10−16 , which is unnaturally small.

The magnetic-monopole problem: According to the predictions of certain grand
unification theories (GUTs) of particle physics, magnetic monopoles should be produced
efficiently at phase transitions in the hot early universe. However, they have not been
found experimentally to date.

These problems are unavoidable within the standard big-bang theory, where it is
assumed that the universe was dominated by radiation or matter components at all
times up to now, so the universe always underwent decelerated expansion.

1.2 Cosmic inflation

The basic concept of cosmic inflation [Gut81; Sat81] was originally proposed as a pos-
sible solution to the horizon, flatness and magnetic-monopole problems in the big-bang
theory described in the previous section. Inflation is generically characterized as being a
period of accelerated expansion preceding the hot big bang. The minimal mathematical
requirement for the occurrence of inflation is ä > 0, where the dot denotes derivative
with respect to t . The most generic class of inflation is of the power-law type, whose
scale-factor grows in time as a ∝ tβ with β > 1, which can be supported by a slow-rolling
scalar field. Another special but typical class is the de Sitter solution [de 17; de 18] with
a ∝ e

√
Λ/3 t realized in the presence of a positive cosmological constant Λ .

If inflation occurred, it could stretch the particle horizon at that moment beyond
our event horizon at the present time. Also, the accelerated expansion can suppress the
curvature parameter. Moreover, the number density of the magnetic-monopole at the
present time can become negligibly small. If the energy-scale of inflation is ∼ 1015GeV,
then the required e-fold is N ≳ 60 for the consistency with the observations.

Just after, it was realized that the quantum nature of inflation could even work
as the seed of the structures present in the late-time universe [Haw82; Sta82; GP82;
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BST83]. Indeed, inflation has been evidenced by the observations of the various struc-
tures in the universe made in the past decades including the nearly scale-invariant
power spectrum of the matter power spectrum spanning the scales from CMB to galaxy
scales [Ade+16b; Ala+17; Agh+18] and the anisotropy of the CMB [Smo+92; Ben+13;
Ade+16b; Agh+18].

The inflationary theory has established its status as a paradigm of modern cosmology.

1.3 Primordial gravitational waves from inflation

A subject currently attracting a particular attention in this field is the search for the
primordial gravitational waves (PGWs) emerging from the quantum nature of spacetime
during inflation [MC81], which is thought to be a direct evidence of the occurrence of
inflation. Detection of PGWs, indirect or direct, is considered to be a decisive evidence
of the occurrence of primordial inflation.

Indirect search for PGWs is indeed one of the purposes of measuring the B-mode
polarizations in the CMB [SZ97; KKS97a; KKS97b], but its detection has not yet been
accomplished. Past and ongoing projects for CMB B-mode polarization measurement
at low multipoles include POLARBEAR [Ade+14a], ACTpol [Nae+14], BICEP2/Keck
array and Planck [Ade+15] (see also [Ade+14b]), and SPTpol [Kei+15]. Many future
experiments are also planned, such as POLARBEAR-2 and Simons Array [Suz+16],
and LiteBIRD [Mat+14]. Several constraints on tensor perturbations from the current
bound on the CMB B-mode have been obtained in [Ade+15; Ade+16a; Agh+18].

Meanwhile, there has been a growing hope for directly detecting the PGWs since
the great success of observing gravitational waves from binary celestial bodies by the
LIGO and Virgo collaborations [Abb+16b; Abb+16a; Abb+17a; Abb+17b; Abb+17c;
Abb+17d]. Actually, direct detection of such PGWs in the low-frequency bands is one
of the ultimate goals of future-planned laser-interferometer experiments in space such as
LISA [AS+12], DECIGO/B-DECIGO [SKN01; Nak+16] and Big Bang Observer [CC05].
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1.4 Anisotropic pre-inflation: beyond the inflation

paradigm

Despite the bunch of observational successes, the origin of inflation has been left as a
deep mystery. The well-established standard model (SM) of particle physics is consid-
ered not to answer this question. Rather, there are hopes that, at such high-energy
regimes relevant to inflation, some elementary particle theory beyond SM, such as grand
unification theories (GUTs) or superstrings, can come into play and be responsible for
the mechanism of inflation.

At the same time, one of the next goals beyond confirming the occurrence of infla-
tion should be determination of its initial state. Since inflation is not a truly eternal
phenomenon, there must be some moment at which it set in. This is not necessarily
the “beginning of the universe” and it is even anticipated that there were preceding
pre-inflationary stages.

There is a general expectation that there were anisotropies and/or inhomogeneities
of order the energy scale of unified theories like GUTs or superstrings. Investigations of
early anisotropies may bring us useful information to construct the theory of elementary
particles beyond SM and even quantum gravity. Then, what is to be understood is how
the universe has evolved into the currently observed homogeneous and isotropic state.

A general expectation is that the current geometry of the universe, well approximated
by the the FLRW metric (1.1) over a Hubble patch, was realized by inflation. Apart
from homogeneity, Wald’s cosmic no-hair theorem [Wal83] states that a homogeneous but
anisotropic universe inevitably evolve towards isotropic de Sitter space in the presence
of a (large enough) positive cosmological constant Λ . The cosmological models with an
anisotropic space are classified into the so-called Bianchi types [EM69].

Although the primordial anisotropies are not supposed to persist after inflation, it is
generically expected that they would have impacts on the evolution of cosmological per-
turbations. Indeed, several observational signatures of an anisotropic pre-inflation were
discussed in [GCP07; GKP08; PPU08]. Among others, a remarkable finding is that
amplification of gravitational waves occurs during the pre-inflationary Kasner regime
[GKP08; KUP11], whose efficiency varies with the direction in the sky. In particular,
in [GKP08], Gümrükçüoğlu et al. investigated such gravitational waves from an infla-
tionary background driven by a scalar field. However, Gümrükçüoğlu et al.’s analysis in
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[GKP08] was restricted to a particular background with axisymmetry. In fact, there is
an initial singularity in the presence of general, “triaxial” anisotropy, where Weyl tensor
squared diverges. The presence of singularity lies as a major obstacle when attempting
to obtain reliable predictions from any calculations because identification of the unique
quantum vacuum state is rendered difficult as discussed in [GCP07; PPU08]. In this
sense, understanding of the quantum nature of anisotropic universe should be considered
still at an immature stage.

1.5 Purpose of the thesis

The purpose of the thesis is to give further insights into the connection between direction-
dependent gravitational waves and primordial pre-inflationary anisotropies. In order to
accomplish this, we take the Kasner–de Sitter metric as a simpler background in which
initially anisotropic expansion of space is isotropized due to a cosmological constant
Λ rather than a scalar field. As analyzed in [GKP08; KUP11], the amplification of
gravitational waves originates from an instability in the tensor sector and we expect even
our simple model captures its essential features. This simple model also allows us to
generate the all-sky map of gravitational-wave intensity from which we could decode the
degree of the primordial anisotropy. Moreover, we discuss foundations of quantizing fields
in the presence of a general triaxial anisotropy in order to derive reliable predictions.
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Chapter 2

Gravitational waves equations in
anisotropic universe

In this chapter, we review the formalism for the study of PGWs originating from
anisotropic early universe and give its specific form in the case of the Kasner–de Sitter
(KdS) background. In Section 2.1, we describe the background cosmological setup mod-
eled by the KdS solution. In Section 2.2, we review the basic equations for cosmological
perturbations in general Bianchi type-I spacetime formulated in [PPU07]. In Section 2.3,
we give the specific form of the PGWs equations in KdS.

2.1 Kasner–de Sitter pre-inflation model

2.1.1 Bianchi type-I metric

In cosmic time, the general Bianchi type-I metric in comoving coordinates is given by

ds2 = −dt2 +
3∑

i=1

X2
i (t) (dx

i)2 . (2.1)

The xi-axes will be referred to as principal axes of anisotropic expansion. The metric
(2.1) includes the Friedmann–Lemaître universe as a subcase when X1 = X2 = X3 . We
define the average scale factor as

a(t) = [X1(t)X2(t)X3(t)]
1/3 , (2.2)

7



8 Gravitational waves equations in anisotropic universe

and it characterizes the volume expansion. From this definition, it follows that we can
recast the metric (2.1) by Xi → a eβi as

ds2 = −dt2 + a2(t) γij dx
i dxj , (2.3)

where γij is the induced metric defined by

γij = exp (2βi(t)) δij , (2.4)

with the constraint

3∑
i=1

βi = 0 . (2.5)

Note that, here and hereafter, the subscript of βi is merely a label, not tensor index of a
vector, which is not subject to the Einstein summation rule. The inverse of the induced
metric is defined by

γij = exp (−2βi(t)) δ
ij , (2.6)

where clearly γik γkj = δij . The indices of spatial tensors will be raised and lowered
by γij and γij . The isotropic expansion of the space is characterized by the Hubble
parameter defined as

H ≡ ȧ

a
, (2.7)

where a dot denotes differentiation with respect to t, and the anisotropy of the expansion
is characterized by the shear tensor defined as

σ̂ij ≡
1

2
γ̇ij . (2.8)

Introducing the conformal time as dt = a dη , we can recast the metric (2.3) as

ds2 = a2 [−dη2 + γij dx
i dxj] . (2.9)
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In a similar way to that in cosmic time, the comoving Hubble parameter H is defined
by

H ≡ a′

a
, (2.10)

where a prime denotes differentiation with respect to η , and the conformal shear tensor
σij is defined by

σij ≡
1

2
γ′ij . (2.11)

Hereafter we shall refer to H as Hubble and σij as shear. As is clear from the definition,
the shear tensor is traceless, σi

i = 0, and we define the scalar shear as

σ2 ≡ σij σ
ij =

3∑
i=1

(β′
i)

2 . (2.12)

2.1.2 Geometric quantities and background Einstein equation

The geometric quantities in a Bianchi type-I spacetime are as follows. The non-vanishing
components of the Christoffel symbols are given by

Γ0
00 = H , Γ0

ij = H γij + σij , Γi
0j = H δij + σi

j . (2.13)

The non-vanishing components of the Riemann tensor are given by

R0i0j = −a2
(
H′ γij +H σij + (σij)

′ − σjk σ
k
i

)
,

Rijkl = 2a2
(
H2 γi[k γl]j +H γi[k σl]j +H σi[k γl]j + σi[k σl]j

)
.

(2.14)

The non-vanishing components of the Ricci tensor are given by

R00 = −3H′ − σ2 ,

Rij =
(
H′ + 2H2

)
γij + 2H σij + (σij)

′ − 2σik σ
k
j .

(2.15)

The Ricci scalar is given by

R = a−2
(
6H′ + 6H2 + σ2

)
. (2.16)
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The non-vanishing components of the Einstein tensor are given by

G00 = 3H2 − 1

2
σ2 ,

Gij = −2H′ γij −H2 γij + 2H σij + (σij)
′ − 1

2
σ2 γij − 2σik σ

k
j .

(2.17)

In anisotropic spacetimes, the Weyl tensor no longer vanishes. The non-vanishing com-
ponents of the Weyl tensor are given by

C0i0j = a2
[
−1

2
(σij)

′ +
1

3
σ2 γij

]
,

Cijkl = a2
[
2σi[k σl]j − γi[k (σl]j)

′ + γj[k (σl]i)
′ + 2γi[k σl]m σ

m
j − 2γj[k σl]m σ

m
i

− 1

3
γi[k γl]j σ

2

]
,

(2.18)

and we define a Weyl-curvature invariant as

C2 ≡ Cµνρσ C
µνρσ

= a−4

[
2σi′

j σ
j ′
i + 8σi′

j (σ
2)j i + 2(σ2)ij (σ

2)j i +
1

3
(σ2)2

]
.

(2.19)

If a cosmological constant Λ is the only source for the cosmological dynamics, the
Einstein equation is

Gµ
ν = −Λ δµν . (2.20)

The independent equations are then given by

H2 =
a2 Λ

3
+

1

6
σ2 , H′ =

a2 Λ

3
− 1

3
σ2 , (σi

j)
′ = −2H σi

j , (2.21)

and we obtain a relation

H′ = H2 − 1

2
σ2 . (2.22)

2.1.3 Kasner–de Sitter solution

Hereafter we consider the so-called Kasner–de Sitter (KdS) metric as a simple model
for an inflationary universe with an initial anisotropy. It is an exact solution to the
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cosmological equations (2.21) , whose line element is given by

ds2 = −dt2 + a2iso sinh2/3 (3HΛt)
3∑

i=1

tanh2qi

(
3HΛt

2

)
(dxi)2 , (2.23)

where aiso is an arbitrary positive constant, HΛ ≡
√
Λ/3 , and the three exponents qi

(i = 1, 2, 3) satisfy the constraints

3∑
i=1

qi = 0 ,
3∑

i=1

q2i =
2

3
. (2.24)

We define the average scale factor a(t) and the spatial metric γij(t) by

a(t) ≡ aiso sinh1/3 (3HΛt) , γij(t) ≡ tanh2qi

(
3HΛt

2

)
δij . (2.25)

Recall that the conformal time η is defined by dη = dt/a(t) and a prime denotes dif-
ferentiation with respect to η . Then, the average Hubble parameter H and the shear
tensor σij are respectively given as

H ≡ a′

a
= aisoHΛ

cosh(3HΛt)

sinh2/3(3HΛt)
,

σij ≡
1

2
γ′ij = 3qi aisoHΛ

tanh2qi
(
3HΛt
2

)
sinh2/3(3HΛt)

δij .

(2.26)

Clearly, this metric belongs to the class of Bianchi type-I cosmological model [EM69].

At earlier times with t ≪ H−1
Λ , the metric behaves like a vacuum Kasner solution

[Kas21]

a(t) ≃ aiso (3HΛt)
1/3 , γij(t) ≃

(
3HΛt

2

)2qi

δij , (2.27)

while at later times with t≫ H−1
Λ , the metric asymptotes to a de Sitter solution [de 17;

de 18],

a(t) ≃ 2−1/3 aiso e
HΛt , γij(t) ≃ δij . (2.28)

Hence the KdS metric describes a universe evolving from an anisotropic initial phase
to an isotropic inflation driven by Λ . The isotropization is achieved around the time
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tiso ≡ H−1
Λ and the constant aiso serves as the normalization of the scale factor at the

beginning of the isotropic de Sitter inflation.

This simple (pre-)inflationary model has some flaws as a realistic setup for the early
universe such as lacking of mechanisms to realize a decline of the expansion rate and to
exit from the inflationary phase, i.e., reheating. In what follows, we assume some appro-
priate mechanism, not described here, to work in ending inflation at later stage, while the
metric at earlier stages is approximated by (2.23). More precisely, what we assume on
observational grounds is that the superhorizon fluctuations re-entering the cosmological
horizon at late times after reheating have exited the horizon at the early era when the
metric is well approximated by (2.23). Since the presence of global anisotropies on cosmo-
logical scales is observationally not favored, we should require aisoHΛ ≲ a(t0)H0 , where
t0 ≈ 13.8Gyr is the present age of the universe and H0 = H(t0) ≈ 67.4 km s−1Mpc−1

[Agh+18] is the Hubble constant. Note that this condition is equivalent to the one for
evading the horizon and flatness problems.

It is useful to introduce an angular parameter Θ to express the exponents qi as

q1 =
2

3
sin

(
Θ− 2π

3

)
, q2 =

2

3
sin

(
Θ− 4π

3

)
, q3 =

2

3
sinΘ . (2.29)

The parameter Θ quantifies the degree of anisotropy of pre-inflationary cosmological ex-
pansion. With no loss of generality, we can restrict our attention to a range 7π

6
≤ Θ ≤ 9π

6
,

within which the order of the exponents is q1 ≥ q2 ≥ q3 , see Figure 2.1. Any KdS metric
is equivalent, up to relabeling the axes and/or reversing their orientations, to one with
the value of Θ lying in the above range. The expansion of the universe is axisymmetric
for Θ = 7π

6
((q1, q2, q3) = (2

3
,−1

3
,−1

3
)) (“oblate”) and for Θ = 9π

6
((q1, q2, q3) = (1

3
, 1
3
,−2

3
))

(“prolate”). In the following analysis we shall often take Θ = 8π
6

as a fiducial value, for
which the anisotropy exponents are (q1, q2, q3) = ( 1√

3
, 0,− 1√

3
) .

An important property of the KdS metric is that it has an initial singularity at t = 0 ,
where the Weyl-curvature invariant Cµνρσ C

µνρσ diverges, unless Θ = 7π
6

; Indeed, it is
represented in terms of Θ as

C2 = Cµν
ρσ C

ρσ
µν = 48H4

Λ

1 + cosh2(3HΛ t) + 2 sin 3Θ cosh(3HΛ t)

sinh4(3HΛ t)
. (2.30)

To avoid this Kasner singularity, we have to introduce an initial time tini > 0 . Moreover,
as we shall see, its existence will play an essential role in making the ordinary prescription
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Figure 2.1: Values of qi for 7π
6 ≤ Θ ≤ 9π

6 .

for quantization of fields impracticable. How to circumvent this difficulty will be the
main subject of Chapter 3.

2.2 Gauge-invariant formalism for cosmological

perturbations in general Bianchi type-I spacetime

In this section, before focusing on the specific inflation model, we will show basic PGWs
equations in general Bianchi type-I spacetime [EM69]. Our calculations rely on the
gauge-invariant formulation of perturbations in Bianchi type-I cosmology developed by
Pereira et al. [PPU07]. Qualitative differences of calculations from that in the isotropic
case are as follows: (a) The norm and direction of wavevectors are time-dependent, and
(b) the gauge invariant variables are no longer composed independently of scalar, vector
and tensor components of perturbed variables due to the presence of shear in background.
At the end of this section, we show polarization decomposition of components of the
first-order Einstein tensor.

2.2.1 Gauge invariant variables and first-order Einstein tensor

We apply the gauge-invariant formulation of cosmological perturbations in Bianchi type-
I models developed by Pereira et al. [PPU07]. In this formalism, the general perturbed
metric gµν , decomposed into the background and the perturbations as gµν = ḡµν + δgµν ,
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is given by

(ḡµν + δgµν) dx
µ dxν = a(η)2

[
−(1 + 2A) dη2 + 2Bi dx

i dη + (γij + hij) dx
i dxj

]
,

(2.31)

where the (0i) and (ij) components are respectively decomposed into the scalar, vector,
and tensor variables as

Bi = ∂iB + B̄i , hij = 2 (γij +H−1 σij)C + 2∂ijE + 2∂(iEj) + 2Eij , (2.32)

where the vector and tensor variables satisfy ∂iB̄
i = ∂iE

i = ∂iE
i
j = Ei

i = 0 . Recall
that the induced metric γij and its inverse γij are used to raise and lower the indices of
the spatial vectors and tensors.

In order to construct gauge-invariant variables, let us consider an active transforma-
tion of the coordinate system. The coordinates of any point change according to

xµ → x̃µ = xµ − ξµ(xν) , (2.33)

where ξ is a vector field as small as the perturbations and the right-arrow means the
active transformation of the coordinate system. Accordingly, the spacetime metric trans-
forms as

gµν → g̃µν = gµν + Lξgµν , (2.34)

where Lξgµν is the Lie derivative of gµν along ξ . It follows that

δgµν → δgµν + Lξḡµν (2.35)

at first order in the perturbations. The vector field ξ can be decomposed into a scalar
and vector part as

ξ0 = T (xi, η) , ξi = ∂iL(xi, η) + Li(xj, η) , (2.36)
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with ∂iLi(xi, η) = 0, where ∂i ≡ γij ∂j . The transformations of the metric perturbations
are given as

A→ A+ T ′ +H T ,

B → B − T + L′ ,

C → C +H T ,

E → E + L ,

(2.37)

for the scalar variables, and as

B̄i → B̄i + γij (L
j)′ − 2σij ∂

jL ,

Ei → Ei + Li ,
(2.38)

for the vector variables. The tensor variable is gauge-invariant,

Eij → Eij . (2.39)

From the gauge transformations (2.37), we can construct a set of gauge-invariant
variables for the scalar sector defined by

Φ ≡ A+
1

a
[a (B − E ′)]

′
, (2.40)

Ψ ≡ −C −H (B − E ′) . (2.41)

As is clear from above, only two degrees of freedom remain, while the other two are
absorbed. On the other hand, from the gauge transformations (2.38), a gauge invariant
vector perturbation is found as

Φi ≡ B̄i − γij (E
j)′ + 2σij ∂

jE . (2.42)

When the induced metric γ is time independent and hence σij = 0, it is obvious that these
variables reduce to the standard Bardeen variables defined in the Friedmann–Lemaître
case [Bar80].

We will work in the conformal Newtonian gauge defined by the conditions

B = E = Ei = 0 . (2.43)
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Then the gauge-invariant variables are reduced as

Φ = A , Ψ = −C , Φi = Bi . (2.44)

After some calculations, the components of the first-order Einstein tensor in terms
of the gauge-invariant variables are eventually given as

a2 δG0
0 = σj

iE
i′
j + 6HΨ′ − 2△Ψ+

σi
j

H
∂j iΨ− σj

i

(
σi

j

H
Ψ

)′

+ 6H2Φ− σ2Φ− σi
j ∂iΦ

j , (2.45)

a2 δG0
i = σk

j ∂iE
j
k − 2σk

j ∂kE
j
i − 2∂iΨ

′ + 3σj
i ∂jΨ+ ∂j

(
σj

i

H
Ψ

)′

− σ2

H
∂iΨ

− 2H ∂iΦ + σj
i ∂jΦ +

1

2
△Φi , (2.46)

a2 δGi
j = Ei′′

j + 2HEi′
j −△Ei

j + 2σi
k E

k ′
j − 2σk

j E
i′
k

+ 2
(
σi′

k + 2H σi
k

)
Ek

j − 2
(
σk ′

j + 2H σk
j

)
Ei

k − σn
mE

m′
n δ

i
j

+ 2δij Ψ
′′ + 4H δij Ψ

′ − 3σi
j Ψ

′

−
(
σj

i

H
Ψ

)′′

− 2H
(
σj

i

H
Ψ

)′

+ σn
m

(
σm

n

H
Ψ

)′

δij

− δij △Ψ+ ∂ijΨ+
σj

i

H
△Ψ− σk

j

H
∂ikΨ− σi

k

H
∂kjΨ+ δij

σm
n

H
∂nmΨ

+ 2H δij Φ
′ − ∂ijΦ + δij △Φ + 2 (2H′ +H2) δij Φ

− σi
j Φ

′ − 2 (σi′
j + 2H σi

j) Φ + σ2 δij Φ

− 1

2
∂iΦ′

j −
1

2
γik ∂jΦ

′
k + σi

k ∂
kΦj + σk

j ∂kΦ
i + σn

m ∂nΦ
m δij

−H ∂iΦj −H ∂jΦ
i , (2.47)

where we defined ∂ij ≡ γik ∂k∂j and △ ≡ γij ∂i∂j .

2.2.2 Time-dependent orthogonal basis

As usual, we will parameterize the harmonic modes of waves by a set of constants
(k1, k2, k3), which are regarded as the covariant components of a wavevector in the
(x1, x2, x3) comoving coordinate frame. Then, any function of spacetime can be de-
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composed by a Fourier transformation as

f(xj, η) =

∫
d3ki

(2π)3/2
f̂(ki, η) e

ikix
i

, (2.48)

with

f̂(kj, η) =

∫
d3xi

(2π)3/2
f(xi, η) e−ikix

i

. (2.49)

What is unusual is that, on an anisotropic spacetime, the contravariant components
ki ≡ kj γ

ij are no longer constant. Hereafter, we assume that the early anisotropic expan-
sion of the universe is isotropized through inflation. Then the contravariant wavevector
k⃗ ≡ (k1, k2, k3) changes its direction and norm,

√
ki ki =

√
e−2β1 k21 + e−2β2 k22 + e−2β3 k23 , (2.50)

during the anisotropic regime, and after the universe is isotropized, it comes to coincide
with its covariant dual as limt→∞ k⃗ = (k1, k2, k3) .

It is useful to introduce time-dependent polar angles (β, γ) to parameterize the nor-
malized wavevector as [PPU08]

⃗̂
k ≡ k⃗√

ki ki
=


e−β1 sin β cos γ

e−β2 sin β sin γ

e−β3 cos β

 . (2.51)

The orthonormal polarization vector basis perpendicular to ⃗̂k is introduced as

e⃗(1) ≡


e−β1 (cos β cos γ cosα− sin γ sinα)

e−β2 (cos β sin γ cosα + cos γ sinα)

−e−β3 sin β cosα

 ,

e⃗(2) ≡


−e−β1 (cos β cos γ sinα + sin γ cosα)

−e−β2 (cos β sin γ sinα− cos γ cosα)

e−β3 sin β sinα

 ,

(2.52)
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where the arbitrary angle α represents the rotation degree of freedom of (e⃗(1), e⃗(2)) around
⃗̂
k . As in [PPU08], we determine α by imposing a condition

α′ = −γ′ cos β . (2.53)

Accordingly, the orthonormal tensor basis is defined in terms of the vector basis as

ϵ+ij ≡
e
(1)
i e

(1)
j − e

(2)
i e

(2)
j√

2
, ϵ×ij ≡

e
(1)
i e

(2)
j + e

(2)
i e

(1)
j√

2
, (2.54)

where we will refer to them as the “+” and “×” modes, respectively.

2.2.3 Mode decomposition

We define a projection operator onto the subspace perpendicular to ki as

Pij ≡ γij − k̂i k̂j = e
(1)
i e

(1)
j + e

(2)
i e

(2)
j (2.55)

satisfying

P i
j P

j
k = P i

k , P i
j k

j = 0 , P ij γij = 2 . (2.56)

Using this operator, any three-dimensional vector Vi and any three-dimensional sym-
metric tensor field Tij are decomposed as

Vi = (k̂j k̂i + P j
i)Vj ≡ k̂i V∥ + ⊥Vi , (2.57)

and

Tij = (k̂k k̂i k̂
l k̂j + k̂k k̂i P

l
j + P k

i k̂
l k̂j + P k

i P
l
j)Tkl

≡ k̂i k̂j T∥∥ + k̂i ⊥T∥j + k̂j ⊥Ti∥ + ⊥Tij ,
(2.58)

respectively, where we introduced abbreviated notations such that the subscript ∥ rep-
resents contraction with k̂i and the subscript ⊥ represents projection onto the two-
dimensional surface by P i

j . If ∥ and ⊥ exist together in an expression of a tensor, the
contraction should be done before the projection.

Projected two-dimensional vectors and symmetric tensors can be decomposed into
their scalar, vector and tensor modes. A vector satisfying ki Vi = 0 can be expanded by
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the vector basis eia as

V i =
∑

a=(1),(2)

Va e
i
a , Va ≡ Vi e

i
a . (2.59)

The number of independent components of a symmetric tensor Tij satisfying ki Tij =

Ti
i = 0 is two, and therefore Tij can be decomposed by the tensor basis ϵλij as

Tij =
∑

λ=+,×

Tλ ϵ
λ
ij , Tλ ≡ Tij ϵ

ij
λ . (2.60)

2.2.4 Decomposition of the shear tensor

Let us decompose the shear tensor σij . At the beginning, we make (2+1) decomposition,

σij = k̂i k̂j σ∥∥ + 2k̂(i⊥σj)∥ + ⊥σij . (2.61)

Since σij is traceless, σii = σ∥∥ +P ij
⊥σij = 0 , it is useful to rearrange the expression as

a sum of manifestly traceless terms as

σij =

(
k̂i k̂j −

1

2
Pij

)
σ∥∥ + 2k̂(i⊥σj)∥ +

(
⊥σij −

1

2
Pij P

kl
⊥σkl

)
. (2.62)

Thus, by defining the scalar, vector, and tensor components as

σ(S) ≡ σij k̂
i k̂j = σ∥∥ ,

σ(V)
a ≡ σij k̂

(i ej)a = ⊥σi∥ e
i
a ,

σ
(T)
λ ≡ σij ϵ

ij
λ = ⊥σij ϵ

ij
λ ,

(2.63)

we can decompose the shear tensor σij as

σij =
3

2

(
k̂i k̂j −

1

3
γij

)
σ(S) + 2k̂(i

∑
a

eaj) σ
(V)
a +

∑
λ

σ
(T)
λ ϵλij (2.64)

and σ2 as

σ2 =
3

2

(
σ(S)
)2

+ 2
∑
a

(
σ(V)
a

)2
+
∑
λ

(
σ
(T)
λ

)2
. (2.65)
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For the time derivatives, we will use similar notations

(σ′)(S) ≡ (σi
j)

′ k̂i k̂
j , (σ′)(V)

a ≡ (σi
j)

′ k̂i e
j
a , (σ′)

(T)
λ ≡ (σi

j)
′ ϵλ

j
i ,

(σ′′)(S) ≡ (σi
j)

′′ k̂i k̂
j , (σ′′)(V)

a ≡ (σi
j)

′′ k̂i e
j
a , (σ′′)

(T)
λ ≡ (σi

j)
′′ ϵλ

j
i .

(2.66)

From Equation (2.21), we obtain the time derivatives of the shear components as

(σ(S))′ = −2H σ(S) − 2
∑
a

(
σ(V)
a

)2
,

(σ(V)
a )′ = −2H σ(V)

a +
3

2
σ(S) σ(V)

a −
∑
λ,b

Mλ
ab σ

(V)
b σ

(T)
λ ,

(σ
(T)
λ )′ = −2H σ

(T)
λ + 2

∑
a,b

Mλ
ab σ

(V)
a σ

(V)
b

(2.67)

and as

(σ′)(S) = −2H σ(S) ,

(σ′)(V)
a = −2H σ(V)

a ,

(σ′)
(T)
λ = −2H σ

(T)
λ ,

(σ2)′ = −4H σ2 ,

(σi
j)

′′ = (4H2 − 2H′)σi
j ,

(σ′′)(S) = (4H2 − 2H′)σ(S) = (2H2 + σ2)σ(S) ,

(σ′′)(V)
a = (4H2 − 2H′)σ(V)

a = (2H2 + σ2)σ(V)
a ,

(σ′′)
(T)
λ = (4H2 − 2H′)σ

(T)
λ = (2H2 + σ2)σ

(T)
λ .

(2.68)

2.2.5 Decomposition of the first-order Einstein tensor

In this subsection, we show polarization decomposition of the components of the first-
order Einstein tensor. First, we define the vector and tensor gauge-invariant variables
as

Φa ≡ eiaΦi , Φi =
∑
a

eai Φa ,

Eλ ≡ ϵijλ Eij , Eij =
∑
λ

ϵλij Eλ ,
(2.69)
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and we introduce useful notations

ϵλij ≡
∑
a,b

Mλ
ab e

a
i e

b
j , Qi

j ≡ e
(1)
i ej(2) − e

(2)
i ej(1) ,

ζλλ′ ≡ δλ+ δ
×
λ′ − δλ× δ

+
λ′ , Nab ≡ Qij e

i
a e

j
b ,

(2.70)

with

M+
ab =

1√
2

1 0

0 −1

 , M×
ab =

1√
2

0 1

1 0

 . (2.71)

By using these notations, time derivatives of the gauge-invariant variables are given as

Φ′
i =

∑
a

[
Φ′

a e
a
i −

1

2
σ(S) Φa e

a
i + 2σ(V)

a Φa k̂i +
∑
λ,b

σ
(T)
λ Φa Mλ

ab e
b
i

]
, (2.72)

Ei′
j =

∑
λ

[
E ′

λ ϵ
λi

j + EλQ
i
j ζλ(1−λ) σ

(T)
(1−λ) + 2Eλ

∑
a,b

σ
(V)
b Mλ

ab e
i
a k̂j

]
, (2.73)

where

(1− λ) ≡

 × (λ = +)

+ (λ = ×)
. (2.74)

Moreover, their polarization components are given as

k̂i Φ′
i = 2

∑
a

σ(V)
a Φa ,

eia Φ
′
i = Φ′

a −
1

2
σ(S) Φa +

∑
λ,b

σ
(T)
λ Mλ

baΦb ,
(2.75)
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and as

k̂iE
i′
j = 0 ,

k̂i k̂
j Ei′

j = k̂i e
j
aE

i′
j = 0 ,

eai k̂
j Ei′

j = 2
∑
λ,b

σ
(V)
b Mλ

abEλ ,

eai e
j
b E

i′
j =

∑
λ

[
Mλ

abE
′
λ + σ

(T)
1−λ Nab ζλ(1−λ)Eλ

]
,

ϵλ
j
iE

i′
j = E ′

λ ,

ϵλ
j
iE

i′′
j = E ′′

λ + 2ζλ(1−λ) σ
(T)
(1−λ)

∑
λ′

ζλ′(1−λ′) σ
(T)
(1−λ′)Eλ′ .

(2.76)

So far, preparation for the decomposition of the Einstein tensor has completed and
we now show its concrete form.

Decomposition of δG0
0 In Fourier space, Equation (2.45) is expressed as

a2 δG0
0 = σj

iE
i′
j − iσi

j ki Φ
j + 6HΨ′ + 2k2Ψ− σi

j

H
kj ki Ψ− σj

i

(
σi

j

H
Ψ

)′

+ 6H2Φ− σ2Φ .

(2.77)

By substituting the prepared equations into above, δG0
0 is expressed as

a2 δG0
0 =

∑
λ

[
E ′

λ σ
(T)
λ − 2Eλ

∑
a,b

σ(V)
a σ

(V)
b Mλ

ab

]
− i k

∑
a

σ(V)
a Φa

+ 6HΨ′ − σ2

(
Ψ

H

)′

+ k2
(
2− σ(S)

H

)
Ψ− 1

2

(σ2)′

H
Ψ

+ 6H2Φ− σ2Φ .

(2.78)

It is coordinate-transformation-invariant in three-dimensional space and already scalar-
like in terms of rotations of the polarization basis around k⃗ in the two-dimensional
plane.

Decomposition of δG0
i We can decompose δG0

i (2.46) as

δG0
i = k̂i δG

0
∥ + ⊥δG

0
i , (2.79)
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where the k̂-direction component

a2 δG0
∥ = i k

[∑
λ

σ
(T)
λ Eλ − 2Ψ′ +

(
Ψ

H

)′

σ(S) +
(σ(S))′

H
Ψ− σ2

H
Ψ+ 3σ(S) Ψ

− 2HΦ + σ(S) Φ

] (2.80)

is scalar-like, and the projected components

a2 ⊥δG
0
i = −2i k ⊥σ

∥
j E

j
i −

1

2
k2Φi

+ i k ⊥σ
∥
i

(
Ψ

H

)′

+ iP k
i kj (σ

j
k)

′ Ψ

H
+ 3i k ⊥σ

∥
i Ψ+ i k ⊥σ

∥
i Φ

(2.81)

are vector-like in the two-dimensional plane. Moreover, the projected components can
be decomposed into polarization components as

a2 eia ⊥δG
0
i = −2i k

∑
b,λ

Mab σ
(V)
b Eλ −

1

2
k2Φa

+ i k σ(V)
a

(
Ψ

H

)′

+ i k (σ′)(V)
a

Ψ

H
+ 3i k σ(V)

a Ψ+ i k σ(V)
a Φ .

(2.82)

Decomposition of δGi
j We decompose δGi

j (2.47) into the trace part and the trace-
less part as

δGi
j =

1

3
δGk

k δ
i
j + δGi

j , δGk
k = 0 . (2.83)

The trace part is given as

a2 δGk
k = Ek ′′

k + 2HEk ′
k − 3σn

mE
m′

n − i kk Φ′
k + 5iσn

m knΦ
m

+ 6Ψ′′ + 12HΨ′ + 3σn
m

(
σm

n

H
Ψ

)′

+ 2k2Ψ− σm
n

H
kn km Ψ

+ 6HΦ′ − 2k2Φ + 6 (2H′ +H2) Φ + 3σ2Φ ,

(2.84)
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and is represented with the polarization components as

1

3
a2 δGk

k = −
∑
λ

[(
σ
(T)
λ Eλ

)′
− (σ′)

(T)
λ Eλ

]
+ i k

∑
a

σ(V)
a Φa

+ 2Ψ′′ + 4HΨ′ +
1

2
(σ2)′

Ψ

H
+ σ2

(
Ψ

H

)′

+
2

3
k2Ψ− 1

3

σ(S)

H
k2Ψ

+ 2HΦ′ − 2

3
k2Φ + 2

(
2H′ +H2

)
Φ + σ2Φ .

(2.85)

The traceless part is given as

a2 δGi
j = Ei′′

j + 2HEi′
j + k2Ei

j + 2σi
k E

k ′
j − 2σk

j E
i′
k

+ 2
(
σi′

k + 2H σi
k

)
Ek

j − 2
(
σk ′

j + 2H σk
j

)
Ei

k

− 1

2
i ki Φ′

j −
1

2
i γik kj Φ

′
k + iσi

k k
k Φj + iσk

j kk Φ
i − iH ki Φj − iH kj Φ

i

− 3σi
j Ψ

′ − σi′′
j

Ψ

H
− 2σi′

j

(
Ψ

H

)′

− σi
j

(
Ψ

H

)′′

− 2σi′
j Ψ− 2H σi

j

(
Ψ

H

)′

−
(
ki kj −

1

3
δij k

2

)
Ψ− σi

j

H
k2Ψ+

σk
j

H
ki kk Ψ+

σi
k

H
kk kj Ψ

− 2

3
δij

σ(S)

H
k2Ψ+

(
ki kj −

1

3
δij k

2

)
Φ− σi

j Φ
′ − 2

(
σi′

j + 2H σi
j

)
Φ

(2.86)

Moreover, the traceless part δGi
j is decomposed as

δGi
j = k̂i k̂j G∥

∥ + k̂i δG∥
j + k̂j δGi

∥ + ⊥δGi
j , (2.87)
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where the independent components are

a2 δG∥
∥ = 4

∑
λ,a,b

σ(V)
a σ

(V)
b Mλ

abEλ − 2i k
∑
a

σ(V)
a Φa

− 3σ(S) Ψ′ − (σ′′)(S)
Ψ

H
− 2(σ′)(S)

(
Ψ

H

)′

− σ(S)

(
Ψ

H

)′′

− 2(σ′)(S) Ψ− 2H σ(S)

(
Ψ

H

)′

− 2

3
k2Ψ+

1

3

σ(S)

H
k2Ψ

+
2

3
k2Φ− σ(S) Φ′ − 2a2G∥

∥Φ , (2.88)

a2 ⊥δG∥
i = 2 ⊥σ

∥
j ⊥(E

j ′
i) + 2a2 ⊥G∥

j E
j
i −

1

2
i k ⊥Φ

′
i − i kHΦi + i k σ(S) Φi

− 3 ⊥σ
∥
i Ψ

′ − ⊥(k̂j σ
j ′′
i )

Ψ

H
− 2 ⊥(k̂j σ

j ′
i)

(
Ψ

H

)′

− ⊥σ
∥
i

(
Ψ

H

)′′

− 2⊥(k̂j σ
j ′
i)Ψ− 2H ⊥σ

∥
i

(
Ψ

H

)′

− ⊥σ
∥
i Φ

′ − 2a2 ⊥G∥
i Φ (2.89)

and

a2 ⊥δGi
j = ⊥(E

i′′
j ) + 2H ⊥(E

i′
j) + k2Ei

j + 2 ⊥
(
σi

k E
k ′
j

)
− 2 ⊥

(
σk

j E
i′
k

)
+ 2a2 ⊥Gi

k ⊥E
k
j − 2a2 ⊥

(
Gk

j E
i
k

)
+ i ⊥σ

i
∥ kΦj + i ⊥σ

∥
j kΦ

i

− 3 ⊥σ
i
j Ψ

′ − ⊥

(
σi

j

H
Ψ

)′′

− 2H ⊥

(
σi

j

H
Ψ

)′

+
1

3
P i

j k
2Ψ− ⊥σ

i
j

H
k2Ψ− 2

3
P i

j σ
(S) k2

Ψ

H
− 1

3
P i

j k
2Φ− ⊥σ

i
j Φ

′ − 2a2 ⊥Gi
j Φ . (2.90)

The polarization-projected components of ⊥δG∥
i and ⊥δGi

j are given as

a2 eia ⊥δG∥
i = 2

∑
λ,b

σ
(V)
b Mλ

abE
′
λ − 2

∑
λ,b

σ
(V)
b Nab ζλ(1−λ) σ

(T)
(1−λ)Eλ + 2a2 ⊥G∥

j E
j
i e

i
a

− 1

2
i kΦ′

a −
1

2
i k
∑
λ,b

σ
(T)
λ Mλ

abΦb +
5

4
i k σ(S) Φa − i kHΦa

− 3σ(V)
a Ψ′ − (σ′′)(V)

a

Ψ

H
− 2(σ′)(V)

a

(
Ψ

H

)′

− σ(V)
a

(
Ψ

H

)′′

− 2(σ′)(V)
a Ψ− 2H σ(V)

a

(
Ψ

H

)′

− σ(V)
a Φ′ − 2a2 ⊥G∥

i e
i
a Φ (2.91)
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and

a2 ϵλ
j
i δGi

j = E ′′
λ + 2HE ′

λ + k2Eλ − 2ζλ(1−λ) σ
(T)
(1−λ)

∑
λ′

ζλ′(1−λ′) σ
(T)
(1−λ′)Eλ′

− 2
∑
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(
σ(V)
a

)2
Eλ + 2i k

∑
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Mλ
ab σ

(V)
a Φb

− 3σ
(T)
λ Ψ′ − (σ′′)

(T)
λ

Ψ

H
− 2(σ′)

(T)
λ

(
Ψ

H

)′

− σ
(T)
λ

(
Ψ

H

)′′

− 2(σ′)
(T)
λ Ψ− 2H σ

(T)
λ

(
Ψ

H

)′

− σ
(T)
λ

H
k2Ψ

− σ
(T)
λ Φ′ − 2a2 ⊥Gi

j ϵλ
j
i Φ , (2.92)

respectively.

So far, we have completed rewriting each component of the perturbed Einstein tensor
by using the gauge-invariant variables and their polarization components.

2.3 PGWs equations in KdS

Now let us focus on the case of Kasner–de Sitter background. Since there is no matter
source, the first-order Einstein equation is

δGµ
ν = 0 . (2.93)

As we will confirm, the number of dynamical degrees freedom in this case is two.

Now, we perform simplification of the Einstein tensor. The gauge-invariant variables
Φ ,Ψ ,Φa can be all represented by Eλ . To do so, we start to define a useful scalar
variable X as

X ≡ Φ +Ψ+

(
Ψ

H

)′

. (2.94)



Gravitational waves equations in anisotropic universe 27

From this definition and Equation (2.22), we obtain the following expressions

Ψ′ = H(X − Φ)− σ2

2H
Ψ ,

Ψ′′ = H (X ′ − Φ′) + (H2 − σ2) (X − Φ) +
5σ2

2
Ψ .

(2.95)

By using these expressions, we can remove Φ from each component of the linear Einstein
equation δGµ

ν = 0 as follows. In the scalar parts, from Equations (2.78), (2.80), (2.85)
and (2.88),

0 =
∑
λ

[(
σ
(T)
λ Eλ

)′
+ 2H σ

(T)
λ Eλ

]
− i k

∑
a

σ(V)
a Φa

+
(
6H2 − σ2

)
X +

2H− σ(S)

H
k2Ψ , (2.96)

0 =
∑
λ

σ
(T)
λ Eλ − 2HX + σ(S)X , (2.97)

0 = −
∑
λ

[(
σ
(T)
λ Eλ

)′
+ 2H σ

(T)
λ Eλ

]
+ i k

∑
a

σ(V)
a Φa

+ 2HX ′ +
(
6H2 − σ2

)
X +

1

3

2H− σ(S)

H
k2Ψ− 2

3
k2Φ , (2.98)

0 = 4
∑
λ,a,b

σ(V)
a σ

(V)
b Mλ

abEλ − 2i k
∑
a

σ(V)
a Φa

− σ(S)X ′ − 1

3

2H− σ(S)

H
k2Ψ+

2

3
k2Φ . (2.99)

In the vector parts, from (2.82) and (2.91),

0 = −2
∑
λ,b

σ
(V)
b Mλ

abEλ +
i

2
kΦa + σ(V)

a X , (2.100)

0 = 2
∑
λ,b

σ
(V)
b Mλ

abE
′
λ − 2

∑
λ,b

σ
(V)
b Nab ζλ(1−λ) σ

(T)
(1−λ)Eλ −

1

2
i kΦ′

a

− 1

2
i k
∑
λ,b

σ
(T)
λ Mλ

abΦb − i kHΦa +
5

4
i k σ(S) Φa − σ(V)

a X ′ . (2.101)
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In the tensor part, from (2.92),

0 = E ′′
λ + 2HE ′

λ + k2Eλ − 2 ζλ(1−λ) σ
(T)
(1−λ)

∑
λ′

ζλ′(1−λ′) σ
(T)
(1−λ′)Eλ′ − 2

∑
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(
σ(V)
a

)2
Eλ

+ 2i k
∑
a,b

Mλ
ab σ

(V)
a Φb − σ

(T)
λ X ′ − σ

(T)
λ

H
k2Ψ . (2.102)

Here, we rewrite Equation (2.97) as

X =
1

2H− σ(S)

∑
λ

σ
(T)
λ Eλ . (2.103)

Then we can replace X with Eλ . Moreover, with Equation (2.100), we can represent Φa

in terms of Eλ as

i kΦa = 4
∑
λ,b

Mλ
ab σ

(V)
b Eλ −

2σ
(V)
a

2H− σ(S)

∑
λ

σ
(T)
λ Eλ , (2.104)

and we can remove X and Φa from Equation (2.96) as

k2Ψ = − H
2H− σ(S)

∑
λ

[
σ
(T)
λ E ′

λ +
6H2 − σ2 − a−2

(
a2 σ(S)

)′
2H− σ(S)

σ
(T)
λ Eλ − a−2

(
a2 σ

(T)
λ

)′
Eλ

]
.

(2.105)

Also, we can represent Φ in terms of Eλ using Equation (2.99). As the last step, by
summing up Equations (2.98) and (2.99), we obtain the following relation

0 =
(
2H− σ(S)

)
X ′ +

(
6H2 − σ2

)
X +

∑
λ

[
−a−2

(
a2 σ

(T)
λ

)′
Eλ − σ

(T)
λ E ′

λ

]

−
a−2

(
a2 σ(S)

)′
2H− σ(S)

∑
λ

σ
(T)
λ Eλ .

(2.106)

Then, we obtain an expression for the time derivative of X as

X ′ =
∑
λ

σ
(T)
λ

2H− σ(S)
E ′

λ +
∑
λ

(
σ
(T)
λ

2H− σ(S)

)′

Eλ

=
1

2H− σ(S)

∑
λ

(
σ
(T)
λ Eλ

)′
− 2H2 − σ2 − σ(S)′

(2H− σ(S))
2

∑
λ

σ
(T)
λ Eλ .

(2.107)
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Finally, substituting all the relations obtained so far into Equation (2.102), we obtain
the gravitational-wave equations as

0 = E ′′
λ + 2HE ′

λ + k2Eλ − 2ζλ(1−λ) σ
(T)
(1−λ)

∑
λ′

ζλ′(1−λ′) σ
(T)
(1−λ′)Eλ′
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(T)
λ
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(
a2 σ(S)

)′
(2H− σ(S))

2

∑
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σ
(T)
λ′ Eλ′

− 2a−2

2H− σ(S)

∑
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a2 σ

(T)
λ

)′
σ
(T)
λ′ +

(
a2 σ

(T)
λ′

)′
σ
(T)
λ

]
Eλ′

− a−2
(
a2 σ(S)

)′
Eλ . (2.108)

Here, as announced, the gravitational-wave equations are described in terms of Eλ only.

Introducing µλ ≡ aEλ , the equations of motion for gravitational waves (2.108) are
rewritten as (see also [PPU07])

µ′′
+ + ω2

+ µ+ + ξ µ× = 0 , µ′′
× + ω2

× µ× + ξ µ+ = 0 , (2.109)

where

ω2
+ ≡ γij ki kj −

a′′

a
−
(
a2 σ(S)

)′
a2

− 2
(
σ
(T)
×

)2
− 2
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(
σ
(T)
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)
2
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′

,

ω2
× ≡ γij ki kj −
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a
−
(
a2 σ(S)

)′
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− 2
(
σ
(T)
+

)2
− 2
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a2
(
σ
(T)
×

)
2

2H− σ(S)

′ (2.110)

and

ξ ≡ 2σ
(T)
+ σ

(T)
× − 2

a2

(
a2 σ

(T)
+ σ

(T)
×

2H− σ(S)

)′

. (2.111)

Correspondingly, the second-order action for µλ was also obtained by Pereira et al. [PPU07].
Discarding scalar fields in Equation (5.20) in [PPU07], one obtains the action integral
for tensor perturbations

S2 =
∑

λ=+,×

1

2

∫
d3ki dη

[
µ′
λ µ

′
λ
∗ − ω2

λ µλ µλ
∗ − ξ µ∗

λ µ1−λ

]
, (2.112)

where the index “1− λ” is × for λ = + and + for λ = × .
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Chapter 3

Quantization of PGWs in anisotropic
pre-inflation

In order to make a quantitative prediction for PGWs from anisotropic pre-inflation, we
discuss their initial conditions. The most standard way to determine the initial values of
PGWs in ordinary scenarios like de Sitter inflation is to perform canonical quantization of
tensor perturbations on an isotropic cosmological background. In the anisotropic setup,
one might think that a standard procedure of quantization could still work since the
action for the tensor perturbations (2.112) has an analogous shape to (coupled) double
scalar fields. This is not the case, though, for ω2

λ given by (2.110) generically blows up
as approaching to the initial singularity due to the growing background anisotropy. In
this chapter, we begin with clarifying the problems in quantization in anisotropic pre-
inflation and discuss a prescription which may enable us to evade the problem [FNS19].

3.1 Problems in quantization

To see the diverging behavior of ω2
λ , it is instructive to consider how the contravariant

wavevector k⃗ rotates under the influence of anisotropic expansion based on (2.51). As
going back in time towards the initial singularity at t = 0, any wavevector k⃗ with non-
vanishing k1 component tends to be aligned to the k1-axis, as one can see the limits of
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the Euler angles defined in (2.51) :

lim
t→0

β = lim
t→0

cos−1

 k3 e
−β3√∑3

i=1 k
2
i e

−2βi

 =
π

2
,

lim
t→0

γ = lim
t→0

tan−1

(
k2 e

−β2

k1 e−β1

)
= 0 .

(3.1)

In such an asymptotic regime, the frequency squared ω2
λ can be estimated approximating

k2/k1 ∼ k3/k1 ∼ 0 as

ω2
λ ∼ k21

(
3HΛt

2

)−2q1

+ a2isoH
2
Λ

1− 9 δ×λ (q2 − q3)
2

(3HΛt)4/3
. (3.2)

This expression illuminates the generic divergent behavior of ω2
λ as t→ 0 .

The usual procedure of second quantization in cosmological background relies upon
the existence of suitable modes which oscillate harmonically in the asymptotic past
region. In an anisotropic setup, the above observation implies that the variable µλ is
not the best quantity to quantize, but we should seek for a more suitable variable which
can behave like a simple harmonic oscillator.

Now, let us rewrite the equations of motion for µλ (2.109) in terms of the new variable
and time coordinate [PPU08]

χλ = f(η)µλ , dτ = f(η)2 dη . (3.3)

Defining

Ω2
λ ≡ ω2

λ

f 4
+

(f−1)′′

f 3
, Ξ ≡ ξ

f 4
, (3.4)

the equations of motion for χλ read

χ̈+ + Ω2
+ χ+ + Ξχ× = 0 ,

χ̈× + Ω2
× χ× + Ξχ+ = 0 ,

(3.5)

where the dots denote derivatives with respect to τ . Here, apart from the subtlety of
the interaction term, there arises a possibility of making Ω2

λ constant by choosing some
function f so that χλ behaves as a harmonic oscillator.
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Let us consider a generic power-law function f(η) = (aisoHΛη)
p as in [PPU08]. Then

the new frequency squared Ω2
λ is evaluated near the singularity, unless k1 = 0 , as

Ω2
λ ∼ k21

2q1 (aisoHΛη)4p+3q1
+ a2isoH

2
Λ

(2p+ 1)2 − 9 δ×λ (q2 − q3)
2

4 (aisoHΛη)4p+2
. (3.6)

The oblate axisymmetric KdS, (q1, q2, q3) = (2/3,−1/3,−1/3) , is the exceptional
case where the powers of the terms in Ω2

λ becomes identical. Moreover, by choosing
p = −1/2 , it becomes positive constant Ω2

λ ∼ k21 unless k1 = 0 . Namely, in this case,
quantization can be carried out except for the “planar modes” with k1 = 0 . For this
reason, several authors have studied primordial perturbations of quantum origin in this
particular symmetric background [GCP07; KM10; DP12; DKP12; DKP14; BPM15].

In any other cases of background, all the indices qi (i = 1, 2, 3) are smaller than 2/3 ,
so the second term in (3.6) always dominates. Then, setting p = −1/2 eliminates the
time dependence in the leading term, but this leads to a negative frequency squared for
the cross mode (λ = ×)

Ω2
× ∼ −9 (q2 − q3)

2

4
(aisoHΛ)

2 , (3.7)

which forbids the usual quantization procedure.1

Now, one realizes that the problem just arises from the ordinary prescription of
quantization that is founded on asymptotic behaviors of the mode functions, which is
ill-behaved in the current setup due to the existence of the initial singularity. However,
the initial singularity is often a source of difficulties and its existence is disfavored on
the physical background. It is rather natural to suppose that the history of the universe
began with some finite curvature at some moment t = tini > 0 , and quantization of the
field contents are done at or after tini .

If we introduce a finite initial time tini , then there arises a chance that the wave-
number terms dominate in ω2

λ at or after tini , and the frequency squared after transfor-
mation may be evaluated as

Ω2
λ ∼

3∑
i=1

k2i
2qi (aisoHΛη)4p+3qi

. (3.8)

1This analysis supplements the considerations in [PPU08], in which they focused upon adiabaticity
conditions.
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Once the dominant term among the three components above, to be indicated by the
index imax, is identified, setting p = −3 qimax/4 results in a positive, constant frequency
squared Ω2

λ ∼ k2imax
. Note that this is analogous to the case of “oblate” axisymmet-

ric backgrounds, where quantization can be carried out except for the “planar” modes
[GCP07; KM10; DP12; DKP12; DKP14; BPM15].

In what follows, we proceed this idea and give a viable prescription of quantization
in triaxially anisotropic universe.

3.2 Behaviors of transformed variables

For the sake of brevity, we collectively call the following three functions of time (and
not of wavenumber) as (i)f (i = 1, 2, 3):

(1)f =
(
γ11
)1/4

= tanh−q1/2

(
3HΛt

2

)
,

(2)f =
(
γ22
)1/4

= tanh−q2/2

(
3HΛt

2

)
,

(3)f =
(
γ33
)1/4

= tanh−q3/2

(
3HΛt

2

)
.

(3.9)

With them, the wave-number terms in ω2
λ can be written as

γij ki kj =
(1)f 4 k21 +

(2)f 4 k22 +
(3)f 4 k23 . (3.10)

Since the factors (i)f 4 depend on time to the distinctive powers in a triaxially anisotropic
background (q1 > q2 > q3), only one of the above three terms should dominate at
any moment. Keeping this in mind, let us consider a transformation using (i)f as the
transformation function f :

(i)χλ = (i)f µλ , d(i)τ = (i)f 2 dη . (3.11)

Then the frequency squared for the new variable (i)χλ is written as

(i)Ω2
λ =

ω2
λ

(i)f 4
+

((i)f−1)′′

(i)f 3

= k2i +
∑
j ̸=i

k2j tanh−2(qj−qi)

(
3HΛt

2

)
+ · · · ,

(3.12)
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where only the terms relevant to the norm of wavevector were shown in the second line.
Now we introduce the time for quantization t = t∗ , which is not necessarily tini but can
be any moment after it. Then, once a wavevector (k1, k2, k3) is given, one can decide
whether each of the functions {(1)f, (2)f, (3)f} can satisfy the condition

k2i ≳
∑
j ̸=i

k2j tanh−2(qj−qi)

(
3HΛt∗

2

)
, (3.13)

and it is under this condition that a variable (i)χλ has an approximately constant fre-
quency squared (i)Ω2

λ ∼ k2i . We regard such a variable as “suitable for quantization”.

Figure 3.1 shows the time evolution of the squared frequencies (i)Ω2
λ for the trans-

formed variables (i)χλ = (i)f µλ (i = 1, 2, 3) with a wavenumber k1 = k2 = k3 =

(10/
√
3) aisoHΛ . The background is triaxially anisotropic, with the exponents (q1, q2, q3) =

(1/
√
3, 0,−1/

√
3) (Θ = 8π/6). In this case, (1)Ω2

λ stays constant in a wide range of time
(top-left), whereas (2)Ω2

λ and (3)Ω2
λ are not (top-right and bottom). This tendency is a

consequence of the fact that the wavenumber term in ω2
λ can be approximated as

γij ki kj ≃ (1)f 4 k21 (t≪ tiso , q1 > q2 > q3) (3.14)

thanks to the hierarchy (1)f ≫ (2)f ≫ (3)f . This applies to a wide range of the choice
of wavevector (k1, k2, k3) .

The figures illuminate that the advantage of taking (1)χλ as a quantity to quan-
tize, since it would oscillates harmonically for the longest period. However, as seen in
the figure, (1)Ω2

λ ceases to stay constant for smaller t , where the terms other than the
wavenumber become dominant. As discussed in the previous section, this is inevitable
if a mode really approaches to the initial singularity at t = 0 . Quantitatively, in this
particular but typical example, we may conclude that (1)χλ should be the most sensible
choice of a variable for quantization as long as we quantize at some moment between
t = 10−6H−1

Λ and 10−2H−1
Λ .

Likewise, once the time of quantization is given, we examine whether or not each
variable (i)χλ (i = 1, 2, 3) is suitable for quantization. We suggest the following working
criterion for the usefulness of a variable (i)χλ in quantization: If

(i)Ω2
λ > 0 (3.15)
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Figure 3.1: Time evolution of the frequencies squared for (i)f -transformed variables (i)χλ :
(1)Ω2

λ (top-left), (2)Ω2
λ (top-right) and (3)Ω2

λ (bottom). The mode has a wavenum-
ber k1 = k2 = k3 = (10/

√
3) aisoHΛ and the background is triaxially anisotropic

with the exponents (q1, q2, q3) = (1/
√
3, 0,−1/

√
3) (Θ = 8π/6). The lines are

dashed where the values are negative.
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and

(i)Rλ ≡
∣∣∣∣ 1
(i)Ω2

λ

d(i)Ωλ

d(i)τ

∣∣∣∣≪ 1 (3.16)

are satisfied simultaneously, (i)χλ is a sensible choice of variable for quantization.

Figure 3.2 shows which of {(1)Rλ,
(2)Rλ,

(3)Rλ} is the smallest for each direction of
(k1, k2, k3) with several wavenumbers k ≡

√
k21 + k22 + k23 . These figures are the Merca-

tor projection of the “celestial sphere” parameterized by the polar angle θ and azimuth
angle ϕ defined as

k1 = k sin θ cosϕ ,

k2 = k sin θ sinϕ ,

k3 = k cos θ .

(3.17)

In the figures, regions labelled with “i” (i = 1, 2, 3) correspond to where (i)Rλ is the
smallest of the three. For the cross mode (λ = ×, right column), there appear regions
labelled as “None” (black). For those wavenumbers, none of the three frequencies squared
(i)Ω2

λ is positive, which implies none of the variables (i)χλ is suitable for quantization.
This does not necessarily mean quantization is impossible, for it merely alerts the failure
of our restricted procedure, but in the current work, we would not proceed to quantize
such modes.

We see that the (1)f -transformed variable (1)χλ is the most suitable choice for quanti-
zation in a vast area on the celestial sphere. This is a direct consequence of the hierarchy
(1)f ≫ (2)f ≫ (3)f for t ≪ H−1

Λ . Other variables could take over only when k1 is tiny,
in the vicinity of the circumferences with ϕ = π/2, 3π/2 where k1 = 0 . In the almost
whole region on those circumferences, (2)χλ is superior to (3)χλ because of, again, the
above hierarchy.

3.3 Conditions for sensible quantization

To sum up, we expect that quantization in the triaxially anisotropic Kasner–de Sitter
universe can be carried out to good approximation if there is some moment t∗ around
which the following conditions are fulfilled:
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Figure 3.2: Showing of which (i)Rλ (i = 1, 2, 3) is the smallest for each mode pointing the
direction specified by the polar angles (θ, ϕ) in the celestial sphere. Regions
labelled by “i” indicates (i)Rλ is the smallest, whereas in the regions labelled by
“None”, (i)Ω2

λ < 0 for ∀i . The background anisotropy is triaxial (Θ = 8π/6) and
the wavenumber is k = 102 aisoHΛ , 10

4 aisoHΛ from top to bottom.
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• At least one of the transformed variables {(1)χλ ,
(2)χλ ,

(3)χλ} has positive, nearly
constant frequency squared.

• Interaction between the polarization modes are weak. Decoupling of the modes in
the short wave-length regime has been partly confirmed in [PPU07], and we expect
that the interaction is weak as long as the WKB approximation is valid.

The role of the above conditions is only to provide us the means to determine the
energy spectrum of the fields at t = t∗ . Here, to choose an adequate quantum state
is a completely different problem which we would not answer at this stage. A typical
situation is that, although the state with the lowest energy at t = t∗ is a tempting
choice, it may not remain the ground state throughout the whole anisotropic expansion
unlike the Bunch–Davies vacuum in isotropic de Sitter. We can however expect that the
knowledge of the energy spectrum should serve as a useful clue to choose the favored
state on physical backgrounds.

In the following discussions, we assume that we can decide which of (i)χλ is the most
suitable choice of a variable to quantize for a given wavevector (k1, k2, k3) within a given
setup. With this in mind, the index (i) is omitted unless it is necessary.

Once a variable suitable for quantization is given, a standard procedure of second
quantization can be carried out. What we need is the normalization condition imposed
on each mode.

The second-order action of χλ is given by transforming the second-order action for
µλ (2.112) as

S2 ≃
∑

λ=+,×

1

2

∫
d3ki dη

[
µ′
λ µ

′
λ
∗ − ω2

λ µλ µλ
∗] (3.18)

=
∑

λ=+,×

1

2

∫
d3ki dτ

[
χ̇λ χ̇λ

∗ − Ω2
λ χλ χλ

∗] (3.19)

up to surface term, where we have dropped the interaction term. The operator version
of the canonical variable

χ̂λ = âλki uλ , (3.20)

where âλ (âλ′†) is the annihilation (creation) operator and uλ the appropriately normal-
ized mode function with positive frequency. The canonical quantization condition to be
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satisfied by the operators is[
âλki , â

λ′

k′i

†
]
= δλλ′ δ3(ki − k′i) , otherwise 0 . (3.21)

We decide the normalization constant of the modes uλ by the Wronskian matrix deter-
minant W as

W

[
uλ ,

duλ
dτ

]
= uλ

du∗λ
dτ

− u∗λ
duλ
dτ

= i . (3.22)

In order to estimate the expectation value of fluctuation, we define the quantum
vacuum by

âλki |0⟩ = 0 , (3.23)

and we construct the Fock space in the standard way.

3.4 PGWs from quantum fluctuations in triaxial KdS

In this section, we apply the formulation for quantizing PGWs in triaxial KdS back-
grounds. Throughout the numerical calculations, the background anisotropy is fixed
and specified by (q1, q2, q3) = (1/

√
3, 0,−1/

√
3) (Θ = 8π/6), and the time of quantiza-

tion is t∗ = 10−5H−1
Λ unless otherwise stated. This value of t∗ corresponds to the Planck

scale if the energy scale of isotropic inflation is around the GUT scale.

The vacuum expectation value of fluctuation of tensor modes are calculated as

⟨0|Êij(x
i, τ) Êij(xi, τ)|0⟩ = 1

a2 f 2

∑
λ=+,×

∫
d3ki
(2π)3

|uλ(ki, τ)|2 , (3.24)

where uλ is the positive frequency mode appropriately normalized at the time of quan-
tization, t = t∗ . The final value of the classical expectation value at the end of inflation
is calculated by evolving the mode function up to t ≫ tiso , where the modes freeze
out after their horizon exit. We shall give analytic and numerical evaluations for the
gravitational-wave power spectrum and angular distribution.
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3.4.1 Analytic evaluation with WKB approximation

The mode function uλ can be approximated by the (zeroth-order) WKB solution

uWKB
λ (ki, τ) =

1√
2Ωλ(ki, τ)

e−i
∫ τdτ ′ Ωλ(ki,τ

′) , (3.25)

as long as the so-called WKB parameter

Qλ(ki, τ) = − 1

2Ω2
λ

[
1

Ωλ

d2Ωλ

dτ 2
− 3

2

(
1

Ωλ

dΩλ

dτ

)2
]

(3.26)

is tiny.2 It is now clear from the previous analyses that modes with sufficiently large
wavenumber (k1, k2, k3) have approximately constant Ω2

λ , hence |Qλ| ≪ 1 . The normal-
ization for uWKB

λ is given in terms of the Wronskian matrix determinant as

W

[
uWKB
λ ,

duWKB
λ

dτ

]
= i . (3.27)

As expected, for a wide range of wavenumber (k1, k2, k3) , the (1)f -transformed vari-
able (1)χλ behaves much like a harmonic oscillator with (1)Ω2

λ ≃ k21 as long as it does
not approach too close to the singularity t = 0 or t = tiso . Figure 3.3 shows the
evolution of the WKB parameter |(1)Qλ| for (1)χλ and its waveform for k1 = k2 =

k3 = k/
√
3 = (100/

√
3) aisoHΛ . The initial condition for the numerical calculation at

t = t∗ = 10−5H−1
Λ is so taken as to match the analytic WKB mode function.

As t approaches to the time of isotropization tiso , the WKB mode function is isotropized
as

|uWKB
λ |2 ∼ 1

2Ωλ

→ 1

2
√
k21 + k22 + k23

. (3.28)

Then, after the transition to ordinary, isotropic de Sitter inflation at t = tiso , the tensor
perturbations decay as |Eλ| ∝ a−1 until they exit the horizon when a = k/HΛ . Therefore

2The function uWKB
λ satisfies

d2uWKB
λ

dτ2
+ [1−Qλ] Ω

2
λ u

WKB
λ = 0 .
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Figure 3.3: Time evolution of the WKB parameter (1)Qλ (left) and comparison of the WKB
solution with the numerical solution (right) for a mode with k1 = k2 = k3 =
k/

√
3 = (100/

√
3) aisoHΛ . The lines for (1)Qλ are dashed when the values are

negative.

the power spectrum of PGWs after inflation is estimated as

PT ≡
∑

λ=+,×

4 |Eλ(a = k/HΛ)|2

= 64π G
|uλ|2

a2 f 2

∣∣∣∣
a=k/HΛ

≈ 8π GH2
Λ

k3
. (3.29)

This expression depends only on the norm of wavenumber, k =
√
k21 + k22 + k23 , and

agrees with the one in de Sitter inflation, that is, isotropic and scale-invariant.

In the above simple estimate, we assumed that the WKB approximation is valid all
the way after the time of quantization t∗ up to the time of isotropization tiso . However,
if the WKB condition is violated somewhere on the way during the anisotropic regime,
then the prediction can differ and some imprints of the initial anisotropy could be left in
the sky map of the gravitational-wave background as we studied in [FNS17]. Inspection
of such possibilities is beyond the scope of this thesis and left in future studies.



Quantization of PGWs in anisotropic pre-inflation 43

3.4.2 Numerical calculations: all-sky map of primordial

gravitational waves originating quantum fluctuations

Finally, we confirm the previous estimate for the gravitational-wave intensity by numer-
ical means.

Shown in Figure 3.4 are the all-sky maps of the intensity of PGWs for wavenumbers
k = 102 aisoHΛ and 104 aisoHΛ . The values are normalized by that of ordinary de Sitter
inflation.

One can see that the prediction in the triaxial KdS coincides with that of isotropic
de Sitter inflation for the range of wavelength considered and wide range of direction.
There are some features, though: In the polar regions where |k3| ≫ |k1| , |k2| , there
is an apparent enhancement of the PGWs. At this stage, we do not claim this should
be a real signature of the initial anisotropy because there vast violations of the WKB
approximation occur. The regions without value (in black) correspond to where all of
(i)Ω2

λ (i = 1, 2, 3) have negative values. We do not try to compute anything in such
regions since our approximation method lacks a power of prediction.

At the end, we show a result for a different background anisotropy. Figure 3.5
shows the sky map for wavenumber k = 100 aisoHΛ for a nearly “prolate” axisymmetric
background characterized by the anisotropy parameter Θ = 0.99× 6π/9 .

A conceptually subtle but reasonable difference from the triaxial case presented in the
top panels of Figure 3.4 is that, in the triaxial case, the “uncomputable” region (in black)
makes a great circle, while in the axisymmetric case it localizes in the vicinity of the axis
of symmetry, i.e., k3-axis. We do not claim it serves as an observational signature to
distinguish the primordial anisotropy at this stage, because it is merely a manifestation
of the limitation of our approximation method. Still, we could direct our intention to
what really happens in those regions. We leave development of approximation method
applicable in such regions in future studies.
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Figure 3.4: All-sky maps of PGW intensity for wavenumbers k = 102 aisoHΛ (top) and
104 aisoHΛ (bottom) in the presence of a background anisotropy characterized
by the indices (q1, q2, q3) = (1/

√
3, 0,−1/

√
3) (Θ = 8π/6). The values are nor-

malized by those of de Sitter inflation and they are approximately unity in the
vast region. In regions without a value (black), all (i)Ω2

× (i = 1, 2, 3) are negative
and we do not try to compute values.
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Figure 3.5: All-sky map of the intensity of gravitational waves with wavenumber k =
102 aisoHΛ for nearly “prolate” axisymmetric background characterized by the
anisotropy parameter Θ = 0.99 × 6π/9 . Compared to the top panels in Fig-
ure 3.4, the “uncomputable” region localizes near the symmetry k3-axis.
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Chapter 4

Analyses of direction-dependent
evolution of PGWs

In the previous chapter, we considered the initial condition of PGWs and power spec-
tra of PGWs in KdS spacetime. Unfortunately, our prescription is not predictive with
respect to the “uncomputable” regions. Nevertheless, the “uncomputable” region might
include potential information for searching the initial anisotropy by future observations.
Therefore, in this chapter, we perform detailed analyses of time evolutions of modes in-
stead of the predictive power spectrum, and we attempt to read off the initial anisotropy
from qualitative characteristics of directional dependences of time evolutions of modes.

Since we are interested in gravitational waves currently on large scales and since we
require aisoHΛ ≲ a(t0)H0 , we only consider modes which had a shorter wavelength than
the Hubble radius at the isotropization time tiso = H−1

Λ . We will take k = O(10–103)×
aisoHΛ as reference values for the wavenumber.

4.1 Rotation of wavevector during anisotropic

expansion

In this section we analyze time evolutions of gravitational waves labeling them with the
final wavevector

lim
t→∞

k⃗ = (k1, k2, k3) . (4.1)

47
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The main object of interest in our current study is the distribution of gravitational-wave
intensity on a sphere of radius

k ≡
√
k12 + k22 + k32 (4.2)

defined in the k-space, which, after being reflected through the origin and mapped to the
celestial sphere, will provide an all-sky map of a gravitational wave background which
we will be able to observe at a comoving wavenumber k . Note that the norm of a
wavevector k⃗ depends on time and is given by

|⃗k| =
√
γ11 k12 + γ22 k22 + γ33 k32 . (4.3)

Since there is a natural correspondence between the k-space and the position space,
we sometimes mix up them with each other and even use common terminologies. For
instance, a term “principal axes of expansion” may refer to both the xi-axes in the
position space and the ki-axes in the k-space depending on the context.

Figure 4.1 is a portrait of the time derivatives of k⃗ drawn on the unit sphere in the
k-space (left) and the Mercator projection of a portion of the sphere (right).

�
′

� π

�

π

�

�
′

Figure 4.1: Left: A phase portrait of the time derivative k⃗′ in the k-space. Right: The
Mercator projection of the half hemisphere specified by k1 ≥ 0 and k3 ≥ 0. The
background is characterized by the anisotropy parameter Θ = 8π

6 .
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The general trend is that a wavevector k⃗ changes its direction towards the q3 axis.
This is because, as implied by Equation (2.51), k⃗ tends to rotate towards the principal
axis of the slowest expansion of the three, i.e., with the smallest exponent qi .

In the exceptional cases when k⃗ is aligned to one of the principal axes, only the norm
changes with time but the direction does not, as understood from (2.51). Also, those
quarter circumferences of the spheres connecting two principal axes (e.g. equator) are
special in that if the endpoint of a wavevector lies on some of them, then it remains to
do so, rotating from the direction of the faster axis to the slower. This is understood as
follows. In order to parameterize a wavevector pointing somewhere on one of such quarter
circumferences, we shall denote quantities associated with the axis of faster expansion
by a superscript “(fast)” and those with the slower axis by “(slow)”. For example, if one
considers a circumference specified by ki = 0 , then k(fast)i and k(slow)

i denote the covariant
components of the wavevector along the faster and the slower axes, respectively. Then,
we introduce an angle parameter ψi and a modulus k as

tanψi ≡
k
(fast)
i

k
(slow)
i

, k ≡
√(

k
(slow)
i

)2
+
(
k
(fast)
i

)2
. (4.4)

Hence, the ratio of the contravariant components evolves during the anisotropic phase,
t≪ H−1

Λ , as

ki(fast)

ki(slow)
= tanψi

[
tanh

(
3HΛt

2

)]2(q(slow)
i −q

(fast)
i )

≃ tanψi

(
3HΛt

2

)2(q
(slow)
i −q

(fast)
i )

.

(4.5)

If k(fast)i < k
(slow)
i , the wavevector is finally aligned closer to the slower axis. From

Equation (4.5), the time at which k⃗ comes to the midpoint of the two axes, i.e., at an
angle of π

4
, is estimated as

HΛtmid ≃ 2

3

(
k
(fast)
i

k
(slow)
i

)1/[2(q
(fast)
i −q

(slow)
i )]

. (4.6)

On the other hand, if k(fast)i > k
(slow)
i , k⃗ is initially closer to the faster axis and remains

so until the end of the anisotropic Kasner regime.
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From the above analysis, we can deduce that the direction of a wavevector pointing
in general directions can only move within one of the quarter hemispheres bounded
by such special quarter circumferences. It follows that, thanks to the symmetry of
the background, it is sufficient for our purpose to consider only one of those quarter
hemispheres and we shall hereafter restrict on the one specified by ki ≥ 0 (i = 1, 2, 3).

In the k-space, a normalized wavevector ⃗̂k = (k1/|⃗k|, k2/|⃗k|, k3/|⃗k|) with one vanish-
ing component ki = 0 (i = 1, 2, 3) points on one of the quarter circumferences of the unit
sphere, which we shall call Ci . See Figure 4.2 for the definitions of the circumferences
Ci and angles ψi (i = 1, 2, 3).

Figure 4.2: Illustration of the angles ψi and circumferences Ci on the unit sphere in the
k-space. The arrows are examples of normalized final wavevector limt→∞

⃗̂
k =

(k1/k, k2/k, k3/k) lying on each Ci .

4.2 Evolution of modes aligned with the principal axes

We first consider the evolution of modes whose wavevector is aligned to either of the prin-
cipal axes. Let ki be the only non-vanishing covariant component. Then the wavevector
k⃗ is kept aligned with the ki-axis while its squared norm evolves with time as

ki k
i = k2i tanh−2qi

(
3HΛt

2

)
. (4.7)
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The projected components of the shear tensor are greatly simplified in this case as1

σ(S) = 3qi
aisoHΛ

(a/aiso)2
,
∣∣∣σ(T)

+

∣∣∣ = 3∆i√
2

aisoHΛ

(a/aiso)2
, σ

(V)
(1) = σ

(V)
(2) = σ

(T)
× = 0 , (4.8)

where we have introduced ∆i ≡ maxj ̸=i qj−minj ̸=i qj , which quantifies the +-component
of the shear. See Figure 4.3 for the dependence of ∆i on Θ for each i . For σ(T)

× = 0, the
interaction term ξ in the gravitational-wave equations vanishes identically, see (2.111),
so the two polarization modes are decoupled.
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Figure 4.3: Values of ∆i = maxj ̸=i qj −minj ̸=i qj .

Substituting Equations (4.7) and (4.8) into (2.110), we obtain the squared frequencies
ω2
λ as

ω2
×

a2isoH
2
Λ

=
k2i

a2isoH
2
Λ

tanh−2qi

(
3HΛt

2

)
+

2− cosh(6HΛt)

(a/aiso)4
− 9∆2

i

(a/aiso)4
,

ω2
+

a2isoH
2
Λ

=
k2i

a2isoH
2
Λ

tanh−2qi

(
3HΛt

2

)
+

2− cosh(6HΛt)

(a/aiso)4
+

6∆2
i (a/aiso)

2

[(2/3) cosh(3HΛt)− qi]
2 .

(4.9)

The leading contributions from each term during the early anisotropic regime (t≪ tiso =

H−1
Λ ) are found as

ω2
×

a2isoH
2
Λ

⊃ k2i
a2isoH

2
Λ

(
3HΛt

2

)−2qi

+
1

(3HΛt)4/3
− 9∆2

i

(3HΛt)4/3
,

ω2
+

a2isoH
2
Λ

⊃ k2i
a2isoH

2
Λ

(
3HΛt

2

)−2qi

+
1

(3HΛt)4/3
+

6∆2
i (3HΛt)

2/3

(2/3− qi)2
,

(4.10)

1The sign of σ(T)
+ is not needed because only its square will appear.
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where we have assumed qi <
2
3
. The shear tensor gives a negative contribution ∝

−∆2
i /(HΛt)

4/3 to ω2
× , which is missing in ω2

+ in contrast.

In Figure 4.4, we show typical time evolutions of ω2
× (blue) and ω2

+ (red) for modes
aligned with either of the three principal axes. The three figures correspond to the cases
when k⃗ ∥ k1-axis (top-left), k⃗ ∥ k2-axis (top-right), and k⃗ ∥ k3-axis (bottom), where the
final wavenumber is ki = 100 aisoHΛ (i = 1, 2, 3) and the background anisotropy param-
eter is Θ = 8π

6
, for which (q1, q2, q3) = ( 1√

3
, 0,− 1√

3
) and (∆1,∆2,∆3) = ( 1√

3
, 2√

3
, 1√

3
) .

Since ∆i >
1
3

for all i in this case, the squared frequency ω2
× should turn negative once the

shear term dominates as implied by (4.10). To illuminate this, the lines for ω2
× are dashed

when taking negative values. It is observed that there is a large negative contribution
to ω2

× from the shear at the earliest stage of the anisotropic phase (t ≪ tiso = H−1
Λ )

except for the k1-axis-aligned mode (top-left panel), for which ω2
× is dominated by the

ki k
i term throughout the time range considered, 10−5 < HΛt ≲ 1, although the shear

would eventually dominate if one were allowed to go back in time indefinitely.

Shown in Figure 4.5 are the waveforms of the above three axis-aligned modes obtained
by numerically integrating (2.109). As expected from the behaviors of ω2

× , the ×-mode
grows substantially while the shear term is giving a dominant contribution.

These waveforms of gravitational waves can be analytically understood as follows.
First let us consider the ×-mode. The asymptotic form of ω2

× for HΛt≪ 1 is

ω2
× ∼ k2i

(21/3aisoHΛη)
3qi

+
1− 9∆2

i

4η2
, (4.11)

where, in converting the time coordinates, we have used a relation

HΛt =
2
√
2

3
(aisoHΛη)

3/2

[
1 +

(aisoHΛη)
3

6
+O(aisoHΛη)

6

]
. (4.12)

Since qi < 2
3

for a triaxial KdS metric, ω2
× is dominated by the shear term (∝ η−2) at

earlier times and by the ki ki term (∝ η−3qi) at later times. The growth of ×-mode
is expected to stall around the transition between these two regimes, whose time is
estimated as

aisoHΛηstall =

[
|9∆2

i − 1|
22−qi

(
aisoHΛ

ki

)2
]1/(2−3qi)

(4.13)
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Figure 4.4: Time evolutions of ω2
× (blue) and ω2

+ (red) for modes aligned with the k1-axis
(top-left), k2-axis (top-right), and k3-axis (bottom), for all of which the final
wavenumber is ki = 100 aisoHΛ (i = 1, 2, 3) . The lines are dashed where ω2

×
is negative. The background anisotropy parameter is Θ = 8π

6 corresponding to
(q1, q2, q3) = ( 1√

3
, 0,− 1√

3
) and (∆1,∆2,∆3) = ( 1√

3
, 2√

3
, 1√

3
).
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Figure 4.5: Waveforms of E× (blue) and E+ (red) for the modes aligned with the k1-axis (top-
left), k2-axis (top-right), and k3-axis (bottom). The initial time is tini = 10−5H−1

Λ

and the other parameters are the same as in Figure 4.4.
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or equivalently

HΛtstall =
2
√
2

3

[
|9∆2

i − 1|
22−qi

(
aisoHΛ

ki

)2
]1/[2 (2/3−qi)]

. (4.14)

For η ≪ ηstall , the equation of motion for the ×-mode is approximated as

µ′′
× +

1− 9∆2
i

4η2
µ× ≈ 0 (4.15)

and its general solution is given by

µ× ≈ C+ (HΛη)
(1+3∆i)/2 + C− (HΛη)

(1−3∆i)/2 . (4.16)

Hence, up to the time ηstall , the growing mode behaves as |E×| ∝ (HΛη)
3∆i/2 ∝ (HΛt)

∆i .

Once the shear term becomes subdominant after ηstall , the ×-mode starts to oscillate
obeying

µ′′
× +

k2i

(21/3aisoHΛη)
3qi
µ× ≈ 0 . (4.17)

This cannot be integrated analytically for a general qi , but, since the exponents qi only
mildly depend on Θ , here we make a crude approximation that (q1, q2, q3) ≈ (2

3
, 0,−2

3
),

which can be justified by a WKB analysis. Then, we have a rough estimate

|µ×| ∝


η1/2 (i = 1)

η0 (i = 2)

η−1/2 (i = 3)

(4.18)

and, therefore, we may estimate the amplitude of E× between tstall and tiso = H−1
Λ as

|E×| ∝ (HΛt)
−pi with (p1, p2, p3) ≡

(
0,

1

3
,
2

3

)
. (4.19)

As we will show numerically later, although quantitatively not quite precise, this ap-
proximation captures certain qualitative features of the evolution of gravitational waves
during the Kasner epoch.
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The evolution of the +-mode can be deduced by setting ∆i = 0, see Equation (4.10).
Hence E+ oscillates constantly until tstall , and then decreasingly after tstall as

|E+| ∝ (HΛt)
−pi . (4.20)

The background is isotropized at ∼ tiso and enters the standard de Sitter inflation
phase. During inflation, amplitudes of the both modes decay exponentially as Eλ ∝
a−1 ∝ e−HΛt until the modes exit the Hubble radius when a(t) = kiH

−1
Λ , and are

then frozen. The amplitude at the end of inflation is therefore suppressed by a factor
a(tiso)HΛ/ki relative to the value at t = tiso .

Summing up all these effects, the linear growth factors for each polarization mode
aligned with the principal axes are defined and estimated as

D× ≡ lim
t→∞

∣∣∣∣ E×(t)

E×(tini)

∣∣∣∣ ∼ aisoHΛ

ki
(HΛtstall)

pi

(
HΛtstall
HΛtini

)∆i

,

D+ ≡ lim
t→∞

∣∣∣∣ E+(t)

E+(tini)

∣∣∣∣ ∼ aisoHΛ

ki
(HΛtstall)

pi .

(4.21)

Equation (4.14) implies that smaller qi leads to larger tstall as long as ki ≫ aisoHΛ .
Thus, the mode aligned with the k3-axis enjoys the longest period of growth, see Fig-
ure 4.6 for comparison of the values of tstall for the axis-aligned modes with the anisotropy
parameter Θ varied. Note that HΛtstall given by (4.14) for i = 1 formally saturates to
1 near Θ = 7π

6
(then q1 ≈ 2

3
), but, since the usefulness of (4.14) is limited in such a

situation, we have not shown the corresponding values for i = 1 in Figure 4.6.
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Figure 4.6: Θ-dependences of tstall for the modes aligned with each principal axis with the
final wavenumber ki = 100 aisoHΛ (i = 1, 2, 3).
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Substituting Equation (4.14) into (4.21), we can make the parameter dependence of
the growth factors more explicit as

D× ∝
(

ki
aisoHΛ

)P×,i

(HΛtini)
−∆i , D+ ∝

(
ki

aisoHΛ

)P+,i

(4.22)

with

P×,i = −1− pi +∆i

2/3− qi
, P+,i = −1− pi

2/3− qi
. (4.23)

The validity of this expression for i = 1 is also degraded when Θ ≈ 7π
6

(qi ≈ 2
3
) for the

same reason as above. In order to clarify the ki dependences, we plot the indices P×,i

and P+,i in Figure 4.7. As for the ×-mode, since P×,3 is the largest of the three, the
k3-axis-aligned modes dominate at sufficiently large wavenumbers.
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Figure 4.7: Θ-dependences of the indices P×,i (left) and P+,i (right).

In the above analysis, we have implicitly assumed that the time scales are ordered as
tini < tstall < tiso , but this does not necessarily hold, as in the case of the k1-axis-aligned
mode exemplified in this section. If tstall < tini , both polarization modes oscillate from
the beginning with decaying amplitudes estimated by (4.19) and (4.20), and the growth
factor is estimated as

D× ∼ D+ ∼ aisoHΛ

ki
(HΛtini)

pi . (4.24)

On the other hand, although this is not likely to occur, if tiso < tstall , the growth of
gravitational waves does not stall until the time of isotropization and the growth factor
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may be estimated as

D× ∼ D+ ∼ aisoHΛ

ki
(HΛtini)

−∆i . (4.25)

Figure 4.8 shows the Θ-dependences of the growth factors for the axis-aligned modes
with final wavenumber ki = 100 aisoHΛ (i = 1, 2, 3) for the initial time tini = 10−5H−1

Λ .
The solid and dashed lines are the numerical and analytic estimate (4.21), respectively,
which are in fairly good agreement with each other in the almost entire range of Θ . The
k1-axis-aligned mode is almost independent of Θ since it does not grow but constantly
oscillates as implied by Equations (4.19) and (4.20). The k2-axis-aligned and k3-axis-
aligned modes are comparable for the chosen set of parameters, although, as could
be deduced from (4.22), at sufficiently large wavenumbers the k3-axis-aligned ×-mode
should dominate over the others.
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Figure 4.8: Θ-dependences of the linear growth factors D× (left) and D+ (right). The
final wavenumber is ki = 100 aisoHΛ (i = 1, 2, 3) and the initial time is
tini = 10−5H−1

Λ . The dashed lines indicate the analytic estimate given by (4.21),
in fairly good agreement with the numerical calculations (solid).

4.3 Evolution of modes aligned between two principal

axes

Then, we extend our analysis to modes whose wavevector k⃗ is not aligned with either of
the principal axes but between two of them. For such modes, as discussed in Section 4.1,
the direction of a wavevector k⃗ changes with time from the axis of faster expansion to
the slower along one of the quarter circumferences Ci defined as in Figure 4.2. As in
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Section 4.1, we introduce notations “(fast)” and “(slow)” for quantities associated with
the faster and the slower axes, respectively. Wavevectors to be considered should have
one vanishing component, ki = 0 (i = 1, 2, 3), while the other two, to be denoted as
k
(fast)
i and k

(slow)
i , are non-zero. To parameterize such a wavevector, we introduce an

angle parameter ψi and a modulus k as given by Equation (4.4).

It is notable that the ×-component of the shear tensor σ(T)
× still vanishes in this

case, so, since ξ = 0, the two polarization modes of gravitational waves are decoupled.
Therefore the evolution of each mode can still be analyzed separately.

As we will discuss shortly, the distribution of the intensity of gravitational waves
on the circumferences Ci will serve as a key clue to establish the connection between
the directional variation of gravitational-wave intensity and the pre-inflationary param-
eters. The situation on a circumference may be classified into the following three cases
according to the final direction of the wavevector, i.e., the value of tanψi .

First, if the final direction of a mode satisfies tanψi > 1, the wavevector k⃗ remains
close to the faster axis throughout the anisotropic Kasner regime. In terms of tmid given
by (4.6), the condition for this to realize may be written as

tmid(ψi) > tiso ⇔ tanψi > 1 . (4.26)

We will approximately evaluate the evolution of the modes of this kind by regarding their
wavevectors as exactly aligned with the faster axis throughout the anisotropic phase.

Next, for modes with tanψi < 1, a turnover of the direction could happen at the
time t = tmid given by Equation (4.6). However, if

tmid(ψi) < tini ⇔ tanψi <

(
3HΛtini

2

)2(q
(fast)
i −q

(slow)
i )

, (4.27)

the wavevector k⃗ is already close to the slower axis at the initial time t = tini , hence
no turnover occurs during the Kasner epoch. In this case the wavevector is regarded as
aligned exactly with the slower axis throughout.

Finally, a turnover actually happens during the anisotropic phase if

tini < tmid(ψi) < tiso ⇔
(
3HΛtini

2

)2(q
(fast)
i −q

(slow)
i )

< tanψi < 1 . (4.28)
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We regard such modes as aligned with the faster axis before tmid and with the slower
axis after tmid . The analyses in the first and second cases above still apply to the time
ranges t < tmid and t > tmid , respectively.

4.3.1 Case 1: tmid(ψi) > tiso

For such a mode, we approximate the growth rate by the one for a mode exactly aligned
with the faster axis and having a wavenumber ki = k

(fast)
i = k sinψi . Applying (4.21) or

(4.24) with qi = q
(fast)
i , ∆i = ∆

(fast)
i , and pi = p

(fast)
i , we may estimate the growth factor

for the ×-mode as

D×(ψi) ∼
aisoHΛ

k
×


(
HΛt

(fast)
stall

)p(fast)i

(
HΛt

(fast)
stall

HΛtini

)∆
(fast)
i

(tini < t
(fast)
stall )

(HΛtini)
p
(fast)
i (t

(fast)
stall < tini) ,

(4.29)

where

HΛt
(fast)
stall (ψi) =

2
√
2

3


∣∣∣9(∆(fast)

i )2 − 1
∣∣∣

22−q
(fast)
i

(
aisoHΛ

k sinψi

)2
1/[2 (2/3−q

(fast)
i )]

. (4.30)

It is noted that, for both the circumferences C2 and C3 , the k1-axis serves as the
axis of faster expansion, so q

(fast)
i = q1 ≥ 1

3
for i = 2, 3 . Then, since k > aisoHΛ by

assumption, a rough but strict upper limit on the time scale of the growth stall is given
as

HΛt
(fast)
stall (ψi) ≲

(
k

aisoHΛ

)−3

(i = 2, 3) . (4.31)

This implies that growth of gravitational waves does not take place near the k1-axis if
the wavelength is sufficiently short such that k ≫ aisoHΛ .
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4.3.2 Case 2: tmid(ψi) < tini

Again, no turnover takes place. Similarly to Case 1 but with the use of ki = k
(slow)
i =

k cosψi instead of k sinψi , the growth factor is estimated as

D×(ψi) ∼
aisoHΛ

k
×


(
HΛt

(slow)
stall

)p(slow)
i

(
HΛt

(slow)
stall

HΛtini

)∆
(slow)
i

(tini < t
(slow)
stall )

(HΛtini)
p
(slow)
i (t

(slow)
stall < tini)

(4.32)

with

HΛt
(slow)
stall (ψi) ≈

2
√
2

3


∣∣∣9(∆(slow)

i )2 − 1
∣∣∣

22−q
(slow)
i

(
aisoHΛ

k cosψi

)2
1/[2 (2/3−q

(slow)
i )]

. (4.33)

In contrast to the previous case, the exponent for this expression does not become large
except on C3 for a nearly axisymmetric background with Θ ≈ 9π

6
.

4.3.3 Case 3: tini < tmid(ψi) < tiso

Finally, we consider the intermediate case in which a turnover occurs during the Kasner
regime. We regard the wavevector k⃗ as aligned with the faster axis before tmid and with
the slower axis after tmid .

It is useful here to compare the three time scales t(fast)stall , t(slow)
stall , and tmid . Shown in

Figure 4.9 are their values evaluated on the circumferences C1 (top-left), C2 (top-right),
and C3 (bottom) for the parameters k = 100 aisoH and Θ = 8π

6
. As we will discuss

shortly, the ×-mode can grow during the time range indicated as gray-shaded regions.

Before the time of turnover tmid is reached, i.e., below the green lines in Figure 4.9,
the wavevector k⃗ is considered to be aligned with the faster axis and the analysis in
Section 4.3.1 may be applied. The growth stalls at t(fast)stall if it comes before tmid , but
otherwise continues up to tmid . Indeed, in Figure 4.9, there are small intervals of tanψi

in which tmid < t
(fast)
stall .

After tmid , i.e., above the green lines in Figure 4.9, the wavevector k⃗ is considered
to be aligned with the slower axis and the analysis in Section 4.3.2 may be applied. If
tmid < t

(slow)
stall , then the mode continues (or resumes) to grow beyond tmid up to t(slow)

stall .



62 Analyses of direction-dependent evolution of PGWs

��-� ��-� ���� � ���
��� ψ���-�

��-�

����

�

� �
�� (��  �)

������
(����)

������
(����) ����

��-� ��-� ���� � ���
��� ψ���-�

��-�

����

�

� �
�� (��  �)

������
(����)

������
(����) ����

��-� ��-� ���� � ���
��� ψ���-�

��-�

����

�

� �
�� (��  �)

������
(����)

������
(����) ����

Figure 4.9: Time scales on the circumferences C1 (top-left), C2 (top-right), and C3 (bottom)
for k = 100 aisoHΛ and Θ = 8π

6 . The horizontal dashed lines correspond to
HΛtiso = 1 and HΛtini = 10−5 . For each value of tanψi , the mode can grow
within the time range indicated in gray, see text.
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Near the k1-axis on the circumferences C2 and C3 , it may happen that the time t(fast)stall

comes to earlier than tini and then growth is substantially suppressed. Indeed, for our
choice of parameters, the values of t(fast)stall evaluated on C2 and C3 are much earlier than
tini = 10−5H−1

Λ as in the top-right and the bottom panels of Figure 4.9. If this is the
case, a growth can only happen near the slower axes on these circumferences. Therefore,
a criterion for growth in terms of the angle from the slower axis may be given by

t
(fast)
stall ≳ tini ⇔ ψi ≲

(
k

aisoHΛ

)−1

(HΛtini)
−(2/3−q

(fast)
i ) (i = 2, 3) . (4.34)

In contrast, for the current choice of parameters, such suppression is not working
on C1 as understood from the top-left panel of Figure 4.9, where t

(fast)
stall (tanψ1 ≳ 1)

is comparable to t
(slow)
stall (tanψ1 ≲ 1) and never comes below tini . However, for some

parameters and wavelengths it may happen that t(fast)stall on C1 becomes earlier than tini ,
leading to suppression of growth near the k2-axis (the faster axis on C1). In the next
subsections, we will pay particular attention to this possibility.

4.3.4 Growth factors

In Figure 4.10, we show the linear growth factors for the ×-mode on the circum-
ferences C1 (top-left), C2(top-right), and C3 (bottom) for the parameters Θ = 8π

6
,

tini = 10−5H−1
Λ , and k = 100 aisoHΛ . In each figure, ψi measures the angle from the

axis of slower expansion. The analytic estimates based on the arguments in the previous
sections are also plotted as dashed lines.

As understood from the figure, there is only weak contrast in growths on C1 , whereas
rather sharp declines at some angle of O(0.01) from the slower axes on C2 and C3 are
indicated. This implies that the region of high-intensity gravitational waves on the
celestial sphere would form a belt-like pattern around a great circle containing C1 ,
which we will numerically confirm in the next subsection.

In Figure 4.11, we show waveforms of E× (blue) and E+ (red) for several modes on
C3 , i.e., with k3 = 0. The modes have a common final wavenumber k =

√
k21 + k22 =

100 aisoHΛ but different final directions parameterized by tanψ3 = k1/k2 : ψ3 = 10−1

(top-left), 10−2 (top-right) and 10−3 (bottom). The other parameters are the same as
in Figure 4.10. It is observed that growths occur more efficiently as ψ3 decreases, i.e.,
as the final direction of the wavevector gets closer to the k2-axis. Indeed, there appears
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Figure 4.10: Linear growth factors for the ×-modes on the circumferences C1 (top-left), C2

(top-right), and C3 (bottom). The background anisotropy parameter is Θ =
8π
6 . The initial time and the final wavenumber are tini = 10−5H−1

Λ and k =
100 aisoHΛ , respectively.
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a threshold value ψ3 ∼ 10−2 for growth as implied by Equation (4.34). Note also that
these figures are to interpolate the top panels of Figure 4.5.
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Figure 4.11: Waveforms of several modes on the circumference C3 (k3 = 0) with a common
final wavenumber k = 100 aisoHΛ but with different final directions k1/k2 =
tanψ3 for ψ3 = 10−1 (top-left), 10−2 (top-right), and 10−3 (bottom). The
background anisotropy parameter and the initial time are Θ = 8π

6 and tini =
10−5H−1

Λ , respectively.

It should be noted here that the situation on C1 can change dramatically according
to the wavenumber and the background parameters. As implied by (4.30), the time
scale t(fast)stall near the k2-axis on C1 (tanψ1 ≳ 1) is a decreasing function of both k and
Θ , the reason for the latter dependence being that the exponent q(fast)1 = q2 is an
increasing function of Θ . If t(fast)stall declines to a value as small as tini , then amplification
of gravitational waves is prohibited near the k2-axis. Therefore, a simple criterion for
the growth on C1 to occur uniformly may be given by

tini ≤ t
(fast)
stall (ψ1 = π/2) = t

(i=2)
stall . (4.35)
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In Figure 4.12, we show the boundaries in the (Θ, HΛtini)-plane saturating the above
inequality for several wavenumbers, which can be used to discriminate whether the
growth factor on C1 is uniform or not at a corresponding wavenumber.
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Figure 4.12: Boundaries in the (Θ,HΛtini)-plane satisfying tini = tstall evaluated for the k2-
axis-aligned modes with several wavenumbers k2 . If a combination of the pa-
rameters (Θ,HΛtini) lies below a boundary for a given wavenumber k2 , then the
corresponding k2-axis-aligned mode is supposed to grow and the growth factor
on C1 would look rather uniform.

4.4 Evolution of modes pointing in general directions

Finally we discuss time evolutions of modes with a wavevector pointing in a general
direction. As indicated in Figure 4.1, a wavevector k⃗ rotates from the k1- to the k3-axis
(except on the circumference C3). Since neither of the tensor components of the shear
vanishes, the two polarization modes no longer evolve independently but affect each
other. Hence we shall numerically solve the coupled equations of motion (2.109).

In Figure 4.13, we show all-sky maps of the growth factor for intensity I ≡
√
E2

+ + E2
× ,

which is invariant under rotations of polarization basis, for the anisotropy parameters
Θ = 8π

6
(top) and 0.99× 9π

6
(bottom). The former represents a highly triaxial configura-

tion while the latter is nearly axisymmetric around the k3-axis, resembling the situation
investigated in [GKP08].

An obvious feature seen in the top panels is significantly higher growth factor along
the k1 = 0 great circle. This is a manifestation of the result of the analysis in the previous
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Figure 4.13: Qualitative difference in the intensity ratio log10[I(∞)/I(tini)] between the cases
of Θ = 8π

6 (top) and 0.99× 9π
6 (bottom).
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sections that the growth of gravitational waves only occurs in a narrow range near the
slower axis on the circumferences C2 and C3 . Indeed, the width of the belt-shaped
region of higher growth factor is well estimated by ψi=2,3 given by Equation (4.34). On
the other hand, in the bottom panels (Θ = 0.99 × 9π

6
) the growth is localized to near

the k3-axis.

As we shall explain now, this topological property is crucial in determining not only
the directions of the principal axes of the early anisotropic expansion but also the degree
of anisotropy Θ and the initial time of the anisotropic pre-inflationary stage tini with the
aid of Figure 4.12.

Let us imagine all-sky observations of gravitational waves at multiple wavelengths
become put into practice in the future, and we assume their initial conditions are given
isotropically. If the gravitational waves from the anisotropic regime are detected at some
(long) wavelength and the intensity map is determined to have a topology like the top
panels of Figure 4.13, then the principal axis of the fastest expansion (in our notation,
the x1-axis) is determined as the normal direction to the plane containing the great
circle of higher intensities. As for the pre-inflationary parameters, the combination of
(Θ, HΛtini) in Figure 4.12 is restricted to lie below the boundary corresponding to the
observation wavelength.

Our analyses further predict that, as one goes from longer wavelengths to shorter,
the intensity maps will exhibit a transition from a circle-like one (as depicted in the top
panels of Figure 4.13) to a localized one (bottom panels) at some critical wavelength.
From the map after the transition, the axis of the slowest expansion (the x3-axis) is de-
termined to be the direction pointing the highest intensity region on the celestial sphere,
after which the remaining axis (the x2-axis) is also determined to be the orthogonal
direction to the other two axes.

If such a transition is observed, the values of the parameters (Θ, HΛtini) in Figure 4.12
should lie on a curve corresponding to the critical wavelength. Then, once either of the
two parameters is given observationally or theoretically, the rest can be determined.

Here, we assumed that the initial conditions of PGWs are isotropic for perspicuity.
However, even if the initial conditions were not isotropic, the qualitative topological
nature of the sky-map of the growth factor should have impacts on the final distribution
of the intensity of PGWs. Particularly, the “uncomputable” region, previously mentioned
in Chapter 3, can correspond to the higher growth region.
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The success of observation of such topological nature would be not only useful for
searching the initial anisotropy but also be a proof of the presence of a “pre-inflation”
stage of the universe.

4.5 Discussions

Here, we discuss a very crude constraint on the gravitational-wave background from the
anisotropic pre-inflationary phase using the CMB observations. Let us focus on the axis-
aligned modes for simplicity. By doing so, we can take advantage of the fact that the
two polarizations are decoupled, and hence, the power spectrum after inflation can be
represented as a sum of those of the +-mode Ppre

T+ and the ×-mode Ppre
T× [GKP08; PPU08].

They are not identical in general because the two polarizations evolve differently on an
anisotropic background and even their initial values are not necessarily the same. We
here consider gravitational waves already existing at the initial time tini . Denoting the
values at tini as Ppre,ini

Tλ , the power spectra after inflation can be written in terms of the
growth factor Dλ as

Ppre
Tλ (ki) = D2

λ P
pre,ini
Tλ (ki) , (4.36)

where ki is the only non-zero component. If Ppre,ini
T+ (ki) and Ppre,ini

T× (ki) are of the same
order, since D× ≳ D+ in general, we may ignore the +-mode in comparison with the
×-mode at later times. Then, we can regard the total primordial power spectrum of the
pre-inflationary gravitational waves as

Ppre
T (ki) ≈ Ppre

T×(ki) = D2
×Ppre,ini

T× (ki) , (4.37)

whose explicit ki dependence, apart from the unknown initial part, is

Ppre
T (ki) ∝

(
ki

aisoHΛ

)−2− 2+6∆i
3(2/3−qi)

(HΛtini)
−2∆i Ppre,ini

T× (ki) . (4.38)

The upper limit on the primordial tensor power spectrum is given in terms of the
tensor-to-scalar ratio PT/PS ≡ r ≲ 0.27 at around k = 0.05Mpc−1 , where the scalar
power spectrum is PS(kpivot) ∼ 10−9 [Ade+16a]. Since it is expected that the k3-axis-
aligned mode grows the most at shorter wavelengths, we require the primordial tensor
power spectrum of the mode traveling along the x3-axis to be lower than rPS as a
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conservative limit. An additional assumption to be made here is that the modes exiting
the horizon at t = tiso re-enter the cosmological horizon at sufficiently late times, namely
aisoHΛ ∼ a(t0)H(t0) .

In the left panel of Figure 4.14, we show upper limits on the ×-mode initial power
spectrum of the pre-inflationary gravitational waves Ppre,ini

T,× plotted against the anisotropy
parameter Θ . The initial time is fixed to be tini = 10−5H−1

Λ . The constraint becomes
gradually stronger as Θ approaches to 7π

6
, reflecting the tendency observed in the left

panel of Figure 4.8. In the right panel, we show lower limits on the initial time tini . In
this figure, we set Ppre,ini

T× = 10−8 .
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Figure 4.14: Left: Upper limits on the initial spectrum of the ×-mode Ppre,ini
T,× for wavenum-

bers k3 = 10 aisoHΛ (red), 102 aisoHΛ (yellow), 103 aisoHΛ (green), and
104 aisoHΛ (blue). The initial time is fixed as ti = 10−5H−1

Λ . Right: Lower
limits on the initial time HΛ ti for the same set of wavenumbers. The initial
amplitude of the ×-mode spectrum is fixed as Ppre,ini

T,× = 10−8 .



Chapter 5

Conclusions

5.1 Summary of the thesis

As explained in Chapter 1, this thesis was devoted to a comprehensive study of PGWs
generated from anisotropic pre-inflation.

In Chapter 2, we reviewed basic equations for cosmological perturbations in Bianchi
type-I anisotropic spacetimes. A few important qualitative differences of calculations
from those in the isotropic cases are summarized as follows:

1. The norm and direction of wavevectors are time-dependent.

2. The gauge-invariant variables are no longer composed independently of scalar, vec-
tor and tensor-type variables, due to the presence of shear in background.

Then, we showed polarization decomposition of the components of the first-order Ein-
stein tensor.

After presenting the general formalism, we focused on the tensor perturbations in the
Kasner–de Sitter background, where only the two polarization components are dynami-
cal. As a typical example of triaxially anisotropic KdS, we took the anisotropic indices
(q1, q2, q3) = (1/

√
3, 0,−1/

√
3) (Θ = 8π/6) in most discussions in this thesis.

In Chapter 3, we considered quantization of PGW in the anisotropic pre-inflation
model. In Section 3.1, we considered the problem of quantization of primordial pertur-
bations in the presence of a pre-inflationary anisotropy of Bianchi type-I. Quantization in
such background has been considered to have a trouble due to the diverging anisotropy
as approaching to the initial singularity at t = 0 except for the “oblate” axisymmetric
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case. We began with an argument that there should be a finite initial time tini circum-
venting the initial singularity. Then we suggested that the quantum initial condition for
each mode should be set at some moment t = t∗ around or after tini . With this initial
condition, quantization and evaluation of expectation values was performed in a rather
standard way.

In Section 3.2, we practically examined viability of three possible variables, (i)χλ

(i = 1, 2, 3), as defined in (3.11), for the uses as mode functions for quantization of
PGWs. As seen in Figure 3.2 , due to the hierarchy (1)f ≫ (2)f ≫ (3)f , the variable
(1)χλ was the best to use to approximate a harmonic oscillator with a constant frequency
squared (1)Ω2

λ ≈ k21 for a wide range of wavenumber (k1, k2, k3) . The result also confirmed
that interaction between the polarizations modes did not take significant effects at short
wavelengths (see [PPU07] for a relevant analysis).

In Section 3.3, we discussed conditions for sensible quantization. We assumed that
quantization in the triaxially anisotropic Kasner-de Sitter universe around some moment
t∗ can be carried out to good approximation if the following conditions are fulfilled:

• At least one of the transformed variables {(1)χλ ,
(2)χλ ,

(3)χλ} has positive, nearly
constant frequency squared.

• Interaction between the polarization modes are weak. Decoupling of the modes in
the short wavelength regime has been partly confirmed in [PPU07], and we expect
that the interaction is weak as long as the WKB approximation is valid.

These conditions provided us the means to determine the energy spectrum of the fields
at t = t∗ . However, the adequate quantum state is not determined at this stage. In
the remainder of Chapter 3, we chose a typical situation in which the state with the
lowest energy is realized at t = t∗ . Moreover, we assumed that we could decide which
of (i)χλ was the most suitable choice of a variable to quantize for a given wavevector
(k1, k2, k3) . Once a variable suitable for quantization was given, a standard procedure
of second quantization could be carried out same as the standard way.

In Section 3.4, we applied our prescription to an evaluation of PGWs. For sufficiently
short wavelengths, the predicted PGWs with our quantum initial conditions gave the
almost isotropic, scale-invariant power spectrum with the same amplitude as de Sitter
inflation, as understood from Equation (3.29) and Figure 3.4. This is consistent with the
previous results of the analyses in the short wavelength regime [PPU07; PPU08]. We
also presented the sky map in a nearly “prolate” axisymmetric background in Figure 3.5.
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For very small |k1| or in the long wavelength regime with k ≲ O(10) aisoHΛ , our vari-
ables (i)χλ do not give a good approximation to harmonic oscillator.1 The enhancement
of PGWs near the k3 axis as seen in Figure 3.4 is most probably merely a manifestation
of the limitation of our approximations with the use of the variables (i)χλ . We did not
even try to make any predictions if all (i)Ω2

λ are negative, which takes place in the vicinity
of the great circle of k1 = 0 .

Nevertheless, we expect that the prediction can differ from that of de Sitter inflation
if the WKB condition was violated or the frequency squared Ω2

λ became negative during
some period in the anisotropic regime. This could indeed happen in the regions where
our current approximation method breaks down.

In Chapter 4, we performed a detailed analysis on the directional variations of a
gravitational wave background in a (pre-)inflation model described by the general tri-
axial Kasner–de Sitter metric, in which the degree of anisotropy is parameterized by an
angle parameter Θ . The purpose of the study was to give some more insights into the
connection between such gravitational waves and the primordial anisotropies.

We divided the whole analysis into the following three steps. First, in Section 4.2, we
investigated the evolution of gravitational waves whose wavevector is aligned with either
of the principal axes of anisotropic expansion. We clarified that, with our choice of the
polarization basis, the ×-polarization mode grows substantially while the shear term is
giving a dominant contribution to the squared frequency ω2

× . The amount of growth
reflects two factors: (i) the slower the expansion along the axis is, the longer ω2

× remains
negative; (ii) the larger the projected shear component σ(T)

+ is, the faster the mode
grows. There was a competition between the k3- and k2-axis-aligned modes since the
former grows for longest while the latter “sees” the largest value of σ(T)

+ . In an analytical
manner, we have obtained the explicit parameter dependencies of the growth factors as
in Equation (4.22), clarifying that the k3-axis-aligned ×-mode should dominate over the
other modes at sufficiently large wavenumbers except for an axisymmetric background
with Θ ≈ 7π

6
.

Second, in Section 4.3, we extended the analysis to the modes whose wavevector is
aligned between two of the principal axes. The situations are different on each circumfer-
ence Ci introduced as in Figure 4.2. We revealed that the distribution of gravitational-
wave intensities on C1 can change dramatically according to the background parameters

1Note that modes with k < O(1) aisoHΛ are already on super-horizon scales at the beginning of de
Sitter inflation. Classicality of such modes might be questioned.
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Θ and tini as explained by Figure 4.12 : when Θ is sufficiently close to 9π
6

, a value corre-
sponding to one of the axisymmetric limits, and HΛ tini is sufficiently large, the growth
of gravitational waves is localized to near the k3-axis. In the opposite case, the growth
takes place rather uniformly on C1 . On the other circumferences C2 and C3 , we showed
that the growth is localized to near the k3- and k2-axis, respectively, for wide ranges of
parameters.

Third, in Section 4.4, we discussed time evolutions of modes with a wavevector
pointing in a general direction. Specifically, we demonstrated all-sky maps of the growth
factor of the pre-inflationary gravitational waves for the two anisotropy parameters Θ =
8π
6

(triaxial) and 0.99 × 9π
6

(nearly axisymmetric) as in Figure 4.13. For Θ = 8π
6

, the
growth of gravitational waves occurs in a narrow range near the k1 = 0 great circle on the
sphere whose width can be well estimated by Equation (4.34), while for Θ = 0.99× 9π

6
,

the growth is localized to the k3-axis. Using these results, we argued that the topological
properties of the pre-inflationary gravitational waves in future all-sky, multi-wavelength
observations might provide us a crucial probe for determination of the configuration of
the primordial anisotropy, its degree Θ , and the initial time tini .

Moreover, in Section 4.5, we gave some tentative constraints on the initial amplitude
of the pre-inflationary gravitational waves, the anisotropy parameter Θ , and the initial
time tini from the B-mode polarization of CMB observed by the Planck satellite.

A thorough inspection into the modes with small k1 (corresponding to the “planar
modes” studied in the “oblate” axisymmetric case [BPM15; DP12; DKP12; DKP14]) and
long-wave length modes with k ∼ O(10) aisoHΛ is beyond the scope of this thesis, and
we leave studies of possible signatures of primordial anisotropy in the sky map of such
PGWs in future studies.

5.2 Concluding remark

The qualitative topological nature of the sky-map of the growth factor should have
impacts on the final intensity of PGWs. Particularly, the “uncomputable” region where
our quantization prescription is ineffective can correspond to the higher growth region.
This might serve as a potential probe for the pre-inflationary initial anisotropy with
future all-sky observations of gravitational waves. The success of observation of such
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topological nature would be not only useful for searching the initial anisotropy but also
be a proof of the presence of a “pre-inflation” stage of the universe.
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