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Cauchy Problem for the Euler Equations
of a Nonhomogeneous Ideal Incompressible Fluid Il
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Abstract : It is shown here that the Cauchy problem for the Euler equations of a nonhomogeneous ideal
incompressible fluid has a unique solution for a small time interval. In comparison with the previous paper
[1] and [2] in references, we discuss the problem under the weaker assumptions to given data, and show
the existence of a solution by means of a simple constructive procedure, namely, by proving that a suitable

sequence of successive approximations converges.
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1. Introduction

Let us consider the system of equations :

(1.1) p,+v-Vp=0,
(1.2) ploy + (v- V)] +Vp =pf,
(1.3) dive=0

in Qr = R? x [0,T], where the density p(z,t), the velocity vector v(x,t) = (vy(x,t), vy(x,t), v4(x, t))
and the pressure p(z,t) are unknowns and f(z,t) is a given vector field of external forces.
In this paper, we solve under the following initial conditions :
(1.4) Pli=o = po(x)
(1.5) Uy = vo(T) -
Our theorem is the following.

Theorem. Assume that

(1.6) po(z) € CO(R?),  Vpy(z) € H*(R*), 0<m < py(z) <M < oo,
(1.7) Vpo(z) vo(2) € LA(R?) Vy(z) € H*(R?), divy, =0,
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(1.8) flx,t) € C°([0,T] ; H3(R?)) .
Then there exists 7* € (0,7T") such that the problem (1.1) — (1.5) has a unique solution (p, v, p)(z,t)

which satisfies

(1.9) p(z,t) € CO(R® x [0,T*]), Vp(z,t) € C’"([O,T*] ;H2([R3)) ,
(1.10) 0<m<pz,t) <M< oo,

(1.11) v(z,t) € C°([0,T*] ; H3(R%))

(1.12) Vp(z,t) € C°([0,T*] ; H3(R?)) .

2. Auxiliary Problems

We assume that v(z,t) € CO<[O, T) ;H3([R3)) is a given function such that div v = 0. Hereafter c,’s
are the positive constants depending only on the imbedding theorems.

Lemma 2.1. Under the assumption, problem (1.1) with (1.4) has a unique solution
2.1) p(z,t) € COR* x [0,T)),  Vp(z,t) € CO([0,T]; HA(R?)),

which satisfies the estimates

(2.2) 0<m<p(z,t) <M< oo,
and
d
(2.3) = 1VPWOl2 < et Vo)AVl
where | - [ = I - [ &*®3) Moreover, if we put &(x,t) = p(z,t)~", then the estimates
(2.4) M1 <&(z,t) = p(z,t)t <m™!
and
d
(2.5) »r IVE@)2 < eiVo@)]2IVE®)]2
are valid.

Proof. It is well-known that, according to the classical method of characteristics, the solution of problem
(1.1) with (1.4) is given by p(z,t) = po(y(T,x,t)|,—), Where y(7,x,t) is the solution of the Cauchy
problem %1;’ = v(y,7) with y|._, = z. From this, the estimate (2.2) results.

Next, we establish(2.3). Apply the operator Dy = (0/ 0x,)*1(0/ 0z,)*2(9/ 0x45)** on each side of
(1.1). Multiplying the result by D2p, integrating over R? and summing over |a| = a; + ay + a3 =1,2,3,
we have the equality

198 == 3= | [v-v0znDz o +

> di > () [ vz D) da
=1

0<p<a R3

The first term of the right-hand side is zero, by integration by parts, since div v = 0.
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The second term can be estimated as follows :
3

> > (3)

|a|=10<pBLa

Div-V(Dg~p)(Dgp) dx| < e Vo) IVA(1)]3 -
R3

Hence, we get estimate (2.3). If we note that £(z,t) satisfies the equation & +v-VE =0 with

Elimo = pot(z) = &y(x), the estimates (2.4) and (2.5) directly follows from (2.2) and (2.3). O

Let p(x,t) be the unique solution of (1.1) with (1.4) guaranteed in Lemma 2.1 and
f(z,t) € CO([O,T] ;H3([R3)) . Then problem

Lemma 2.2.

3
(2.6) div(¢Vp) = div(f — (v- V)v) =div f — Z vy, V3,
ij=1

has a unique solution Vp(z,t) € C’O([O,T] ;H"([Rl‘)) satisfying
2.7) IVP(t)lls < es[ (M + [Ve(®)l2)(IVo@)]3 + IV £(©)ll2)
+M(M + Vo)l IVEDI3 ()3 + 1f(0)lo) ] -
Proof. We first note that (2.6) comes from applying the divergence operator on both sides of (1.2). It

is well-known that (2.6) is solvable in H3(R?). If we multiply (2.6) by p and integrate over R?, then, by

integration by parts, we obtain the equality
EVpPas = [ (1= (v V)0)Vpds.
R3 R3
Hence, we get the estimate

IVE®)llo < M(Ju@)I3 + 15 ®)llo) -

Noting that (2.6) can be written in the form

3
Ap=p (din— > ) —pVE-Vp,

i.5=1

and using the inequality [Jull, < 1/2 (|Aully + [luf,) , we obtain that for o with |a| =2,

3 ] CE
IDapll, < \/*2— (IIDﬁ(deVf)IIo +1|Dg (p Z v;,.vé,.)

ij=1
Therefore, from ||[Vp(t)|ls <>

+ Dz (pVE - V)l + IID$P|Io> :

0

|al=2||D$P(t>"2 + |IVp(t)|lo » the interpolation inequality and Young’s

one, we have the desired estimate.

O

Lemma 2.3. Let p(z,t) and f(z,t) be the same as in Lemma 2.2 and p(z,t) the unique solution of

(2.6) guaranteed in Lemma 2.2. Then problem
(2.8) plug+ (v-Viul+ Vp=pf,  ul_g=1v,(z)

has a unique solution u(z,t) € C°([0,T]; H*(R®)) . Moreover, u(z,t) satisfies
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29) (ol < —= (/7o vl + VAT / 7Ol ) = 4,
and
Q1) LU, < e ITHOLIVUOl, + (m + [VEOL) TR0l + VSOl .

Proof. First, multiplying (2.8) by u , integrating over R? and noting (2.1), then, by integration by

parts, we have the equality

1 d/ 5 /
e u|*dx = -udx
5 I [Rspll IRspf

holds, and thus the inequality (2.9) is valid. Secondly, similary to the proof of Lemma 2.1, we get the

equality
1 d 3 a
vl == > [/ (v-VD3u)- Deude+ 3 (B)/(ng.vpg—ﬂu).pgu do
Jaj=1 LR3 0<p<a R3

a o e wr o 4
+ (g)/(Dé’éDm ’Vp) Dzuda:} +/Rngf Deudz = Y I,

0<pB<a R3 j=1
Each term is estimated as follows : I; =0, || < ¢5|Vo(®)|o|Vu(t)|3 ,
3] < cs(m™ + [VED ) IV IsIVu®)l, and |I] < V()] Vu(®)], -

Hence the desired estimate is obtained. O

3. Successive Approximations
In order to prove Theorem, we use the method of successive approximations in the following form :
(3.1) v (z,t) =0,

and for k = 1,2,3,-, p®(z,t), p®¥(x,t), u® (x,t) are, respectively, the solution of problems

(32) pik) + 1)(k~1) . Vp(k') =0 , p(k)ltzo — po(x) ,
(3.3) div ((®WVp*)) = div (f — (v*D . V)uk-D) | ®) = (pk))-1
(3.4) uik) + (v D V)u®) 4 eRTp*) = £ u®|,_y = vy(x) .

Finally, let
3.5) o®) = k) — k)
where (¥ is the solution of problem
(3.6) Ap® = div u® |
Lemma 3.1. The sequence {v¥)(z,¢)}$2, is bounded in C“([O, T ;H:‘([R“))for a sufficiently small

T € (0,T).
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Proof. We note that we can obtain the inequality [[v®)(¢)||s < [[u® (£)|ls + [[Vio® (8|5 < cqlju® ()5 -
Let us choose K > max{2c; A, 4c;(||[Vuvolly + cy¢,A41)}, where A, =(m™" + 2||VE&]l2) (M + 2| Vpll2)
(1+8M||VE|13(M +2([Vpyl2)*) (1 + T||f||cn([0,T] ;HS(RS))) and define T* = min{(c,K) 'log2,

(cyK)*log2, K2} . Then, from the consequences in the previous section, we find that

sup |[p®(t)|ly; < K provided that sup [v*V(¢); < K.
0<t<T* 0<t<T*

Therefore, by induction, we have the assertion of lemma.

By the direct calculation, we get

Lemma 3.2. The following estimates hold for £ =1,2,3,---

pgk)(t)Hz S KA, =4y,

sup [Vp®F(t)]l, < 2([Vpoll, = 4, sup
o<t<T*

0<t<T
sup [[VEW (1), <2IVE&ll, =4, , sup [P )] < KA, =A4;,
0<t<T* 0<t<T* 2
021}}* (VPR @)|ls < e5(M + Ay)(1+8M (M + A,)2A3Y) (K2 + “f”C() (0.1 Hs([Rs))) = A,
(k) -1 2 —
02:13%* Uy (t)”2 <(m™t+ Ay A+ K2 + “f”c”([(),T] SH3(R)) = Az .

4. Proof of Theorem
Set U(k) = p(k) -— p(k-l)’ n(k) P é(k) — {(k_l), h(k') — u(k) —_ u(k‘l)’ q(k) — p(k) _p(k_l) and

wk) = y*) — k=1 Then we have

(41) a'ik) + U(k_l) . VO'(k) = _w(k—l) . vP(k—l)’ O’(k)‘t___o = O )
(4.2) 771(:’6) + pk=1) . Vn(k) = k1), Vg(k—l), n(k)'t=() =0,
(4.3) div ((WV¢gP) = —div (n® Vp*-1)) — div ((w(k_l) - V)oh 4 (pk=2) V)w““‘”)

3
= —div (M Vpk-1) Z( (k1) (K 1)»J_+_,v(k 2),i (T/:—n,;)

and
(4.4) (k) + (v D - V)AK) 4 R Tgh) = —(wk-D . V)uk-D) — R Tpk-1 - p®)| =

In the same way used for getting the estimates of p, u and p, we get
t t
o0l < Ay [Tt @lds 00l < A, [t ds
0 0

where Ag = cgAsexp(cg KT™)
IVa® Ok < g (1 @ + [V @]

where Ag = max{AgA,,, KAy}, Al =co((M + Ay)?A; + (M + Ay) +1)
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9Ol < Aw [ (9 Ol +FaO O + 0t 0)) ds
0

where A;; = ¢;gAexp(c, o KT*), Ajy =max{m '+ A,, A;, Ay + K} .
From these inequalities, since [[w™® (t)||, < cy1||R*®(¢)|l, , it follows that

t
t
[0l < sy [ D 0)lds < A5 G sup [0 Ol
| |

0<s<t
where A3 = ¢ (1 + AgT*)(1 + Ag)A,; . Consequently,

tk:—-l
(k) k—1

holds. Therefore, we find that

Z ”w(k)“CO([O,T*];HZ(IR3)) < 0.
k=1

This implies that

(o™, p® u®) @) (z,t) = (p,p,u,v)(z,t) as k— oo,

which satisfies the equations

(4.5) petv-Vp=0,  plg=pz),

(4.6) div((v- V)u+p1Vp— f) =0,

(4.7) u+ (- Vu+p'Vp=f,  uley=1vy(),
(4.8) Ay =divu,

(4.9) v=u—Vi.

Now let us show that w = v . Applying the divergence operator on both sides of (4.7) and taking into
account (4.6), (4.8) and (4.9) , we get

3

(4.10) (divu), + v-V(divu) = — Z Uij%ﬂj .
ij=1
Hence, we have the inequality
1 d H 2 o' 3 : 2
@) g v ul < K S IDes@)l liv (el < epKldivu@)]}

|a|=2
which means div v = 0 since div vy(z) =0.

This completes the proof of Theorem . O
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