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Ilargely responsible for the
innate immune response and also for
intestinal homeostasis.1 We have
developed novel xenogeneic-free hu-
man intestinal organoids (XF-HIOs)
that are uniquely structured with an
apical-out mucosal epithelium and
complex mesenchymal tissue,
including smooth muscle and intesti-
nal nerve cells.2,3 To further develop
XF-HIOs containing tissue macro-
phages, we first prepared human-
induced pluripotent stem cell
(hiPSC)-derived monocyte-like cells
(pMCs). These were directly injected
into the cystic cavity of an XF-HIO,
followed by differentiation into
macrophage-like cells (pGMACs)
within XF-HIOs in the presence of
macrophage colony-stimulating factor
(M-CSF) (Figure 1A). We prepared
macrophages/monocytes derived
from an enhanced green fluorescent
protein (EGFP)–hiPSC line, which
constitutively expressed EGFP
(Supplementary Figure 1A). The
pGMACs were observed to evenly
disperse inside the XF-HIOs, and image
analysis showed pGMACs with short-
elongated projections (Figure 1B).
Immunofluorescence staining also
revealed that ionized calcium-binding
adapter molecule 1 was detectable in
the monocyte (MC)-XF-HIOs; however,
CD14 was not (Figure 1C). This stain-
ing pattern is similar to that observed
in human intestinal macrophages.4,5

We also identified that ionized
calcium-binding adapter molecule 1
and C-X3-C motif chemokine receptor
SSU 5.6.0 DTD �
1 were co-localized in MC-XF-HIOs
(Supplementary Figure 1B and C).

Furthermore, the presence of
pGMACs under the epithelium of each
organoid as indicated by zonula
occludens-1 staining was also
observed in a three-dimensional im-
age (Supplementary Videos 1A and B).
Transmission electron microscopy of
a section of MC-XF-HIO showed a
pGMAC displayed phagocytic vacu-
oles, a large nucleus, and several short
pseudopodia (Figure 1D). The MC-XF-
HIOs have an intestinal tissue struc-
ture composed of apical-out epithelial
and mesenchymal cells with neuronal
cells (Supplementary Figure 1D) and
also showed peristaltic-like move-
ments (Supplementary Video 1C), as
previously demonstrated in XF-HIOs.2

By sectionalizing their supernatant
and fluid contents, this enabled us to
mimic human intestinal physiological
conditions in vitro. To assess the
abilities of MC-XF-HIOs to produce
and secrete soluble cytokines and
chemokines, we investigated the fluid
content (FC) of the organoids using a
bead-based Multiplex cytokine assay
(Figure 2A). Consistent with the in-
testinal epithelial barrier
(Supplementary Figure 1D), several
differences were apparent in the
amounts of soluble cytokines in the FC
of MC-XF-HIOs (Supplementary
Figure 2A). Quantitative reverse tran-
scription polymerase chain reaction
(PCR) analysis based on single-cell
sorting of pGMACs in MC-XF-HIOs
revealed the distinct expression of
macrophage polarization markers
such as TNF, NOS2, HLA-DB1, IL-6,
KLF4, and VEGFA (Supplementary
Figure 2B). MC-XF-HIOs expressed
pleiotropic types of cytokines. In
addition, lipopolysaccharide (LPS)
was used as a potential inflammatory
stimulus.6 However, the expression of
inflammatory cytokines, except for
interleukin 4, did not exhibit a statis-
tically significant change after expo-
sure to LPS (Figure 2B). We showed
that LPS induced a strong response in
pMCs (Supplementary Figure 2C).
JCMGH1037 proof � 13 July 2022 � 9:04 pm
Two possible reasons exist for the
very low or no responses to LPS
observed in MC-XF-HIOs. Macro-
phages in MC-XF-HIOs are CD14
negative cells (Figure 1C). Resident
intestinal macrophages characterized
as lacking CD14 did not show
enhanced cytokine production by
LPS.7 We observed that toll-like re-
ceptor 4 protein was weakly
expressed on the apical surface of MC-
XF-HIOs (Supplementary Figure 2D).
This observation is consistent with a
recent report by Price et al,8 who
observed a weaker expression of toll-
like receptor 4 in the small intestine
in comparison with that in the stom-
ach or colon and very low responses
to LPS in human intestinal organoids
compared with colon organoids.

Next, we assessed the phagocytosis
of pGMACs in response to foreign anti-
gens on the epithelium of MC-XF-HIOs
using pH-dependent dye labeled
Escherichia coli bioparticles.9 The bio-
particles only fluoresced when localized
in the acidic environment of the phag-
olysosome. A magnified image showed
red signals detectable within pGMACs
and suggested pGMACs existing in the
organoid captured bioparticles in acidi-
fied phagolysosomes (Figure 2C).

Here we present the development of
hiPSC-derived intestinal organoids
inhabited by tissue macrophages that
model intestinal immune responses
in vitro. One of the important features of
the MC-XF-HIO system is that both
organoids and macrophages are derived
from an identical hiPSC line. This study
reports Qhuman gut organoids coexisting
with macrophages. We further applied
this technique to a novel Crohn’s disease
model as a potential platform for
studying human intestinal inflammatory
disorders (Supplementary Figure 3).
The MC-XF-HIO culture system we
describe here provides a species-specific
in vitro model for temporally and
spatially investigating interactions be-
tween the gastrointestinal tract and in-
testinal macrophages (Figure 2D). This
represents a powerful addition to the
repertoire of methods available to
115
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Figure 1. Establishment of hiPSC-derived gut organoid residing macrophages. (A) Human iPSC-derived monocyte-like
cells (pMCs) were transplanted into human intestinal organoids (XF-HIOs) and then treated with macrophage colony-
stimulating factor to differentiate into monocyte-XF-HIOs (MC-XF-HIOs). Scale bars: 500 mm. (B) Macrophages from
enhanced green fluorescent protein labeled human-induced pluripotent stem cells (EGFP–hiPSCs) were dispersed in the
organoids (1, 2), and image analysis revealed short-elongated projections (red arrowheads) of gut macrophages (pGMACs) in
MC-XF-HIOs. (3). Scale bars: black, 500 mm; white, 100 mm; yellow, 20 mm. (C) Immunostaining for macrophage-specific
marker IBA1 merged with EGFP-hiPSCs (white arrowheads) but not CD14 (yellow arrowheads). Scale bars: white, 30 mm;
yellow, 200 mm. (D) Representative views of pGMACs by transmission electron microscopy showed a characteristic large
nucleus, phagocytic vacuoles, and short pseudopodia (white arrowheads). Scale bar: 5 mm.
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Figure 2. Macrophage-related characterization of MC-XF-HIOs. (A) An illustration that indicates the characteristic
structure of a MC-XF-HIO compartmentalizing fluid content (FC). (B) Secretions released in the FC fluid of a single XF-HIO or
MC-XF-HIO were assayed for selected interleukin (IL) cytokines, and these were quantified. LPS stimulation of organoids for
24 hours; FC samples were then collected. Data represent the mean ± standard error of 3–6 independent gut organoids
generated in at least 3 individual experiments in the presence or absence of LPS. Statistical significance was identified using
Student t test (*P < .05, **P < .01, NS, not significant. (C) EGFP-expressing pGMACs in MC-XF-HIOs demonstrated red
fluorescence (white arrowheads) inside the cells after exposure to pHrodo red Escherichia coli bioparticles. Scale bars: white,
300 mm; gray, 100 mm. (D) A diagram of hiPSC-derived MC-XF-HIOs.
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Supplementary Materials
and Methods
Ethics Approval

Human material (hiPSCs and in-
testinal tissues) was obtained with
informed consent from patients or
their families and the approval of
relevant institutions. The use of intes-
tinal tissues was approved by the
institutional review board (of the Na-
tional Center for Child Health and
Development (NCCHD) (IRB permis-
sion #146, #927) and according to the
Declaration of Helsinki.

Cell Lines
The hiPSC line, Edom-iPS, was

generated in our laboratory1,2 and
cultured in StemFlex medium (Thermo
Fisher Scientific, Waltham, MA). An
EGFP-Edom-iPSC line, which constitu-
tively expressed EGFP under a cyto-
megalovirus promoter with a
hyperactive PiggyBac vector,3 was
used for MC/macrophage
differentiation.

Crohn’s disease–specific hiPSC
lines were obtained from RIKEN BRC
Cell Bank (Ibaraki, Japan) with ethics
approval. Three independent cell lines,
HPS1508, HPS2816, and HPS2054,
were generated from peripheral blood
mononuclear cells of Crohn’s disease
patients.

Generation of XF-HIOs From
hiPSCs

We previously4,5 generated highly
functional intestinal organoids using
defined xenogeneic-free differentiation
medium: 85% knockout Dulbecco
modified Eagle medium, 15%
knockout serum replacement XF (XF-
KSR; Gibco, Waltham, MA), 2 mmol/L
GlutaMAX-I, penicillin–streptomycin,
50 mg/mL L-ascorbic acid 2-
phosphate (Sigma-Aldrich, St Louis,
MO), 10 ng/mL heregulin-1b (R&D
Systems, Minneapolis, MN), 200 ng/
mL recombinant human insulin
growth factor-1 (Sigma-Aldrich), and
20 ng/mL human basic fibroblast
growth factor (Gibco). Undifferenti-
ated hiPSCs were dissociated and
plated on a cell-patterning glass sub-
strate CytoGraph (Dai Nippon Printing,
Tokyo, Japan). XF differentiation

medium was replaced every 3–4 days.
Floating orbicular gut organoids were
collected and cultured in a culture dish
(Corning, Corning, NY) in XF differen-
tiation medium.

Generation of Human
Monocyte-Like Cells From
hiPSCs and Differentiation Into
Macrophages

The hiPSCs were differentiated into
macrophage progenitors following a
previously published protocol.6

Monocyte-like cells emerging into the
supernatant after approximately 4
weeks were repeatedly harvested once
per week by straining (Corning).

XF-HIOs and Macrophages
Co-Cultures

To co-culture XF-HIOs with MCs
derived from the same iPSCs, we
established an injection method for
reproducing biological sites and scaf-
folds. To accurately reproduce recip-
rocal biological sites of local
macrophages and the mesenchymal
tissue of XF-HIOs as a cell scaffold, we
established manipulative trans-
plantation with a microsyringe. Hu-
man iPSC-derived MCs were collected,
centrifuged, and resuspended in XF
culture medium supplemented with
100 ng/mL M-CSF to give a final cell
concentration of 5.0 � 106/mL. The
XF-HIOs that grew to approximately
10 mm in diameter were collected, and
the prepared MCs were injected into
each XF-HIO using a syringe (Nipro,
Osaka, Japan) and atraumatic 34-gauge
microneedles (Unisis, Tokyo, Japan)
under a microscope. XF-HIOs injected
with MCs were cultured in 6-well
plates (Corning) in XF medium with
100 ng/mL M-CSF for 14 days.

Quantitative Reverse
Transcription Polymerase
Chain Reaction Analysis

RNA was isolated from organoids
using a RNeasy Mini Kit (Qiagen, Hil-
den, Germany), and cDNA was gener-
ated using SuperScript IV VILO Master
Mix (Thermo Fisher Scientific). Quan-
titative reverse transcription PCR were
carried out in triplicate using SYBR

Green PCR Master mix. All reactions
were run for 40 cycles at 95�C for 15
seconds and 60�C for 30 seconds, fol-
lowed by melting curve analysis. For
comparing characteristics of co-
cultured iPSC-derived gut macro-
phages (pGMACs), iPSC-derived pMCs,
and human MCs, quantitative reverse
transcription PCR was performed us-
ing a GeneQuery Human Macrophage
Polarization Markers qPCR Array Kit
(ScienCell Research Laboratories,
Carlsbad, CA). QuantStudio 12K Flex
software was adopted to quantify the
relative levels of mRNA of target genes
after normalization against the house-
keeping gene, GAPDH. Healthy human
primary small intestine (ileum) cDNA
(BioChain Institute, Newark, CA) and
human peripheral blood mononuclear
cells cDNA (3H Biomedical, Uppsala,
Sweden) were used as positive
controls.

The hiPSC-derived MCs were stim-
ulated with indicated concentrations of
LPS from E coli O111 (Sigma-Aldrich)
for 24 hours and analyzed for inter-
leukin 6 by quantitative reverse tran-
scription PCR with SYBR Green
chemistry according to the manufac-
turer’s protocol.

Immunocytochemical Staining
Organoids fixed with 4% para-

formaldehyde in phosphate-buffered
saline (Gibco) were incubated over-
night at 4�C with primary antibodies:
anti-IBA1 (Abcam, Cambridge, UK),
anti-GFP (Abcam), anti-CD14 (Abcam),
anti-ZO-1 (Invitrogen, Waltham, MA),
anti-CX3CR1 (Abcam), anti-TLR4
(Novus Biologicals, Littleton, CO), and
anti-vimentin (Abcam). Alexa 488- or
Alexa 546-conjugated anti-mouse, anti-
rabbit, or anti-goat secondary anti-
bodies (BD Biosciences, Franklin
Lakes, NJ) were used. Cell fluorescence
was analyzed using a Nikon A1
confocal microscope (Nikon, Tokyo,
Japan) or a BZ-X700 microscope
(Keyence, Osaka, Japan). Three-
dimensional fluorescent images were
obtained using a confocal FV-1200
microscope (Olympus, Tokyo, Japan),
and three-dimensional movies were
made using IMARIS software (Bitplane,
Zurich, Switzerland).
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Electron Microscope Analysis
Electron microscopy imaging was

performed as previously described.7

Organoid samples were fixed in 2.5%
glutaraldehyde and 0.1 mol/L phos-
phate buffer (Muto Pure Chemicals,
Tokyo, Japan) and dehydrated in serial
fixation steps. Ultrathin sections on
copper grids were examined with a
transmission electron microscope
(JEM-1400plus; JEOL, Tokyo, Japan) at
100 keV for ultrahigh-resolution im-
aging. A multibeam scanning electron
microscope (Multi-SEM 505; Carl
Zeiss, Oberkochen, Germany) was used
for whole-section electron microscopy
imaging.

Assessment of Phagocytic
Activity

To measure the antigen uptake of
pGMACs by MC-XF-HIOs, pHrodo Red
E coli BioParticles Conjugate (Thermo
Fisher Scientific), which fluoresces red
in acidic phagosomes, was used. A
single MC-XF-HIO was washed 3 times
with phosphate-buffered saline and
incubated with 500 mg/mL bio-
particles. Fluorescence was measured
with a BZ-X700 fluorescence micro-
scope (Keyence) in a Keyence imaging

platform after 1.5-hour incubation at
37.0�C. Three different experiments
were performed.

Multiple Analyte Profile for
Cytokine and Chemokine Level
Determination

For multiple cytokine and chemo-
kine analysis, XF-HIO samples cultured
for 2 weeks from a pMC injection were
selected. After 72 hours in culture, the
supernatant (SF) and FC of XF-HIOs or
MC-XF-HIOs were collected. Both XF-
HIOs and MC-XF-HIOs were stimu-
lated with 100 ng/mL LPS from E coli
O111 (Sigma-Aldrich) for 24 hours
before collection. Cytokine levels were
determined in duplicate using a Milli-
plex MAP Human Cytokine/Chemo-
kine Panel (Merck, Kenilworth, NJ)
according to the manufacturer’s in-
structions. Fluorescence signals were
measured by Luminex 200 (Luminex
Corp, Austin, TX), and data were
analyzed using MilliplexAnalyst (Vig-
eneTech, Carlisle, MA).

Video Recordings
MC-XF-HIOs were observed using a

BZ-X700-All-in-One fluorescence mi-
croscope. Original videos were

Supplementary
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recorded at 29 frames per second. The
playback speed of the video was 20
times actual speed.

Statistical Analysis
Data are reported as mean ± stan-

dard error of the mean from at least 3
independent experiments. Statistical
analyses were performed using either
an unpaired or two-tailed t test. P
values �.05 were considered statisti-
cally significant.
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Supplementary Figure 1. Characterization of hiPSC-derived macrophage-integrated gut organoids. (A) Enhanced green
fluorescent protein (EGFP)–human-induced pluripotent stem cells (hiPSCs), which constitutively expressed EGFP under a
cytomegalovirus promoter, were cultured under feeder-free conditions in StemFlex medium (1) and differentiated into
monocyte-like cells (pMCs) (2). Scale bars: black, 300 mm; white, 100 mm (2) (B) Immunofluorescence staining for ionized
calcium-binding adapter molecule 1 (IBA1) in human intestine. Scale bar, 100 mm. (C) Immunofluorescence staining for IBA1
and CX3CR1 in MC-XF-HIOs derived from a non-EGFP hiPSC line (Edom-iPSCs). Scale bar: 50 mm. (D) Immunostaining for
caudal type homeobox 2 (CDX2), villin, zonula occludens-1 (ZO-1), E-cadherin (ECAD), glycoprotein 2 (GP2), mucin 2 (MUC2),
defensin alpha 6 (DEFA6), protein gene product 9.5 (PGP9.5), and smooth muscle actin (SMA). PGP9.5-positive enteric
neuronal cells were surrounded by SMA-positive mesenteric tissue in MC-XF-HIOs. Cell nuclei were counterstained with 40, 6-
diamidino-2-phenylindole, dihydrochloride (DAPI). Scale bars, 100 mm. Anti-CDX2 (1:1000, ab76541; Abcam), anti-villin (1:50,
sc-7672; Santa Cruz Biotechnology, Dallas, TX), anti-GP2 (1:1000, HPA016668; Sigma-Aldrich), anti-MUC2 (1:50, sc-7314;
Santa Cruz Biotechnology), anti-PGP9.5 (1:10, ab8189; Abcam), anti-SMA (1:400, A2547; Sigma-Aldrich), anti-ECAD (1:50,
610181; BD Pharmingen, San Diego, CA), anti–ZO-1 (1:100, 40-2200; Invitrogen), and anti-DEFA6 (1:500, HPA019462; Sigma-
Aldrich) were used as primary antibodies.
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Supplementary Figure 2. Cytokine and chemokine profiles of MC-XF-HIOs. (A) Total of 29 cytokines and chemokines in
the fluid content (FC) and supernatant fluid (SF) of the organoids were assayed using a bead-based Multiplex cytokine assay.
Secretions released in the SF medium and FC fluid of a single xenogeneic-free human intestinal organoid (XF-HIO) or mac-
rophage–xenogeneic-free human intestinal organoid (MC-XF-HIO) were assayed for selected cytokines and chemokines, and
these were quantified. Lipopolysaccharide (LPS) stimulation of organoids for 24 hours; SF and FC samples were then
collected. Data represent the mean ± standard error of the mean of 3–6 independent gut organoids generated in at least 4
individual experiments in the presence or absence of LPS. (B) Representative fluorescence-activated cell sorting (FACS)
images of MC-XF-HIOs disassembled into single cells. Expression of key macrophage polarization markers determined by
quantitative reverse transcription PCR: M1 macrophage–associated genes (TNF, NOS2, HLA-DB1); M2
macrophage–associated genes (IL6, KLF4, VEGFA). Relative expression was calculated using the DDCT method, with GAPDH
as an endogenous control and normalization to human blood monocytes. Samples as human-induced pluripotent stem cell
(hiPSC)–derived monocyte-like cells (pMCs) and differentiated macrophages (pMACs) were generated in independent ex-
periments. Originally injected monocytes (pMCs) in XF-HIOs or co-cultured human pluripotent stem cell–derived gut mac-
rophages (pGMACs) were isolated from 5 MC-XF-HIOs in 3 individual experiments using FACS. The data represent the mean ±
standard error, and statistical significance was identified using Student t test (*P < .05) (n ¼ 3). (C) Monocytes derived from
hiPSCs were stimulated with the indicated concentrations of LPS for 24 hours and analyzed for interleukin 6 by quantitative
reverse transcription PCR. Each assay was performed with 3 biologically independent replicates. Values of interleukin 6 were
normalized against the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The data represent the
mean ± standard error, and statistical significance was identified using Student t test (*P < .05, **P < .01; n ¼ 3) versus 0 ng/
mL LPS as a control. (D) Immunofluorescence staining for toll-like receptor 4 (TLR4) in an MC-XF-HIO. Scale bar: 50 mm.
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Supplementary Figure 3. XF-HIOs and MC-XF-HIOs derived from Crohn’s disease–specific iPSC lines. Crohn’s
disease–specific induced pluripotent stem cell (iPS) lines (CD-iPSCs) were derived from patients with Crohn’s disease (CD).
HPS1508 and HPS2816 cell lines were derived from 2 separate patients with an ileal form of CD. HPS2054 was derived from a
patient with an ileocolic form of CD. These 3 cell lines were confirmed to differentiate into xenogeneic-free human intestinal
organoids (XF-HIOs) and PSC-derived monocyte-like cells (pMCs). Macrophage–xenogeneic-free human intestinal organoids
(MC-XF-HIOs) were generated from the CD-iPSC lines and each pMC. Hematoxylin-eosin staining of CD-iPSC derived MC-
XF-HIOs (CD-MC-XF-HIOs). The CD-MC-XF-HIOs are structured outward and oriented toward the epithelial layers. Scale bar
corresponds to 200 mm. The XF-HIOs are structured outward and oriented toward the epithelial layers. White and black scale
bars correspond to 500 mm and 200 mm, respectively.
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